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S1 Additional methodological details

S1.1 Illustration of the CDFs obtained from horizontal, vertical, radial av-
eraging, and their corresponding PDFs
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Figure S1: Horizontal, vertical and radial average forecasts (left) and their corresponding PDFs
(right).

S1.2 Proof of Proposition 1

We provide the proof of Proposition 1 below, as it was deferred from the main manuscript.

Proof of Proposition 1. Write Fi(xi(θ)) = − tan θ (xi(θ)− ox) + oy. Then xi(θ) =
Fi(xi(θ))−oy
− tan θ +

ox. Taking the derivative of xi with respect to θ and rearranging yield that dxi
dθ =

tan θ sec2(θ)(Fi(xi(θ)−oy))
tan θ+fi(xi(θ))

.
By the chain rule,

f̂r,o

(
1

n

n∑
i=1

xi(θ)

)
=

d
(
1
n

∑n
i=1 Fi(xi)

)
dθ

dθ

d
(
1
n

∑n
i=1 xi

) =

(
n∑
i=1

fi(xi(θ))
dxi
dθ

)/(
n∑
i=1

dxi
dθ

)

=

(
n∑
i=1

fi(xi(θ))(Fi(xi(θ))− oy)
tan θ + fi(xi(θ))

)/(
n∑
i=1

Fi(xi(θ))− oy
tan θ + fi(xi(θ))

)
.

When oy → ±∞,(
n∑
i=1

fi(xi(θ))(Fi(xi(θ))− oy)
tan θ + fi(xi(θ))

)/(
n∑
i=1

(Fi(xi(θ))− oy)
tan θ + fi(xi(θ))

)

=

(
n∑
i=1

fi(xi(θ))Fi(xi(θ))

tan θ + fi(xi(θ))
−

n∑
i=1

fi(xi(θ))oy
tan θ + fi(xi(θ))

)/(
n∑
i=1

Fi(xi(θ))

tan θ + fi(xi(θ))
−

n∑
i=1

oy
tan θ + fi(xi(θ))

)

→

(
−oy

n∑
i=1

fi(xi(θ))

tan θ + fi(xi(θ))

)/(
−oy

n∑
i=1

1

tan θ + fi(xi(θ))

)

=

(
n∑
i=1

fi(xi(θ))

tan θ + fi(xi(θ))

)/(
n∑
i=1

1

tan θ + fi(xi(θ))

)
.

When ox → ±∞ such that oy/ox → 0, for all i, xi(θ) → F−1i (p(θ)), where the function
p : [0, π/2] → [0, 1] does not depend on i. Fi(xi(θ)) converges to the same value p(θ) for all i.
Furthermore, tan θ → 0. It then follows from the continuity of fi’s that f̂r,o converges pointwise
to the harmonic average of the PDFs.
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When oy → ±∞ such that ox/oy → 0, tan θ →∞ as θ → π/2, that

f̂r,o

(
1

n

n∑
i=1

xi(θ)

)
=

(
n∑
i=1

fi(xi(θ))

tan θ + fi(xi(θ))

)/(
n∑
i=1

1

tan θ + fi(xi(θ))

)

=

(
n∑
i=1

fi(xi(θ))

tan θ
· 1

1 + fi(xi(θ))
tan θ

)/(
n∑
i=1

1

tan θ
· 1

1 + fi(xi(θ))
tan θ

)

→ 1

n

n∑
i=1

fi(xi(θ)).

Furthermore, as the lines approach vertical lines, for all i, xi(θ) → x(θ), where the function
x : [0, π/2] → R does not depend on i. Thus, the density of the radial average converges
pointwise to the average of the PDFs.

The convergence of the CDFs follows immediately from the formula of F̂r,o. As θ → π/2,
x1(θ), . . . , xn(θ) → x, for some x ∈ R, and thus F̂r,o(x) → (F1(x) + · · ·+ Fn(x)) /n pointwise.
As θ → 0, F̂r,o ((x1(θ) + · · ·+ xn(θ))/n) , F1(x1(θ)), . . . , Fn(xn(θ)) → p, for some p ∈ [0, 1].
Then F̂−1r,o (p)→ F̂−1h (p) pointwise. The convergence to angular averaging follows by comparing
the formula of CDFs for radial and angular averaging.

