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Exponentially Weighted Methods for Forecasting Intraday Time Series with Multiple Seasonal 

Cycles 

 

Abstract 

This paper introduces five new univariate exponentially weighted methods for forecasting intraday 

time series that consist of both intraweek and intraday seasonal cycles. Applications of relevance 

include forecasting volumes of call centre arrivals, transportation, e-mail traffic and electricity load. 

The first method that we develop extends an exponential smoothing formulation that has been used 

for daily sales data, and which involves smoothing the total weekly volume and its split across the 

periods of the week. Two new methods are proposed that use discount weighted regression (DWR). 

The first uses DWR to estimate the time-varying parameters of a model with trigonometric terms. The 

second introduces DWR splines. We also consider a time-varying spline that uses exponential 

smoothing. The final new method presented involves the use of singular value decomposition 

followed by exponential smoothing. Empirical results are provided for a series of intraday call centre 

arrivals. 

 

Keywords: Seasonality; Intraday data; Call centre arrivals; Exponential smoothing; Exponential 

weighting; Discount weighted regression; Regression splines; Singular value decomposition. 
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1. Introduction 

The increasing availability of time series recorded at an intraday frequency has led to a 

growing interest in forecasting methods for such data. An application where this is the case is call 

centre management. The dramatic rise in the number and size of call centres in recent years has 

emphasised the need for accurate call centre arrivals forecasts, which are a key input to staffing 

decisions (Gans et al., 2003). With this forecasting application, there are very often no explanatory 

variables available, and so univariate modelling is needed for all lead times of interest. Fig. 1 presents 

a two-week sample of half-hourly total call arrivals at the call centres of NHS Direct, which is the 24-

hour telephone helpline provided by the National Health Service (NHS) in England and Wales. The 

figure shows evidence of a repeating intraweek pattern of length 336 half-hourly periods, and also, at 

least for the weekdays, there is similarity between the intraday patterns of length 48 periods.  

----------  Fig. 1  ---------- 

Other examples of data, exhibiting both intraday and intraweek cycles and requiring 

univariate forecasting methods, are electricity load, transportation counts, and hospital admissions 

(see, for example, Taylor, 2003; Lam et al., 2006; Gould et al, 2008). Although weather-based models 

are widely employed for load forecasting, univariate methods can be useful for lead times less than 

one day, and for regions where weather predictions are not available. 

These applications require univariate methods for intraday series that are suitable for use in 

automated forecasting systems. Exponential smoothing is an obvious candidate, given its frequent use 

in automated applications in business and industry (Hyndman et al., 2008). Several exponential 

smoothing methods have previously been proposed for forecasting intraday series. These include 

Taylor’s (2003) adaptation of the Holt-Winters method, and the recent developments of Gould et al. 

(2008) and Taylor and Snyder (2009) that aim to produce models with lower dimensionality than the 

Holt-Winters adaptation, in order to achieve greater parsimony and efficiency. The issue of dimension 

reduction is a theme running through this paper. Exponential smoothing has performed well in 

empirical studies with intraday data, particularly for lead times of less than approximately two days 

ahead (see, for example, Taylor and McSharry, 2007, and Taylor, 2008). This motivates us to consider 

in this paper new methods based on exponential weighting.  
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We present a new exponential smoothing method that involves smoothing the total weekly 

volume and its split across the periods of the week. Christiaanse (1971) uses exponentially weighted 

regression to estimate the time-varying parameters of a linear model with trigonometric terms for 

intraday load forecasting. We develop this idea by using Harrison and Johnston’s (1984) discount 

weighted regression (DWR) to enable more than one discount factor to be used. Poirier (1973) 

introduces regression splines as a means of fitting a spline function to a nonlinear relationship 

between two variables. Our new proposal is to use DWR to fit a time-varying regression spline to the 

intraweek seasonal cycle. Harvey and Koopman (1993) model the intraweek cycle as a time-varying 

spline using a multiple source of error state space model. We introduce an alternative version of this 

that replaces this model with exponential smoothing.  

Previous research has reduced the complexity of the modelling of intraday data by applying 

singular value decomposition (SVD), prior to time series forecasting (e.g. Shen and Huang, 2005; 

Taylor et al., 2006). The application of SVD proceeds by arranging the intraday data as a (dm1) 

matrix, where d is the number of days in the estimation sample and m1 is the number of periods in 

each day. Each column of this matrix constitutes a time series of daily observations for a particular 

period of the day. SVD is used to extract the main underlying components in these columns, and thus 

reduce the problem from having to forecast m1 daily series to forecasting daily series for just the main 

components. We present a new approach that follows the use of SVD with exponential smoothing.  

We should comment that the methods introduced in this paper will not be useful for all 

intraday series. For example, they would have to be adapted for use with intraday financial returns 

and electricity price data because such series exhibit complex structure in the volatility.  

In Section 2, we describe the structure of the empirical analysis that we use to compare the 

forecast accuracy of the various methods. Section 3 reviews the existing exponential smoothing 

formulations for seasonal intraday data. Section 4 introduces a method that we term ‘double seasonal 

total and split exponential smoothing’. Section 5 considers DWR with trigonometric terms. In Section 

6, we introduce DWR splines, and a method that uses exponential smoothing to model the intraweek 

cycle in terms of a time-varying spline. Section 7 presents a procedure that involves the use of SVD 

followed by exponential smoothing. In Section 8, we summarise and provide concluding comments. 
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2. Structure of empirical analysis 

Our empirical analysis, comparing forecast accuracy, uses a 35-week time series of half-

hourly call arrivals for NHS Direct. This data is also studied by Taylor (2010). Fig. 1 shows a two-

week sample of this series, and Fig. 2 presents the full series. Although this is count data, the volumes 

are high, and so we treat the data as values from a continuous variable. To stabilize the variance, we 

applied a logarithmic transformation. The series contained five public holidays. On these days, call 

arrivals differed greatly from the regular seasonal pattern. Forecasts for such days would typically be 

prepared offline. As our study is concerned with automated online prediction, we smoothed out the 

bank holidays using simple averaging procedures. We used a similar procedure for 162 half-hourly 

periods for which the observations were missing. These periods and the bank holidays were not 

included in our post-sample forecast evaluation. For all methods implemented in this paper, 

parameters were estimated once using the first 25 weeks of data. (We describe parameter optimisation 

in detail in Section 3.1.) The forecast origin was then rolled forward through the remaining 10-week 

period to produce a collection of post-sample forecasts for half-hourly lead times up to two weeks 

ahead. The focus of our empirical analysis is on point forecast accuracy. In the final section of the 

paper, we briefly consider the generation of prediction intervals from the various methods.  

We evaluate point forecast accuracy using the mean absolute error (MAE), which is 

calculated for lead time k using the following expression:  


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where yt+k is the actual number of call arrivals in half-hour t+k, and )(ˆ kyt  is the k step-ahead forecast 

from forecast origin t. Note that 25×336=8,400 is the length of the 25-week estimation sample, 

35×336=11,760 is the length of the total 35-week sample, and 3,360 is the length of the post-sample 

period. We also evaluated the root mean squared error and mean absolute percentage error, but we do 

not report these results because the rankings of the methods for these measures were broadly similar 

to those for the MAE. Overall, our empirical results were better for the methods that involve 

exponential smoothing than for those that use DWR. Of the exponential smoothing methods, Taylor’s 

adaptation of the Holt-Winters method performed particularly well up to a day ahead, but beyond this, 
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it was matched or outperformed by several of the more recent exponential smoothing approaches, 

including some of the new formulations introduced in this paper. 

