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Further Empirical Evidence on the Forecasting of Volatility with Smooth Transition 

Exponential Smoothing 

Abstract 

Smooth transition exponential smoothing (STES) uses a logistic function of a user-specified transition 

variable as adaptive time varying smoothing parameter. This paper empirically addresses three 

aspects of the use of STES for volatility forecasting. Previous empirical results showed the method 

performing well in comparison with fixed parameter exponential smoothing and a variety of GARCH 

models. However, those results related only to forecasting weekly volatility. In this paper, we address 

the use of STES for forecasting daily volatility. A second issue that we evaluate is the robustness of 

STES in the presence of extreme outlying observations. The third aspect that we consider is the use of 

trading volume within a transition variable in the STES method. Our simulation results suggest that 

STES performs well in terms of robustness, when compared with standard methods and several 

alternative robust methods. Analysis using stock return data shows that STES has the potential to 

outperform standard and robust forms of fixed parameter exponential smoothing and GARCH 

models. The results suggest the use of the sign and size of past shocks as STES transition variables, 

and provide no clear support for the incorporation of trading volume in a transition variable. 

Key words: Smooth Transition Exponential Smoothing; Daily Volatility Forecasting; Robustness; 

Trading Volume. 
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1. Introduction 

Volatility forecasts are important for a range of activities, including risk management, 

portfolio selection, and derivative pricing. A variety of time series methods have been proposed for 

volatility forecasting, including Generalised autoregressive conditional heteroskedasticity (GARCH) 

models, stochastic volatility models, and ad hoc time series methods, such as exponential smoothing 

(ES) (Poon and Granger, 2003). The literature contains a number of interesting nonlinear GARCH 

models, such as the smooth transition models of Hagerud (1997) and González-Rivera (1998), which 

allow a parameter to vary over time as a continuous function of a transition variable. This prompts 

Taylor (2004b) to develop smooth transition exponential smoothing (STES), which uses a logistic 

function of a user-specified transition variable as adaptive time varying smoothing parameter. STES 

is the focus of this paper. 

Although the one previous empirical evaluation of STES for volatility prediction delivered 

encouraging results, consideration was only given to forecasting weekly volatility (see Taylor, 2004b). 

To estimate STES parameters, daily returns were used to construct realised weekly volatility, which 

was used as a proxy for actual volatility. In this paper, we provide empirical evidence on the use of 

STES for forecasting daily volatility based on daily returns, and without the use of realized volatility.  

When dealing with volatility forecasting, an issue of concern is the existence of extreme 

observations or outliers. Such extremes in financial time series are commonly reported (see Franses 

and Ghijsels, 1999; Park, 2002; Poon and Granger, 2003), and they are evident in Fig. 1, which shows 

a plot of daily returns for the S&P 500 index. The robustness of STES in the presence of outliers has 

been considered in a study focusing only on the forecasting of the level of a time series (see Taylor 

2004a). In this paper, we investigate the robustness of STES when it is used for the very different 

application of volatility forecasting.  

----------  Fig. 1  ---------- 

Of crucial importance to the success of STES is the choice of the transition variable. The only 

variables that have previously been considered are the previous period’s shock and the magnitude of 

this shock (see Taylor, 2004b). It has been suggested that trading volume has a potential role to play 

in forecasting volatility. For example, Lamoureux and Lastrapes (1990), Brooks (1998) and 
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Donaldson and Kamstra (2005), among others, consider trading volume as a regressor in a GARCH 

model. In this paper, we evaluate the usefulness of trading volume as a transition variable in STES.  

In summary, the contribution of this paper is to provide further empirical evidence regarding 

the STES method for volatility prediction. More specifically, we address three main issues: the 

prediction of daily volatility; the robustness of STES for volatility forecasting in the presence of 

outliers; and the usefulness of trading volume as a STES transition variable.  

In Section 2, we describe the STES method. In Section 3, we briefly review the literature on 

robust volatility forecasting, and propose several simple robust methods. Section 4 presents a 

simulation study to investigate the robustness of the STES method. Section 5 presents an empirical 

comparison of methods using stock index data. Section 6 summarises the paper.  

2. Smooth Transition Exponential Smoothing (STES) for Volatility Forecasting 

The GJRGARCH model of Glosten et al. (1993) provides a simple way to capture the 

leverage effect, whereby a negative shock has a greater impact on the next period’s volatility than a 

positive shock of equal size. This popular GARCH model captures the leverage effect by switching 

between two different parameters, according to the sign of the previous period’s shock. This 

switching is replaced by smoothing in the logistic smooth transition GARCH (LSTGARCH) model of 

Hagerud (1997) and González-Rivera (1998). Hagerud also introduces the exponential smooth 

transition GARCH (ESTGARCH) model, which uses the magnitude of the previous period’s shock 

and an exponential function to dictate the smooth transition between parameters. A more detailed 

overview, including model expressions, for the GJRGARCH, LSTGARCH and ESTGARCH models 

is provided by Taylor (2004b). 