S1.3 The relationship between radial, vertical and horizontal averaging

This section presents a new perspective on radial averaging. We show that the radial average
forecast can be obtained by only averaging horizontally, or only averaging vertically after suitable
transformations of the individual CDFs. This connects our method to generalized linear pools
(Dawid et al., 1995; Ranjan & Gneiting, 2010; Gneiting & Ranjan, 2013), where forecasts are
first transformed, then combined, and finally mapped back. Specifically, a generalized linear
pool combines n CDF forecasts F1, . . . , Fn as

G(x) = h−1

(
1

n

n∑
i=1

h (Fi(x))

)
, (S1)

where h is a continuous and strictly monotone link function, with domain [0, 1] or a subset of
[0, 1] and range R or a subset of R, and h−1 denotes its inverse.

In what follows we introduce the transformations used in our setting and show how they lead
to the vertical or horizontal averaging representations. Denote by F the set of all cumulative
distribution functions on R, and by GI the set of all increasing functions with domain I.

Proposition S1.1. Let F1, . . . , Fn be the individual CDF forecasts, F̂r,o,o′ be the radial average

forecast with focal points o = (ox, oy) and o′ = (ox, o
′
y), where o

′
y > oy, and F̂r,õ,õ′ be the radial

average forecast with focal points õ = (õx, õy) and õ′ = (õ′x, õy), where õ′x > õx. Then, there
exist operators T : F → F and S : G[0,1] → G(−∞,∞) such that

F̂r,o,o′(x) = T−1

(
1

n

n∑
i=1

TFi

)
(x), x ∈ R,

and if the individual distributions are supported on [õx, õ
′
x],

F̂−1r,õ,õ′(α) = S−1

(
1

n

n∑
i=1

SF−1i

)
(α), α ∈ [0, 1].

Proof. Without loss of generality, it suffices to consider the case n = 2, that is, two individual
CDF forecasts F1 and F2; the general case n > 2 then follows by straightforward extension of
the same argument.
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Suppose the focal points are o = (ox, oy) and o′ = (ox, o
′
y), where o′y > oy. The radial average

forecast can be obtained by transforming the CDFs at each probability level, as illustrated in
the left panel of Figure S2. Denote by FI the collection of functions obtained by restricting
a CDF to domain I, i.e., FI := {F |I : F ∈ F}. Given F ∈ F(−∞,ox), the transformation,
or more precisely, the operator, defined by the rays originating from the lower focal point is

T1 : F(−∞,ox) → F(−∞,ox), (T1F )−1 (α) = ox −
(ox−F−1(α))(o′y−oy)

α−oy , for α < F (ox). The arrowed
lines in the left triangle in the left panel of the figure illustrates this transformation. The inverse

of T1 is T−11 : F(−∞,ox) → F(−∞,ox), (T−11 F̃ )−1(α) = ox −
(ox−F̃−1(α))(α−oy)

o′y−oy
, for F̃ ∈ F(−∞,ox).

It can be easily verified that (T−11 T1F )−1(α) = F−1(α). Inspecting the left triangle, we see that

T1F̂r,o,o′(x) = 1/2 (T1F1(x) + T1F2(x)) , (S2)

or equivalently, F̂r,o,o′(x) = T−11 (1/2(T1F1 + T1F2)) (x), for all x < ox, where the operator T1
is applied to functions F̂r,o,o′ , F1 and F2 restricted to the domain (−∞, ox).

The right-hand side of (S2) is the vertical average of the transformed functions. This shows
that the vertical average of the transformed functions is the transformed radial average of the
original CDFs.

Similarly, as illustrated by the right triangle of the left panel of the figure, the transformation
that applies to the right part of the distributions is T2 : F[ox,∞) → F[ox,∞), (T2F )−1 (α) =

ox +
(ox−F−1(α))(o′y−oy)

o′y−α
, for α ≥ F (ox).