----------  Fig. 2  ---------- 

 

3. Review of exponential smoothing methods for intraday data  

3.1. HWT exponential smoothing 

 Holt-Winters exponential smoothing has been extended by Taylor (2003) to accommodate the 

intraday and intraweek cycles in intraday data. We refer to the method as ‘HWT exponential 

smoothing’, and present it in expressions (1)-(5) in error correction form.  

t
k

kmtkmttt ewdlky   2211
)(ˆ       (1) 

 
211 mtmtttt wdlye         (2) 

ttt ell  1         (3) 

tmtt edd   1
       (4) 

tmtt eww   2
       (5) 

m1 and m2 are the number of periods in the day and week, respectively; lt is the smoothed level; dt is 

the seasonal index for the intraday cycle; wt is the seasonal index for the intraweek cycle that remains 

after the intraday cycle is removed; ,  and are smoothing parameters; and k1=[(k-1) mod m1]+1 

and k2=[(k-1) mod m2]+1. The term involving the parameter , in the forecast function of expression 

(1), is an autoregressive (AR) adjustment for first-order residual autocorrelation. Inclusion of this term 

substantially improves forecast accuracy, and so is integral to the method (Taylor, 2003). A trend is 

not included in any of the exponential smoothing formulations in this paper because, in our empirical 

work, its inclusion resulted in no change in forecast accuracy. We present all exponential smoothing 

formulations with additive seasonality. Multiplicative seasonality formulations led to similar results. 

A convenient way to generate prediction intervals for an exponential smoothing method is to 

express it as a statistical model. Hyndman et al. (2008) describe how innovations state space models 

are an attractive class of models for representing exponential smoothing methods. These models 

contain a single source of error. Gould et al. (2008) present advantages of these models over multiple 

source of error models. Parameter estimation for the innovations state space models avoids the use of 

the Kalman filter, which makes the models accessible to a broader audience, although it must be 
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acknowledged that the Kalman filter is a standard tool for many practitioners. For the innovations 

state space models, the updating equations are identical in form to the model equations, and this 

enables easier interpretation and manipulation. Monte Carlo simulation provides a simple way to 

generate prediction intervals from innovations state space models. Taylor (2010) introduces the 

following innovations state space model, which captures the essence of HWT exponential smoothing: 

ttmtmttt ewdly    11 21
      (6) 

 
211 mtmtttt wdlye          (7) 

ttt ell  1          (8) 

tmtt edd   1
        (9) 

tmtt eww   2
       (10) 

where t ~ NID(0,2). We use this notation to indicate that the t are independent and normally 

distributed with zero mean and constant variance 2. Expressions (6) and (7) can be rewritten as: 

tmtmttt ewdly   211  

ttt ee   1  

These expressions indicate that the pragmatic correction for autocorrelation leads us to a model with 

residual modelled as an AR process. We are not aware of previously developed exponential 

smoothing models with this structure.  

 For lead times beyond one step-ahead, the optimal point forecasts from the HWT model of 

expressions (6)-(10) differ slightly from those produced from the HWT method using expression (1). 

For example, for k≤m1, point forecasts from the HWT model are given by the following expression:  

    t
k

kmtkmtt
k

tt ewdelky   


21
11)(ˆ 1    (11) 

This is the expectation of expression (6) in period t+k, conditional on information up to period t. The 

sum of the first two terms on the right hand side of expression (11) is the expectation of the lagged 

level term. The two terms are required because the state equation for the level, in expression (8), 

contains both the lagged level and the autocorrelated residual. The latter is ignored in the HWT 

method’s forecast function of expression (1). Having said this, for the NHS Direct data, we found that 

the HWT model produced extremely similar point forecasts to those from the HWT method. The 

reason for this was that the optimised value for  was close to 0 and  was well below 1, which led to 

the second term on the right hand side of expression (11) being small in value. 
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For all the exponential smoothing methods in this paper, we used the first three weeks of data 

to initialise the state variables, which for the HWT model are lt, dt and wt. We constrained the 

parameters to lie between 0 and 1, and estimated them by minimising the sum of squared in-sample 

forecast errors (SSE). (An alternative is to constrain the parameters to their admissibility region. See 

Hyndman et al., 2008, Chapter 10.) We followed an optimisation procedure similar to that used by 

Engle and Manganelli (2004) for a different type of model. Our procedure involved first generating 

105 vectors of parameters from a uniform random number generator between 0 and 1. For each of the 

vectors, we then evaluated the SSE. The 10 vectors that produced the lowest SSE values were used, in 

turn, as the initial vector in a quasi-Newton algorithm. Of the 10 resulting vectors, the one producing 

the lowest SSE value was chosen as the final parameter vector. (For most of the exponential 

smoothing methods, replacing 105 in this procedure with a substantially smaller number led to the 

same optimised values.) We obtained the following optimised values for the HWT method: =0.026, 

=0.054, =0.164 and =0.372.  

 An advantage of HWT exponential smoothing is its relative simplicity. Due to the widespread 

familiarity of the standard Holt-Winters method, the HWT formulation seems reasonably natural. 

Furthermore, the method is straightforward to implement. For criticisms of the method, we turn to 

Gould et al. (2008) who point out that it is unappealing to use the same intraday cycle state variable, 

dt, for each of the seven days of the week. In defence of the method, it could be argued that dt models 

the commonality in the intraday cycle for each day of the week, and the differences between days is 

accommodated by the intraweek cycle state variable wt. Nevertheless, this may well not be the best 

way to model commonality among the seven intraday cycles of the week. Furthermore, the HWT 

method can be viewed as being of high dimension, as it involves updating the level, plus the m1 

periods of the intraday cycle, as well as the m2 periods of the intraweek cycle. Indeed, the method 

requires the updating and initialisation of (1+m1+m2)=385 terms. Having said this, we note that, for 

the NHS Direct series, initialising all seasonal states with a value of zero led to no loss in post-sample 

forecast accuracy. Regardless of this, the high dimensionality of the method seems inefficient, and so, 

with this in mind, in Sections 3.2 and 3.3, we review two formulations that are more parsimonious. In 

Section 4.2, we report empirical forecasting results for the three methods of Section 3. 



 7

3.2. IC exponential smoothing 

Gould et al. (2008) present an exponential smoothing method that allows the intraday cycle 

for the different days of the week to be represented by different seasonal state variables. They propose 

a common intraday cycle for days of the week that exhibit similar patterns of demand. Due to its focus 

on intraday cycles, the method has been termed ‘intraday cycle (IC) exponential smoothing’.  

----------  Fig. 3  ---------- 

To decide which days of the week can be treated as having a common intraday cycle, we 

follow the approach of Gould et al., which relies on a plot of the type shown in Fig. 3. This figure 

shows, for each day of the week, the average demand for each period of the day, calculated using only 

the in-sample observations. From the figure, we can deduce that Saturday and Sunday should each be 

treated as having their own distinct cycles. The patterns for Monday morning and afternoon suggest 

that there should be a distinct Monday cycle. It seems reasonable to use a common intraday cycle for 

Tuesday, Wednesday and Thursday. The particularly low level of arrivals on Friday afternoon, and 

slightly higher level on Friday evening, suggests that this day should perhaps be allocated its own 

distinct cycle. We, therefore, had a choice between using four separate cycles, or five cycles with a 

distinct one being used for Friday. The lack of clarity as to how to cluster the days of the week is a 

potential weakness of the method. In our empirical analysis, we implemented the method based on 

either four or five cycles, and found that the post-sample forecasting results for the model with five 

distinct cycles was a little better than the version with just four. For simplicity, in the remainder of the 

paper, we present the formulation and results for the model with five distinct cycles. IC exponential 

smoothing is presented in the form of an innovations state space model in the following expressions:  
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where t ~ NID(0,2); lt is the smoothed level; dit is the value of the intraday cycle of type i in period t 

(for i=1 to 5); Iit indicates the day type on which period t falls; and  and the ij are smoothing 

parameters. The ij can be viewed as a 55 matrix of parameters that enables the five types of intraday 

cycle to be updated at different rates. It also enables intraday cycle of type i to be updated when the 

current period is not on a day of type i. We included in our empirical study two forms of the method; 

one involved estimation of the matrix of ij parameters with just the constraint that the parameters lie 

between 0 and 1, and the other involved the additional restrictions of common diagonal elements and 

common off-diagonal elements. The results for these two forms of the method were similar, and so 

when discussing forecast accuracy in Section 4.2, we present just the results for the latter ‘restricted’ 

form. By contrast with the Gould et al. model, we have included a residual AR term, as in the HWT 

method. For the NHS Direct data, inclusion of this term in the IC method greatly benefited forecast 

accuracy. 

Gould et al. note that the restricted form is identical to the HWT method, provided seven 

distinct intraday cycles are used and the seasonal parameters for the two methods satisfy ii and 

ij. For our NHS Direct data, the optimized parameters for the restricted form of IC exponential 

smoothing, with five distinct intraday cycles, were =0.028, 11=0.185, 12=0.053, and =0.378. 

These  and  values are close to those reported for the HWT method in Section 3.1, and 11 and 

12. This suggests that the restricted IC model with five distinct cycles is similar to the HWT 

method, and so we should expect to achieve rather similar results from the two methods.  

As we noted at the end of Section 3.1, the HWT method involves initialising and updating 

(1+m1+m2)=385 terms. By contrast, the IC method, with five distinct intraday cycles, involves 

initialising and updating the level and 5m1=240 seasonal terms. Therefore, the IC method can be 

viewed as being of lower dimension than the HWT method. 

 

3.3. Parsimonious seasonal exponential smoothing 

The parsimonious seasonal exponential smoothing method of Taylor and Snyder (2009) was 

motivated by the desire to find a more parsimonious and flexible method than IC exponential 

smoothing. They point out that an unattractive feature of the IC method is that it allows only whole 
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days to be clustered together, such as Tuesdays, Wednesdays and Thursdays being treated as having a 

common intraday cycle. Their view is that it makes more sense to allow parts of days to be clustered 

together. For example, Fig. 3 might motivate the pattern of call arrivals for night hours to be treated as 

the same for all weekdays, with a different clustering being used for the other periods of the day.  

Parsimonious seasonal exponential smoothing allows the clustering of any chosen periods 

within the intraweek cycle of length m2 periods. In this method, the term ‘season’ refers to a set of 

periods in the intraweek cycle for which demand is assumed to be identical. The method proceeds by 

clustering the periods so that each belongs to one of M distinct seasons, where M≤m2. For each of the 

M seasons, a seasonal state sit is defined and updated using exponential smoothing, which is presented 

in expressions (12)-(15) in the form of an innovations state space model.  and  are smoothing 

parameters, and  is the coefficient of a residual AR term. The level is captured within the M seasonal 

states, and updated each period using the parameter . Indeed, all M seasonal states are updated each 

period, with the degree of updating depending on whether or not the current period t is in season i. 
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where t ~ NID(0,2).  

In Section 4.2, we show the results for the method with the following two alternative 

judgementally chosen clusters of the m2 periods of the week: 

(i) In view of our comments in Section 3.2 regarding Fig. 3, we defined there to be five distinct days 

within the week, with Tuesday, Wednesday and Thursday treated as identical. As Fig. 3 shows a 

similar pattern for the night hours on all five weekdays, we defined the pattern for the first 12 half-

hourly periods of the day to be the same on all the weekdays. This implies M=2m1+3(m1-12)+12=216 

seasons. We obtained the following optimised parameter values: =0.022, =0.173 and =0.425. 

(ii) We defined the night hours to have the same pattern for all seven days of the week. This leads to 

M=5(m1-12)+12=192 seasons. For this formulation, we obtained: =0.087, =0.168 and =0.423. 
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 Since M is the number of states in the model, both M=216 and M=192 imply a lower number 

of terms, that need initialising and updating, than the HWT and IC methods. This dimension reduction 

explains why the authors gave the method the name ‘parsimonious’. Other judgemental selections of 

clusters could be considered, but we have opted for simplicity. Taylor and Snyder investigated 

statistical approaches to clustering, including the use of hierarchical cluster analysis and k-mean 

cluster analysis based on the Euclidean distance between observations for different periods of the 

same historical week in the estimation sample. However, these procedures did not lead to improved 

accuracy over the better of their judgemental selections of clusters.  

Taylor and Snyder show that simple extensions of their parsimonious seasonal exponential 

smoothing model include HWT and IC exponential smoothing as special cases. To obtain the HWT 

method, we define M=m2, so that each period of the week is treated as a distinct season, and include 

an additional term within the parenthesis on the right hand side of expression (14). This term is the 

product of a new smoothing parameter and an indicator variable signalling whether or not t occurs at 

the same period of the day as season i.  

It is worth noting that parsimonious seasonal exponential smoothing is very suited to 

modelling intraday series where the number of periods in each day is not the same. Taylor and Snyder 

present the case of a call centre that is open for a shorter duration at weekends than on weekdays. 

 

4. Double seasonal total and split exponential smoothing 

4.1. Extending total and split exponential smoothing 

Total and split exponential smoothing was developed by a supermarket company for daily 

sales forecasting (see Taylor, 2007). It involves smoothing both the total weekly sales and the split of 

the total sales among the days of the week. The method is suitable for data with a single repeating 

seasonal cycle. Applied to an intraweek cycle of length m2 periods, the method is expressed as: 
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where Tt is the smoothed total across the week; St is the smoothed value of yt as a proportion of the 

most recently observed weekly total;  and  are smoothing parameters; and k2=[(k-1) mod m2]+1. 

The method can be viewed as a hybrid of the ratio-to-moving average seasonal decomposition 

procedure and Holt-Winters exponential smoothing with multiplicative seasonality and no trend. In 

the total and split method, the Holt-Winters smoothing of the level is replaced by smoothing of the 

total over the seasonal cycle. With regard to the seasonal decomposition approach, the total and split 

method can be viewed as replacing simple averages by exponentially weighted moving averages. 