Therefore, the operator T : F → F is given by

TF (x) =

T1F (x), if x < ox,

T2F (x), if x ≥ ox.

for any F ∈ F .
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Figure S2: The thin lines are the two individual CDFs to be averaged, and the thick lines
are their transformations. The inset of each panel provides a broader view of the transformed
curves. The left panel illustrates that averaging vertically yields the radial average. Every
quantile of the original CDFs is transformed to obtain the new thick lines, transforming back
the vertical average of which yields the radial average of the original CDFs. The right panel
illustrates that averaging horizontally yields the radial average. Every probability of the original
CDFs is transformed to obtain the new thick lines, transforming back the horizontal average of
which yields the radial average of the original CDFs.

When the focal points are õ = (õx, õy) and õ′ = (õ′x, õy), where õ′x > õx, the radial aver-
age forecast can be obtained by another way of transformation, i.e., transforming each of the
probabilities of the CDFs, as illustrated in the right panel of Figure S2. Averaging horizontally
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the transformed functions, i.e., the thick lines, yields a function, which is the transformation
of the radial average of the original CDFs. The transformations have a similar form to T1 and
T2. Given Q ∈ G[0,õy), the transformation defined by the rays originating from the left focal

point is S1 : G[0,õy) → G(−∞,õy), (S1Q)−1 (x) = õy −
(õy−Q−1(x))(õ′x−õx)

x−õx , for x < Q(õy). The

inverse of S1 is such that (S−11 Q̃)−1(x) = õy −
(õy−Q̃−1(x))(x−õx)

õ′x−õx
, for Q̃ ∈ G(−∞,õy). The fact

that
(
S−11 S1Q

)−1
(x) = Q−1(x) verifies that S−11 is indeed the inverse operator of S1. S1 is

illustrated as the arrowed lines in the lower triangle. Moreover,

S1F̂
−1
r,õ,õ′(α) = 1/2

(
S1F

−1
1 (α) + S1F

−1
2 (α)

)
, (S3)

for all α < õy, or equivalently, F̂−1r,õ,õ′(α) = S−11

(
1/2

(
S1F

−1
1 + S1F

−1
2

))
(α). The right-hand

side of (S3) is the horizontal average of the transformed functions. Similarly, as illustrated by
the upper triangle of the right panel, the transformation that applies to the upper part of the

distribution is such that (S2Q)−1(x) = õy +
(õy−Q−1(x))(õ′x−õx)

õ′x−x
, for x ≥ Q(õy).

Therefore, the operator S : G[0,1] → G(−∞,∞) is given by

SF−1(α) =

S1F
−1(α), if α < õy,

S2F
−1(α), if α ≥ õy.

for any F ∈ F .

S1.4 Illustration of angular and radial average forecasts

As we described in Section 5.3, for angular averaging, we optimize over 101 relative angles, and
this level of discretization is adequate to locate the optimal angle. This is because, for angular
averaging and our proposed radial averaging, the resulting average CDF varies smoothly as the
parameter changes. For example, Figure S3 displays the angular average CDFs corresponding
to the 101 relative angles for Florida in week 28 and for a forecast horizon of four weeks.
The angular average CDFs corresponding to two consecutive integer relative angles are nearly
identical, and this can be seen by the color changing smoothly from dark blue for 0 relative
degrees to dark red for 100 relative degrees. Consequently, introducing additional relative angles
is unnecessary, as it would not yield discernible improvement in performance.

We also display the radial average forecasts corresponding to the focal points on the grid
presented in Figure 10 of the main manuscript. As illustrated by Figure S4, the grid contains
five types of focal points, indicated by five colors. Each of them yields one type of the desired
averaging patterns as depicted in Figure 4 of the main manuscript. For example, positioning
the focal point at one of the red points would produce the radial averaging pattern as in Figure
4(c), which is abbreviated by V-H-V.

Figure S5 displays the radial average forecasts computed with the focal points in the grid.
Each colored CDF corresponds to the focal points of the same color in Figure S4(right).