With the aim of capturing the intraday and intraweek cycles in intraday data, in expressions 

(19)-(23), we introduce a new ‘double seasonal total and split exponential smoothing’ formulation, 

presented as a state space model.  
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Tt is the smoothed weekly total; Dt is the smoothed value of yt as a proportion of the most recently 

observed daily total; Wt is the smoothed value of yt as a proportion of the sum of the observed values 

occurring on the same period of the day during the most recent week; and ,  and  are smoothing 

parameters. The optimised values of the parameters were: =0.840, =0.060, =0.144 and =0.463. 

 

4.2. Empirical evaluation of exponential smoothing methods considered so far 

 In Fig. 4, we show post-sample forecasting accuracy for the exponential smoothing methods 

considered so far, when applied to the NHS Direct data. The figure shows the MAE, calculated as 

described in Section 2, for lead times from one half-hour to two weeks ahead. We also implemented 

two simple benchmark methods. The first takes as a forecast the most recently observed value for the 

same half-hour of the week as the period to be predicted. The second was a ‘seasonal moving 
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average’, calculated as the mean of the observations for the same half-hour of the week in each of the 

most recent four weeks. With our choice of scaling of the axes, only the second of these two simple 

methods appears in Fig. 4.  

----------  Figs. 4 and 5  ---------- 

The figure shows the seasonal moving average benchmark method performing relatively 

poorly up to about four days ahead, but reasonably well beyond that. The HWT method performed the 

best up to about one and a half days ahead. Beyond this, it is reasonably competitive with the better of 

the other methods. Overall, the results for the IC method were slightly poorer than those for the HWT 

method. The figure shows the results for the two versions of parsimonious seasonal exponential 

smoothing. Assuming the pattern of night hours to be identical for just the five weekdays led to results 

that, overall, outperformed the HWT method beyond about two days ahead. However, assuming the 

pattern of night hours to be identical for all seven days of the week led to very poor results. The 

reason for this is difficult to understand from the plot of average intraday cycles in Fig. 3. Instead, it is 

useful to consider Fig. 5, which shows the average intraday cycles calculated using the 

logarithmically transformed data. As stated in Section 2, this transformation was applied prior to the 

use of each method. In Fig. 5, the difference between the patterns of night hours on weekdays and 

those on weekends is really quite pronounced, and this helps explain why the second version of the 

parsimonious seasonal exponential smoothing method performed so poorly. In summary, it seems that 

this method can perform well, but that its accuracy relies on a suitable clustering of the seasons. Fig. 4 

shows the double seasonal total and split exponential smoothing method competing well beyond about 

two days ahead. Although not shown in Fig. 4, for all lead times, this method outperformed the single 

seasonal version of the method presented in expressions (16)-(18). 

We also considered a periodic implementation of the standard Holt-Winters exponential 

smoothing model. This involved treating the data as 48 series of daily observations, where each series 

corresponded to observations for the same half-hour period of the day. We produced forecasts for 

each of the 48 series by applying standard Holt-Winters separately to each series. Beyond about three 

days ahead, this approach delivered MAE values competitive with the best of the other exponential 

smoothing methods. For simplicity, we do not show these results in Fig. 4. 
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5. DWR with trigonometric terms 

5.1. DWR 

In this section, we introduce discount weighted regression (DWR) before describing our use 

of the procedure for intraday data in Section 5.2. If the parameters of a model are believed to be 

changing over time, it is appealing to use an estimation approach that puts more weight on more 

recent information. One such approach is exponentially weighted least squares. This is considered in 

its recursive form by Ameen and Harrison (1984), who refer to it as ‘exponentially weighted 

regression’ (EWR). Let us consider the following model: 

tttty  x  

where xt is a vector of regressors; t is a vector of time-varying parameters; t ~ NID(0,Vt); and Vt is a 

potentially time-varying variance term. EWR involves the following minimisation: 

      


 
t

i
ii

it y
1

2x  

where  is a discount factor; and the optimised value of the vector  is the estimator for t at time t. It 

is well known that the simple exponential smoothing estimator is equivalent to EWR for a model with 

constant term but no regressors. If a time series is trending, a linear trend term could be included in 

the EWR, which leads to Brown’s (1963) double exponential smoothing. If the data is seasonal, 

trigonometric terms or dummy variables can be included. Using EWR to fit models that are functions 

of time is termed ‘general exponential smoothing’ (GES). Gardner (1985) makes the interesting point 

that, in contrast to Holt-Winters, GES has the feature that all seasonal terms are revised with each 

observation, which should make the forecasts more responsive to changing seasonal patterns. 

Christiaanse (1971) uses GES with trigonometric terms for intraday electricity load forecasting. He 

investigates four different subjectively chosen values of  and four different choices of trigonometric 

terms. In this paper, we develop this method in the light of methodological and computational 

advances that have taken place since Christiaanse’s study.  

Ameen and Harrison (1984) write that the use of just one parameter is a notable disadvantage 

of EWR. They suggest that it may well be appropriate for information on different components of a 

time series to be discounted at different rates. The use of a single discount factor in EWR contrasts 
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with the exponential smoothing methods of Sections 3 and 4, which use two or three smoothing 

parameters. Ameen and Harrison and Harrison and Johnston (1984) introduce ‘discount weighted 

regression’ (DWR) to enable a different discount factor to be used for each parameter. DWR is an 

adaptation of the updating equations for recursive least squares. The DWR updating equations are 

presented in expressions (25)-(27) for the model of expression (24). These expressions are essentially 

those of the Kalman filter applied to a regression model with the incorporation of exponential 

weighting. (The link between EWR and Kalman filtering is considered by Li, 2008.)  

tttty  x                   (24) 

ttttt uxQ 1
1

ˆˆ 
                    (25) 

tttt yu ̂x                    (26) 

tttt xxQQ  
2
1

2
1

1                  (27) 

t ~ NID(0,Vt), where Vt is a potentially time-varying variance term; and  2
1

2
1

2
1

2
1

,,,diag 21 M  , 

where i can be interpreted as the discount factor for information concerning the ith parameter 

(0≤i≤1), and M is the dimension of the parameter vector t. We used OLS regression applied to the 

first three weeks of data to estimate 0, and to express strong confidence in this initialisation, we set 

Q0=I/106, where I is an identity matrix. In our empirical work, we used the formulae of Harrison and 

Johnston (1984), which avoids the use of matrix inversion. 

 

5.2. DWR with trigonometric terms for intraday data 

 For our NHS Direct data, we fitted the following model using DWR: 
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where b0 and the bji are model parameters; d(t) and w(t) are repeating step functions defined so that 

d(t) counts from 1 to m1 within each day, and w(t) counts from 1 to m2 within each week; and S1 and 

S2 are chosen sets of positive integers, which must be less than m1/2 and m2/2, respectively. When 

selecting these sets, the same trigonometric term must not appear in both summations.  

 We felt it was impractical to allow a different DWR discount factor for each parameter in 

expression (28), so we considered two different specifications. We refer to the first as ‘EWR’ because 
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it involved the use of a single, common discount factor for all parameters in expression (28). We refer 

to the second specification as ‘DWR’. It allows three different discount factors: 1 for the constant 

term, a common discount factor 2 for all coefficients in the first summation (corresponding to 

harmonics of the intraday cycle), and a common discount factor 3 for all coefficients in the second 

summation (corresponding to the remaining harmonics of the intraweek cycle).  

The residuals from the various specifications tended to exhibit autocorrelation. In view of 

this, after estimating the parameters of expression (28) using DWR or EWR, we fitted an AR(1) 

model to the residuals. When forecasting, we simply added the AR model forecasts to those from the 

model of expression (28). A reasonable alternative way to model the residual autocorrelation would 

be to include an AR(1) term alongside the trigonometric terms in the regression model. (A discount 

factor of one would be appropriate for this term in the DWR estimation.) This approach would lead to 

the AR parameter being estimated recursively. By avoiding this recursive estimation, our modelling of 

the residual autocorrelation was more analogous to that in the exponential smoothing methods. 

We optimised the discount factors i and the residual AR model parameter  in the same 

procedure by minimising the sum of squared in-sample one step-ahead forecast errors. The 

optimisation was performed by evaluating this objective function for many candidate values of the i 

and  sampled randomly over a suitable range of values established by initial experimentation. We 

found that candidate values greater than 0.9 were suitable for the DWR discount factors. This 

optimisation of the parameters is similar to the first stage of the procedure described in Section 3.1 to 

optimise the parameters of the exponential smoothing methods.  

  An important aspect of the method is the choice of trigonometric terms. We experimented 

with S1=S2={1,2,…,6}, but this led to poor post-sample forecast accuracy relative to much larger sets. 

For example, setting S1 to be an empty set and S2={1,2,…,167} led to far better results. To select 

trigonometric terms based on only the estimation sample, we used the signal coherence procedure that 

was employed by Brooks and Hinich (2006) in their analysis of intraday exchange rate data. They 

describe the method as honing in on the frequency components of the Fourier transforms of the signal 

that are the most stable over time. We used the same signal coherence “floor value” of 0.45 that was 

used by Foster et al. (2008), who apply the signal coherence measure to investigate the cyclical 
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structure within half-hourly electricity load and price data. For our data, the procedure selected eight 

integers (ranging between 1 and 11) for set S1, and 57 integers (ranging between 1 and 161) for set S2. 

Using these in the model of expression (28), we implemented EWR and DWR.  

With DWR, we obtained the following values for the discount factors and the AR parameter: 

1=0.922, 2=0.993, 3=0.998 and =0.190. These high discount factors seem reasonable when one 

considers the high frequency nature of the data. A discount factor of 0.993 corresponds to a half-life 

of approximately 99 half-hour periods, which is approximately two days, and a discount factor of 

0.998 corresponds to a half-life of approximately 346 half-hour periods, which is approximately one 

week. The discount factor for the constant term is notably lower than the two discount factors for the 

coefficients of the trigonometric terms. This indicates faster evolution in the level of the data than in 

the seasonality. For EWR, we obtained: =0.998 and =0.519. This discount factor is similar to the 

values optimised for the two DWR discount factors for the coefficients of the trigonometric terms, but 

the value of  is notably larger than in the DWR case, which enables a faster changing level, and thus 

compensates for the fact that the constant term does not have its own discount factor. 

 In a recent study, De Livera and Hyndman (2009) present an exponential smoothing approach 

that also uses a trigonometric formulation for the seasonality in intraday data. They allow the 

coefficients of the trigonometric terms to be time-varying by specifying the coefficients as 

exponential smoothing state variables that are updated with each new observation. 

 

5.3. Empirical evaluation of the DWR methods 

 In Fig. 6, we present post-sample results for the EWR and DWR methods with trigonometric 

terms selected using the signal coherence method. As a benchmark, we show the results of HWT 

exponential smoothing. We also implemented a version of DWR with no discounting (i=1 for all i) 

and the AR residual adjustment included, but its results were so poor that the MAE values do not 

appear on the graph. The figure shows EWR competing well with DWR beyond about two days 

ahead. DWR is much better for the early lead times because a different rate is allowed for the 

constant, which amounts to separate smoothing of the level. Overall, HWT exponential smoothing 

outperformed both the EWR and DWR methods. 
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----------  Fig. 6  ---------- 

 

6. Time-varying splines 

6.1. Regression splines 

In this section, we present an overview of regression splines before introducing two new 

forecasting methods in Sections 6.2 and 6.3. In essence, these methods involve the fitting of a spline 

to the intraweek seasonal cycle in intraday data.  

A cubic interpolating spline is a function in (x,y) space that consists of cubic polynomials 

smoothly joined at coordinates ),( **
ii sx . The points *

ix  are referred to as ‘knots’. The smoothness of 

the spline function is ensured by constraining the function and its first and second derivatives to be 

continuous at the knots. If we make assumptions regarding the spline at its end points, then the value 

of the spline at a point x between these end points can be analytically derived. Indeed, the value is 

given by a linear function f of the value of the spline at the knots (see, for example, Poirier, 1973):  

  *swxf                  (29) 

where *s  is a vector containing the *
is ; and w is a vector that can be analytically calculated from the 

location of the knots, the distance between knots, and the value of x.  

Poirier (1973) addresses the situation where it is assumed that the relationship between two 

variables, yt and xt, can be described by a spline function plus error, et. In view of the structure of 

expression (29), Poirier proposes the following model, which he terms a ‘regression spline’: 

ttt ey  *sw                  (30) 

Before the model can be estimated, the locations of the knots must be selected. In this regression 

model, the data vector is wt, as it is a known function of xt, and the parameter vector is *s . This 

parameter vector contains the values of the spline function at the selected knots. As the model of 

expression (30) is linear, formulae from OLS regression can be used to estimate *s .  

 We fitted an OLS regression spline to the repeating intraweek cycle in the 25-week estimation 

sample of the NHS Direct data. With this application, the variable xt is the period of the week, which 

ranges from 1 to 336, and the intraweek cycle is assumed to be the same for each week in the series. 
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We relax this assumption in Sections 6.2 and 6.3, where we consider time-varying regression splines. 

As noted by Harvey and Koopman (1993) for their method, selecting the knot locations is the main 

practical problem for the implementation of a regression spline. They explain that sections of the 

seasonal cycle displaying sharp peaks require relatively more knots than sections with less variability. 

Following Harvey and Koopman, we selected the knots subjectively, and we set the number of knots 

to be a little less than half the number of periods within the cycle. We chose the following 18 knots: 

3am, 6am, 7am, 8am, 9am, 10am, 11am, midday, 1pm, 2pm, 3pm, 4pm, 5pm, 6pm, 7pm, 8pm, 10pm, 

11.30pm. With 18 knots for each of the seven days, and an additional one to mark the start of the 

week, this spline consisted of (7×18)+1=127 knots. We constrained the spline function at the first and 

last knots of the week to be equal in value and in first and second derivatives.  