S2 Additional information for empirical study

S2.1 Data preprocessing

Let the sorted pairs (qs,h,wi,j , αj) represent quantiles (of the h-week ahead forecast for location s
from forecaster i at forecast origin w) and their associated probability levels for j = 1, . . . , 23,
i.e., α1 = 0.01, . . . , α23 = 0.99. In step 1, we define the lower bound of each distribution as
qs,h,wi,0 = 2qs,h,wi,1 − qs,h,wi,2 , if 2qs,h,wi,1 ≥ qs,h,wi,2 , or qs,h,wi,0 = 0, if 2qs,h,wi,1 < qs,h,wi,2 , and define the
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Figure S3: Illustration of the 101 angular average forecasts associated with 101 relative angles
in week 28 for Florida. Adjacent CDFs are already very close to each other, indicating that 101
candidate angles provide sufficient resolution.
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Figure S4: Illustration of the grid for o′ and the corresponding radial average 1-week ahead
forecasts for California in weeks 50 (left) and 40 (right).

upper bound of each distribution as qs,h,wi,24 = 2qs,h,wi,23 − q
s,h,w
i,22 . In step 2, we observe that some

forecasters submit equal predictions for different probability levels. For example, the one-week-
ahead quantile forecasts submitted by team DDS on July 26, 2021 for Alaska are the same
(which is 384) for probability levels 0.01, 0.025 and 0.05. This means that the corresponding
CDF F : R+ → [0, 1] takes multiple values at x = 384, and thus F is not a well-defined
function. To solve this issue, we adjust consecutive equal values by adding small increments ε
(e.g., ε = 10−5) until the quantiles are strictly increasing as the probability level increases. For
example, we change the second 384 to be 384 + ε, and change the third 384 to be 384 + 2ε. In
step 3, we define the h-week ahead CDF forecast of forecaster i for location s at forecast origin
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Figure S5: The radial average 1-week ahead forecasts produced by the five types of focal points
for California in week 40. (a): Five radial average forecasts corresponding to the five purple
choices of o′ in Figure S4(right). (b): 11 radial average forecasts corresponding to the 11
yellow and blue choices of o′ on the x-axis in Figure S4(right). (c): 11 radial average forecasts
corresponding to the 11 red and blue choices of o′ on the vertical line segment on the right in
Figure S4 (right).

w as

F s,h,wi (x) =



0, x < qs,h,wi,0

α1 ·
x−qs,h,wi,0

qs,h,wi,1 −qs,h,wi,0

, qs,h,wi,0 ≤ x < qs,h,wi,1

αj−αj−1

qs,h,wi,j −qs,h,wi,j−1

(x− qs,h,wi,j−1) + αj−1, qs,h,wi,j−1 ≤ x < qs,h,wi,j , j = 2, . . . , 24

1, x ≥ qs,h,wi,24 .

(S4)
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S2.2 Additional empirical results

In our empirical study, we evaluate the performance of different forecast combining methods
using the average MQS, averaged across all weeks in the out-of-sample period. Note that
average scores may be dominated by a few extreme values. To complement the average score
comparison, we also report in Table S1 the percentage of weeks in which horizontal, angular
and radial averaging performs no worse than the benchmark. In fact, for all states and across
the majority of weeks, our method delivers favorable performance relative to the benchmark.

Angular averaging may occasionally coincide with vertical averaging, since its parameter,
i.e., the angle, can be optimized so that vertical averaging is actually performed in certain
weeks. By contrast, horizontal and radial averaging generally do not coincide with vertical
averaging; thus, for these two methods, the reported percentages essentially reflect the frequency
of outperforming the benchmark.

Table S1: For each location and all lead times, the percentage (%) of weeks in the out-of-
sample period in which each of horizontal, angular and radial averaging is no worse than vertical
averaging in terms of MQS.

AL AK AZ AR CA CO CT DE DC FL GA HI ID

Horizontal 75.9 36.4 80.9 78.4 76.5 74.7 49.4 32.7 45.1 69.1 77.8 30.2 68.5

Angular 86.4 83.3 57.4 78.4 74.7 80.9 63.6 69.1 61.1 66.0 75.3 67.9 75.3

Radial 81.5 71.6 84.0 73.5 80.9 85.8 80.9 74.7 79.6 80.9 80.2 88.3 87.7

IL IN IA KS KY LA ME MD MA MI MN MS MO

Horizontal 72.2 75.9 64.2 62.3 66.7 59.3 52.5 64.8 74.1 75.9 77.2 67.9 61.1

Angular 77.2 76.5 79.0 75.9 63.6 74.7 56.2 75.3 79.0 84.0 73.5 70.4 67.3

Radial 84.6 88.9 88.3 73.5 67.9 90.1 86.4 84.0 82.7 88.9 92.0 82.7 89.5

MT NE NV NH NJ NM NY NC ND OH OK OR PA

Horizontal 63.6 48.1 77.2 46.3 77.8 75.9 72.2 70.4 44.4 56.2 54.9 75.9 81.5

Angular 63.0 64.2 77.2 61.7 90.7 80.9 80.9 71.0 76.5 100.0 63.0 88.9 86.4

Radial 71.0 79.0 90.1 87.0 96.3 89.5 90.7 75.3 93.2 63.0 77.2 75.3 93.2

RI SC SD TN TX UT VT VA WA WV WI WY US

Horizontal 42.6 72.8 51.9 66.0 69.8 69.8 29.0 67.3 71.6 71.6 76.5 42.6 87.0

Angular 70.4 67.3 74.1 71.6 64.2 69.1 59.3 82.7 72.2 87.7 75.9 67.3 82.1

Radial 84.0 86.4 96.9 75.3 79.0 83.3 89.5 77.8 74.7 83.3 80.9 86.4 93.8

As we mentioned in relation to Figure 12 of the main manuscript, in two separate weeks,
a forecaster submitted CDFs that were significantly different from the forecasts of other fore-
casters. These were weeks 45 and 47. For example, the left panel of Figure S6 illustrates all
individual 2-week ahead CDF forecasts (as gray curves) for Connecticut in week 45. Among the
set of CDF forecasts, most were closely aligned with each other. However, a single forecaster
submitted a CDF forecast that was far to the right of the forecasts from the other forecasters
(shown in blue). The optimal focal point for our radial averaging method was learned based
on past information. For week 45, the optimal focal point for radial averaging was a single
focal point at the upper bound. This means that, at all probability levels, the extremely large
quantile forecasts (all equal to approximately 2300) were included in the averaging process,
thus inflating the radial average forecast. Similarly, the horizontal and angular average CDF
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forecasts were also pulled upward due to the influence of the extreme CDF forecast. Vertical
averaging was less affected by this outlying forecast, because vertical averaging averages prob-
abilities, and the probabilities for most mortality numbers given by the outlying forecast were
0. It is also worth noting that, when such an extreme forecast occurred for the second time,
in week 47 (right panel of Figure S6), radial averaging performed well, as it had successfully
adjusted its parameter due to the first occurrence of the extreme data.
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Figure S6: Individual 2-week ahead CDF forecasts, and average CDF forecasts for Connecticut
in weeks 45 (left panel) and 47 (right panel). In both weeks, a forecaster submitted substantially
large forecasts for all quantiles, which are labeled as outlying forecast. For each panel, the inset
provides a magnified view of the region outlined by the red dashed rectangle and displays the
four different average forecasts and the 2-week ahead observation.

We provide a visualization of the average CDF forecasts we obtain. As an example, Figure
S7 shows the forecasts for the out-of-sample period for New York (state) obtained from the
vertical, horizontal, angular and radial averaging methods. Each bar in the figure represents a
CDF forecast, with the highest value of the bar being the upper bound of the distribution and
the lowest value being the lower bound of the distribution. The vertical and angular average
exhibit more dispersed distributions compared with the horizontal and radial average (note
the difference in the scaling of the y-axes of the four plots). On the other hand, horizontal
and radial averaging produce sharper forecasts, with the probability mass concentrating within
smaller intervals. Furthermore, one team submitted much larger forecasts for all quantiles than
those submitted by other teams in weeks 45 and 47. These outlying forecasts lead to undesirable
upper bounds for the vertical and angular average forecasts and undesirable lower bounds for
the horizontal average. By contrast, radial averaging performs well for these two weeks.