In Sections 3.2 and 3.3, we presented exponential smoothing formulations that had been 

designed with the aim of achieving dimension reduction. For example, the parsimonious seasonal 

exponential smoothing method enabled the night hours to be the same for weekdays. Similar 

constraints can be imposed on the regression spline to enable dimension reduction. Harvey and 

Koopman (1993, Section 3.3) describe how to impose constraints to force the value of the spline 

function to be identical at selected knots. The constraints are specified using a selection matrix C 

consisting of 0’s and 1’s. Using this, we write vector *s  in terms of *s , a lower dimension vector: 

** sCs  . If we also define vector Cwwt t
 , we can rewrite expression (30) as: 

ttt ey  *sw                  (31) 

In view of our comments in Sections 3.2 and 3.3 regarding Fig. 3, we chose to specify the selection 

matrix C so that the spline function at the knots on Tuesday, Wednesday and Thursday are identical, 

and the spline function at the knots at 3am and 6am are identical for all five weekdays. This led to the 

new parameter vector *s  being of dimension (2×18)+(3×16)+2+1=87. In other words, the spline 

consisted of 87 distinct knots. In essence, the dimensionality of the problem has been reduced because 

instead of modelling the intraweek cycle at all 336 periods of the week, we are now focussing on just 

87 periods of the week. 
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6.2. DWR spline 

 As the intraweek cycle in the NHS Direct series is not constant, it came as no surprise that 

using the OLS regression spline as a forecast of future periods led to poor forecast accuracy. In 

Section 5, we presented DWR as a simple approach to allow time-variation in the parameters of a 

linear model. In this section, we propose the use of DWR to estimate a time-varying regression spline. 

This amounts to using DWR to estimate the parameter vector *s  of the model in expression (31). In 

this context, we have a time-varying parameter vector *
ts , and so we rewrite the model as in 

expression (32). DWR enables more weight to be put on more recent observations, and re-estimation 

of the time-varying regression spline with each new observation. 

tttt ey  *sw       (32) 

 In the application of DWR with trigonometric terms in Section 5.2, there was a substantial 

difference between the value of the discount factor for the constant term and the values of the two 

discount factors for the coefficients of the seasonal terms. The inclusion of the constant term enabled 

the level of the series to be modelled with a different discount rate to that of the seasonality. The 

regression spline models considered so far in Section 6 do not include constant terms. To enable 

separate modelling of the level, we defined the first knot of each intraweek spline function to be a 

‘base knot’, with the spline function at all other knots defined as the spline function at this base value 

plus a positive or negative increment. (This is equivalent to setting the value of the spline function at 

the first knot to be zero and including a constant term in the regression model.) When using DWR, 

time-variation in the regression spline at this base knot will capture time-variation in the level of the 

series, and the value of the regression spline at all other knots will capture time-variation in the 

seasonality. We implemented the base knot by defining a new matrix G as being equal to an identity 

matrix with first column altered so that it consists entirely of ones. With this matrix, we can write *
ts  

in terms of *~
ts , a new vector: ** ~

tt sGs  . The first entry of the new parameter vector, *~
ts , is the value 

of the spline function at the base knot. The values of the spline function at the other distinct knots are 

given by the other entries of *~
ts  plus the value of the spline function at the base knot. If we define 

Gwwt t
~ , we can rewrite expression (32) as: 
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tttt ey  *~~ sw  

 As in the DWR approach with trigonometric terms of Section 5.2, we included the residual 

AR term and considered two different discount factor specifications. The first relies on a common 

discount factor for the regression spline at all knots, and so we refer to this as an ‘EWR regression 

spline’. For this specification, we obtained =0.995 and =0.341. The second allows three different 

discount factors: 1 for the regression spline at the base knot, 2 for the knots occurring during the 

night (at 3am and 6am), and 3 for the remaining knots. Using the same optimisation procedure 

described in Section 5.2, we obtained 1=0.943, 2=0.996, 3=0.995 and =0.195. As in Section 5.2, 

the value of 1 is noticeably lower than the values of 2 and 3. This is consistent with our 

interpretation that the use of the base knot in the regression spline provides a similar service to the 

constant term in the DWR trigonometric model. These terms capture the level in the data, allowing 

the other terms to focus on the modelling of the seasonality.  

 

6.3. Spline-based exponential smoothing 

Harvey and Koopman (1993) model the intraweek seasonal cycle in electricity load data as a 

time-varying spline using a state space model with a separate state defined for the spline function at 

each knot. A multiple source of error state space model is used with values of the spline function at 

the knots specified as following a multivariate random walk. In this section, we adopt the approach of 

Harvey and Koopman, but instead of their model, we use the exponential smoothing model of 

expressions (33)-(37), which is an innovations state space model. As we discussed briefly in Section 

3.1, a number of advantages have been put forward in favour of models of this type.  
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where t ~ NID(0,2); tw  has the same definition as in Section 6.1; *
ts  is a state vector with ith 

element *
its , which represents the value of the spline function at the ith knot in period t; ,  and  are 

smoothing parameters;  is the parameter of an AR residual term; and M is the number of distinct 

knots defined for the intraweek cycle. In our empirical analysis, we used the set of M=87 distinct 

knots described in Section 6.1. We did not specify a base knot, as in Section 6.2, as this is useful only 

in the DWR context. Expression (35) is similar in structure to the state equations of the parsimonious 

seasonal exponential smoothing model of Section 3.3. The two indicator variables enable the state 

variable for the spline function at the ith knot to be updated only if the current period t falls at or 

nearby the ith knot. We obtained the following optimised parameter values: =0.039, =0.092, 

=0.049, =0.320. The values for  and  indicate that the state variable for the spline function at the 

ith knot is adjusted noticeably more if period t falls at the ith knot than if it falls nearby. 

 

6.4. Empirical evaluation of spline methods 

Fig. 7 shows post-sample forecasting performance for the EWR and DWR spline methods, 

and for the spline-based exponential smoothing method. As a benchmark, we also include in the 

figure the results of HWT exponential smoothing. The relative performances of the EWR and DWR 

methods have similarities with the relative performances of EWR and DWR in Section 5.3, where 

trigonometric terms were used. The DWR method is superior only for the early lead times. 

Interestingly, the EWR and DWR spline methods are outperformed, at almost all lead times, by the 

spline-based exponential smoothing method. However, this exponential smoothing method was, in 

turn, outperformed by HWT exponential smoothing, although for many lead times the superiority of 

the HWT method is not substantial. We note that these results are only illustrative because the spline 

methods could be improved by using a different choice for the number and locations of the knots, 

selected either subjectively or perhaps using some statistical guidance, such as cross-validation. 

----------  Fig. 7  ---------- 
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7. SVD with exponential smoothing 

7.1. Applying SVD to a time series of intraday observations 

 In this section, we describe how singular value decomposition (SVD) can be used as the basis 

for forecasting intraday time series. In Section 7.2, we present a new SVD-based forecasting method. 