S2.3 Choosing the number of focal points via cross-validation

While our method automatically determines the number of focal points, a cross-validation pro-
cedure could be used if there is a preference to select this number explicitly. The number of
focal points would be treated as a hyperparameter and determined via an expanding window
cross-validation procedure. In our implementation of this, for each state, week and forecast
horizon, we considered three candidates: one focal point, at most two, and at most three. For
each training set, we constructed 20 internal validation steps by successively enlarging an in-
ternal training window by one week. All validation steps were performed within the training
set to ensure a fair comparison with angular averaging, which does not involve a validation
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Figure S7: One-week ahead forecasted CDFs using vertical, horizontal, angular and radial
averaging methods for the out-of-sample period for New York (state). Each bar displays an
average CDF forecast at a forecast origin, with the colors representing the probability that the
predicted number of death is no larger than the corresponding values on the vertical axis, which
are the quantiles of the distribution. The line represents the observed number of deaths.

stage. At each step, we produced an h-week ahead CDF forecast for each candidate number
of focal points. The MQS was then computed for this forecast using the observation at the
corresponding horizon. Repeating this process over all 20 validation weeks yielded a series of
MQS values for each candidate number of focal points. The MQS was then averaged across
all validation weeks for each candidate. Finally, the number of focal points that minimized the
average MQS was selected.

The out-of-sample MQS and MQSS results are presented in Table S2. Comparing these
results with Tables 1 and 2 of the paper, we see that radial averaging with cross-validation (in
Table S2) outperforms vertical, horizontal and angular averaging (in Tables 1 and 2), while it
underperforms our implementation of radial averaging in the paper (in Tables 1 and 2), which
selects from up to three focal points and directly optimizes over the entire grid. This perhaps
is not surprising given that we were only able to use relatively short validation samples in our
implementation of cross-validation.

S3 Review of angular combining of distributional forecasts

Angular combining Taylor & Meng (2025) is a method for aggregating multiple CDF forecasts
that generalizes the commonly used horizontal and vertical combining approaches. In horizon-
tal combining, the quantile functions are averaged, while in vertical combining, the CDFs are
averaged directly. Each method has advantages and drawbacks, and the choice between them
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Table S2: For radial averaging with cross-validation, MQS and MQSS averaged across the four
lead times, and for each lead time, averaged across the out-of-sample periods for the different
groupings of the 52 locations.

Lead time MQS MQSS (%)

(week) U.S. High Medium Low All U.S. High Medium Low All

Average 697.20 56.90 23.44 7.28 42.05 10.56 1.57 3.69 4.69 3.47

1 554.30 46.22 21.15 6.76 34.90 6.75 4.68 2.14 1.32 2.80

2 618.71 51.03 23.37 7.20 38.57 10.74 6.48 3.79 3.71 4.79

3 734.24 60.50 23.18 7.37 43.89 11.07 -0.08 3.03 5.70 3.07

4 881.56 69.83 26.04 7.79 50.84 12.27 0.30 5.70 7.67 4.76

depends on the true data generating process. Angular combining provides a flexible alterna-
tive by introducing an angle parameter θ, that creates a continuous spectrum of combination
methods, effectively bridging the gap between horizontal and vertical averaging.

Horizontal averaging corresponds to an angle of 0◦, and vertical averaging corresponds to
an angle of 90◦. By selecting an angle θ ∈ [0, 90◦], angular combining ensures that the resulting
function remains a valid CDF, while allowing practitioners to exploit useful aspects of both
horizontal and vertical averaging. More specifically, for a fixed θ, angular averaging considers a
family of straight lines y = − tan θ(x− c), with c ∈ (−∞,∞). Each of the lines intersects with
the graph of each of the individual CDFs {Fi}ni=1. The angular averaging method averages the
x- and y-coordinates of these intersection points to produce a point on the combined CDF given
by: (1/n

∑n
i=1 xi(c), 1/nFi(xi(c))), where xi(c) is the x-coordinate of the intersection point of

the line y = − tan θ(x− c) with y = Fi(x). In this formulation of the method, c parameterizes
the CDF produced by angular averaging.
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