In Section 3.3, we described how the use of parsimonious seasonal exponential smoothing 

requires the clustering of periods of the intraweek cycle that can be treated as identical. However, it 

could be argued that this is unappealing because, although some periods may be similar, few are 

identical. As an alternative to clustering, in this section, we use another dimension reducing technique 

from multivariate data analysis. We investigate the use of singular value decomposition (SVD), which 

is an approach similar to principal component analysis (PCA). SVD enables the reduction of the 

dimension of a multivariate dataset, where variables are highly correlated, to a smaller set of variables 

that are linear combinations of the original variables. The new variables are uncorrelated and explain 

most of the variation in the data. In our context, each of the original correlated variables corresponds 

to a particular period of the intraday cycle. Instead of having to model each intraday period, the 

forecasting task is simplified to one that requires the modelling of just the reduced set of uncorrelated 

variables. This is the approach adopted by Shen and Huang (2005, 2008a, 2008b) for intraday call 

centre data, and by Taylor et al. (2006) for intraday electricity load data. 

 In these studies, the application of SVD to a series of intraday observations proceeds by 

arranging the data as a (dm1) matrix Y, where d is the number of days in the estimation sample. Each 

column of Y has observations for a particular period of the day. The application of SVD to this matrix 

requires that d≥m1. The SVD of Y yields YY = VSV, where V is an (m1m1) orthogonal matrix, and S 

is a positive definite diagonal matrix. The positive square roots of the entries in S are known as the 

singular values of YY. These singular values are typically arranged in decreasing order. The columns 

of V are orthogonal basis functions, which Shen and Huang (2008a) refer to as ‘intraday feature 

vectors’. The daily profiles (rows of Y) can be projected onto the basis functions to give what Shen 

and Huang call ‘interday feature series’. Collecting these series as columns of a (dm1) matrix P, we 

have P = YV. Note that each interday feature series (column of P) corresponds to a single intraday 

feature vector (column of V). Dimension reduction occurs by keeping only the first k pairs of feature 
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vectors and series corresponding to the largest k singular values. Shen and Huang (2008a) write that 

the singular values provide a natural ordering of the importance of the feature vectors and series in 

describing the original dataset. Time series forecasting methods can then be applied to each of the 

interday feature series, under the assumption that the intraday feature vectors remain constant. The 

resulting predictions for the interday feature series are then projected back onto the Y space to deliver 

forecasts for the original variable. Shen and Huang (2005, 2008a, 2008b) use a form of AR model for 

the interday feature series, while Taylor et al. (2006) use regression modelling with dummy variables 

to model the seasonality.  

Let us briefly consider the link between PCA and SVD. PCA involves the application of SVD 

to a column-centred matrix. In the context of our data matrix Y, this leads to the matrix decomposition 

being applied to the covariance matrix of Y, rather than the matrix YY. In the PCA literature, the 

interday feature series are known as the principal components, and the squared singular values are 

proportional to the variances of these principal components. By selecting the first k principal 

components, we are capturing the k most important contributors to the variance in the original dataset.  

Following Shen and Huang (2008a), in Figs. 8-11, we plot intraday feature vectors and 

interday feature series for the NHS Direct data, with SVD performed using the estimation sample of 

175 days. The first intraday feature vector seems to show the intraday cycle averaged across the seven 

days of the week. The corresponding interday feature series shows a seven-day seasonal cycle with 

higher (log) calls at the weekends. Figs. 3 and 5 show that the average intraday patterns for Saturday 

and Sunday are much larger around late morning and early afternoon. This is, at least partly, captured 

in the second intraday feature vector. The weekend peaks in the second interday feature series 

confirms that this second intraday feature vector is particularly relevant for explaining the weekend 

patterns.  

----------  Figs. 8-11  ---------- 

 The choice of k could be made based on a scree plot, which is often used in PCA, or perhaps 

cross-validation. In analysing intraday data for only weekdays, Shen and Huang (2008a) evaluate k=1 

to 4, and write that k=5 may be needed as they identify different intraday patterns on each of their five 

weekdays. This suggests k≤7 for our series, as it includes all seven days of the week. In fact, in 
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Section 3.2, we concluded that there are just five distinct intraday cycles among the seven days of the 

week, which suggests k≤5. Such low values of k represent a considerable dimension reduction. 

 

7.2. SVD-based exponential smoothing 

 In this section, we present a new exponential smoothing model formulated in terms of the k 

interday feature series, which are the first k columns of the matrix P. The approach involves 

modelling these interday feature series, and then projecting them onto Y space to produce forecasts. 

The modelling produces updated estimates of the k interday feature series, as each new observation is 

received. This amounts to producing updated estimates of the k columns of matrix P. In view of this, 

the state variables, in our exponential smoothing model, are defined as the values in period t of the 

first k interday feature series. In order to capture the intraweek cycle, we treat the NHS Direct data as 

consisting of the five distinct intraday cycle types identified in Section 3.2. The model is presented in 

the following expressions:  
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where t ~ NID(0,2); )(i
tp  is a (1×k) state vector representing the values in period t of the first k 

interday feature series for a day of type i (for i=1 to 5); V
~

 is a (m1k) matrix containing the first k 

intraday feature vectors (columns of V);  1mod
~

mtv  is the [t mod m1] row of V
~

, which corresponds to 

the period of the day on which t falls; 
1m1  is a (1×m1) vector of 1’s; ,  and  are smoothing 

parameters; and  is the parameter of an AR residual term. Note that the matrix V
~

 and the vectors 

 1mod
~

mtv  are derived by the SVD, and are, therefore, known prior to the exponential smoothing 

modelling. By contrast, the vectors )(i
tp  are estimated by the model.  
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The observation equation (38) shows the state vector projected onto Y space using the 

intraday feature vectors. The state vector )(i
tp  is updated in expression (40), which is of a similar form 

to the state equations of the parsimonious seasonal exponential smoothing model of Section 3.3. To 

understand expression (40), it is helpful to recall from the previous section that P=YV, which reminds 

us that a value in Y space can be projected onto P space using V. Since the error et is a value in Y 

space, we must use V
~

 to transform et before using it to update )(i
tp . The smoothing parameters ,  

and  play a similar role to the smoothing parameters with the same names in the HWT exponential 

smoothing model of Section 3.1. The term involving  updates the level of )(i
tp ; the term involving  

updates the elements of )(i
tp  to differing degrees depending on their relationship to the period of the 

day on which t falls; and the term involving  has a similar effect to that of the term involving , 

except that  only has an effect on )(i
tp  if period t falls on a day of type i. We obtained the following 

optimised parameter values: =0.0304 =0.296 =0.241 =0.275.  

To gain a little more insight into the state equations in expression (40), consider the case 

where V is the identity matrix, and we impose no dimension reduction by setting k=m1. Expression 

(40) then takes the form of a vector representation of the state equations of a version of the 

parsimonious seasonal exponential smoothing model with a distinct season defined for each period of 

the day, on each of five different day types, so that M=5m1 in the model of expressions (12)-(15).  

 The methods of Shen and Huang (2005) and Taylor et al. (2006) first perform SVD, and then 

apply simple time series models to the first k interday feature series. These are daily series, and they 

can only be updated after the observations for a complete day have been observed. As Shen and 

Huang (2008a, Section 3.3) note, this implies that a forecast for day n+h can only be produced at the 

end of day n. They explain that, as calls arrive during day n+1, a manager may want to update the 

forecast for the remainder of the day using the observations from the earlier part of that day. This 

intraday forecast updating is very useful because it allows dynamic intraday updating of the 

deployment of call centre agents (Hur et al., 2004). Shen and Huang (2008a) extend their approach to 

allow intraday forecast updating. This extension involves forecasting the interday feature series for day 

n+1 from a combination of the day-ahead forecast from a model applied to the daily interday feature 
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series up to day n, and a prediction based on a second model that uses just data observed so far within day 

n+1. We would suggest that our SVD-based exponential smoothing approach is appealing because it 

involves just the one model, which can be used directly to produce forecasts for all lead times and from 

all forecast origins. However, the choice between methods will ultimately be decided by forecast 

accuracy, and by how easily the method can be understood and implemented. Shen and Huang (2008b) 

further develop their approach to enable the SVD to be updated with each new observation, and to 

accommodate a Poisson assumption to allow density forecasting of both the arrival volume and arrival 

rate. This density forecasting is also the focus of the Poisson HWT models of Taylor (2010). 

 

7.3. Empirical evaluation of SVD with exponential smoothing 

 Fig. 12 presents post-sample results for our SVD approach, and HWT exponential smoothing. 

The results correspond to different values for k, the number of pairs of interday feature series and 

intraday feature vectors included in the model. The figure shows that using k=3 was inadequate, but 

that larger values of k led to reasonable forecast accuracy. The best results for the SVD method 

correspond to k=7, which confirms Shen and Huang’s (2008a) suggestion that k should not need to be 

more than the number of days in a week of the time series. The results for the SVD method with k=7 

are competitive with the HWT method, particularly beyond two days ahead. 

----------  Fig. 12  ---------- 

 

8. Summary and concluding comments 

In previous empirical studies with intraday data, exponential smoothing methods have 

performed well. This motivated us to develop the following five new exponentially weighted 

methods, which we have introduced in this paper: 

(i) A double seasonal version of the total and split exponential smoothing method.  

(ii) DWR used to update recursively the parameters of a linear model with trigonometric terms. 

(iii) DWR used to update recursively a regression spline.  
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(iv) Spline-based exponential smoothing. In the approach of Harvey and Koopman (1993), we simply 

replace the multiple source of error state space model with an exponential smoothing model. The 

model is formulated in terms of time-variation in the values of a spline function at its knots.  

(v) SVD-based exponential smoothing. First, SVD is applied to the intraday cycle of the time series in 

order to extract the main underlying features. An exponential smoothing model is then used with 

states defined as these main features.  

A recurring theme in this paper has been the reduction of the dimensionality of a forecasting 

model in order to achieve parsimony and greater efficiency. Dimension reduction was the motivation 

behind the development of the IC and parsimonious seasonal exponential smoothing methods. 

Modelling intraday data using trigonometric terms is an attempt to concisely summarise the seasonal 

cycles. The fundamental appeal of spline methods is that they reduce the problem from modelling the 

intraweek cycle at all the periods of the week to modelling the cycle for a substantially smaller 

number of knots. Dimension reduction is clearly the motivation for using an SVD-based approach.  

In Table 1, we provide an informal and subjective summary of the practical usefulness of the 

methods implemented in this paper. The bottom five rows of the table correspond to the five new 

methods that we have presented. The final column of the table summarises the ease with which 

prediction intervals can be generated for the forecasts from each method. In essence, when 

exponential smoothing is formulated as a statistical model, prediction intervals can be produced using 

analytical formulae or Monte Carlo simulation. However, with DRLS, the situation is less clear, and 

an empirical or Bayesian approach may be needed for estimating prediction intervals.  

Table 1 shows that the HWT method is a challenging benchmark. It is relatively 

straightforward to understand and implement, and it performed well in terms of forecast accuracy in 

our study. However, beyond about one day ahead, it was matched or outperformed by several of the 

other methods that involved exponential smoothing. Indeed, overall, our forecasting results suggest 

that the methods involving exponential smoothing have greater potential than those using DWR. 

However, more empirical evidence is needed regarding relative accuracy. Further empirical work 

could also help address practical issues, such as the role of judgement. For example, the use of 

parsimonious seasonal exponential smoothing relies on judgemental clustering of intraweek periods, 
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and the spline methods involve judgemental selection of the number and locations of the knots. For 

other methods, the role of statistical procedures is unclear. For example, perhaps cross-validation 

should replace the use of signal coherence for selecting trigonometric terms prior to estimation using 

DWR. Perhaps cross-validation should also be used to select the number of feature series and vectors 

to use in our SVD-based approach. We would also welcome additional empirical evidence using other 

data, as well as empirical comparison with methods from outside the exponentially weighted domain, 

such as ARIMA modelling, the dynamic harmonic regression of Tych et al. (2002), or the random 

effects model of Weinberg et al. (2007). The sizeable literature on forecast combining has numerous 

examples where combining has led to improved accuracy. It would be interesting to see the results of 

combining several methods considered in this paper, either with each other, or with methods not based 

on exponential weighting.  

----------  Table 1  ---------- 
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Fig. 1. Half-hourly arrivals at NHS Direct for the fortnight  
from Saturday 6 January 2007 to Friday 19 January 2007. 
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Fig. 2. Half-Hourly Arrivals at NHS Direct for a 35-week period in 2007. 
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Fig. 3. Average intraday cycle for each day of the week for the NHS Direct data. 
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Fig. 4. Post-sample comparison of exponential smoothing methods  
for lead times from one half-hour ahead to two weeks ahead. 
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Fig. 5. Average intraday cycle for each day of the week for 
the logarithmic transformation of the NHS Direct data. 

 



 33

22

24

26

28

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Horizon (days)

MAE
(Calls)

EWR

DWR

HWT exp sm

 
Fig. 6. Post-sample comparison of EWR and DWR with trigonometric terms 

chosen by signal coherence. Results also shown for HWT exponential smoothing.  
Results for lead times from one half-hour ahead to two weeks ahead. 
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Fig. 7. Post-sample comparison of spline methods and HWT exponential 
smoothing for lead times from one half-hour ahead to two weeks ahead. 
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Fig. 8. First intraday feature vector (column of V). 
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Fig. 9. First interday feature series (column of P). 
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Fig. 10. Second intraday feature vector (column of V). 
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Fig. 11. Second interday feature series (column of P). 
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Fig. 12. Post-sample comparison of SVD-based exponential 
smoothing and HWT exponential smoothing for lead times 

from one half-hour ahead to two weeks ahead. 
 
 
 
 
 
 

 
Table 1 
Informal assessment of the practicality of the methods implemented in this paper. The five new 
methods are presented in the bottom five rows. Each method is graded on a scale of A to C, with an A 
grade being preferable. 
 
 

Conceptual 
simplicity 

Ease of 
implementation

Judgement 
required 

Overall point 
forecast 
accuracy 

Ease of 
estimating 
prediction 
intervals 

 HWT exp sm A A A A A 

 Intraday cycle exp sm B B C A A 

 Parsimonious seasonal exp sm B B C A A 

 Double seasonal total & split exp sm A A A A A 

 DWR with trigonometric terms B C A B C 

 DWR splines B C C C C 

 Regression splines with exp sm C C C B A 

 SVD with exp sm C B B A A 

 
 
 
 