Exponential smoothing (ES) is a simple and pragmatic approach to volatility forecasting. Its 

popularity has been due, at least partly, to its incorporation in the RiskMetrics methodology 

(RiskMetrics, 1996). Assuming that the conditional mean of the returns, rt, is a constant, , we are 

interested in forecasting the variance, t
2, of errors, t = rt - . The ES 1-step-ahead variance estimator is 

presented in expression (1) in recursive form with smoothing parameter, , which is typically estimated 

by minimising the sum of squared in-sample prediction errors.  
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In the exponential smoothing literature, in the context of forecasting the level of a sales time 

series, it has been proposed that the smoothing parameter should be allowed to vary in order to 

capture the latest changing characteristics of the time series (e.g. Trigg and Leach, 1967). This, and 

the existence of smooth transition GARCH models, lead to the development of smooth transition 

exponential smoothing (STES) for predicting the level of a series (see Taylor, 2004a), and STES for 

volatility forecasting (see Taylor, 2004b), which we present in the following expressions:  
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Vt-1 is the transition variable, and  and  are constant parameters estimated in the standard way, by 

minimising the sum of squared in-sample prediction errors. This STES method uses a logistic function 

of a user-specified variable as adaptive time varying smoothing parameter. The logistic function 

restricts t-1 to lie between 0 and 1. The method is called STES-AE when |t-1| is the transition 

variable; and STES-SE is the name given to the method when t-1
2 is the transition variable. 

Using stock market data, Taylor (2004b) obtains promising results using together the sign and 

size (t-1 and |t-1|) of the previous period’s shock as transition variables. In that study, the focus was 

on forecasting weekly volatility. In this paper, we instead evaluate daily volatility forecasting. 

Taylor (2004a) performs a simulation study to address the robustness to outliers of the STES 

method for forecasting the level of a series. The results show that STES-AE and STES-SE perform 

well when the estimation sample and evaluation sample both contain an outlier. This can be attributed 

to the adaptive nature of the time-varying parameter, which decreases around the outlier in order to 

put a reduced weight on the outlier. In this paper, we use simulated data to evaluate the robustness to 

outliers of STES for volatility prediction. 
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3. Robust Volatility Forecasting Methods: A Review and Simple Proposals 

3.1. The Impact of Outliers on Volatility Model Estimation 

In time series analysis, two types of outliers have been considered: additive outliers and 

innovative outliers. An additive outlier gives an immediate and one-time effect on the observed time 

series, as only the current observation is affected. Hence, it has an additive impact. On the other hand, 

an occurrence of an innovative outlier at the present time also influences future observations.  

The estimated standardized residuals of GARCH models tend to exhibit excess kurtosis, 

albeit less than the kurtosis in the raw returns (see, for example, Bollevslev, 1987). This is true even 

with the use of conditionally t-distributed errors. Franses and Ghijsels (1999) interpret this as 

evidence of additive outliers. Neglecting outliers can lead to biased parameter estimates in conditional 

mean equations, and also biased out-of-sample forecasts (Ledolter, 1989). This is supported by the 

empirical studies by Jorion (1995), and Andersen and Bollerslev (1998). They report that even though 

the GARCH parameters are highly significant in-sample, these models can produce poor out-of-

sample forecasts due to the effects caused by outliers on parameter estimation. These findings lead to 

the perception that there are unavoidable limitations of GARCH models. To overcome these, Franses 

and Ghijsels (1999) advocate a method to detect additive outliers in GARCH models, and to reduce 

the impact of additive outliers on parameter estimates and forecasts. Carnero, et al. (2012)  implement  

a few robust methods to estimating GARCH volatility in the presence of outliers, including Quasi 

Maximum Likelihood estimator (QML-t, proposed by Bollerslev,1987) and Bounded-M (BM) 

estimator (proposed by  Muler and Yohai, 2008). They find that these robust methods outperformed 

maximum likelihood procedures in estimate both parameters and volatilities. However, this procedure 

is computationally intensive, which is a practical concern. In the next subsection, we propose several 

simple robust methods that are easy to interpret and straightforward to implement.  

3.2. Simple Proposals for Robust Volatility Prediction 

Since ES for volatility forecasting is formulated in terms of variance forecasts, RiskMetrics

(1996) suggests the minimisation of the sum of ‘squared’ in-sample one-step-ahead prediction errors 

between actual variance, using squared residual as the proxy, and predicted variance. However, this 
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criterion provides a quadratic loss function that can lead to spurious inference in the presence of 

outliers (Franses and Ghijsels, 1999). In order to give less weight to outliers, we include in our 

simulation study ES with parameter estimated using the minimisation of the sum of ‘absolute’ in-

sample one-step-ahead prediction errors, between squared residuals and the variance forecasts. We 

refer to this method as ES-Absolute. (Note that it is unwise to use the absolute value of a residual as a 

proxy for standard deviation, because the absolute residual will almost certainly be a biased estimator 

of the conditional standard deviation. In view of this, we do not consider the robust GARCH method 

of Park (2002), which involves the absolute residual.)  

Rousseeuw (1984) proposes the use of least median of squares regression to overcome 

estimation problems caused by outliers. This motivates us to consider, for ES parameter optimisation, 

the minimisation of the median absolute prediction error between squared residuals and the variance 

forecasts. We refer to this method as ES-Median. The analogous procedure for robust estimation of 

GARCH models is to use maximum median likelihood. We are not aware of the previous 

consideration of maximum median likelihood in GARCH modelling, or of the use of median absolute 

prediction error in the optimisation of ES parameters. We refer to this as GARCH-MedianL. 

Winsorizing removes outliers by trimming a specified percentage, such as 1%, of the lowest 

and highest values in a dataset (see Hoaglin et al. 1983). Taylor’s (2005) winsorized GARCH 

approach involves first estimating the series of 1% conditional quantiles of the return series. For each 

period in the estimation sample, if a return exceeds the estimated quantile, it is replaced for the rest of 

the analysis by the quantile value. A similar procedure is used to reduce the magnitude of all returns 

that exceed the 99% conditional quantile. The winsorizing has the effect of removing outliers, and so, 

after it has been applied, standard maximum likelihood is used for GARCH parameter estimation, and 

the minimisation of squared prediction error is used for ES. Taylor uses CAViaR models to estimate 

the conditional quantiles. In this paper, we use the exponentially weighted moving averages method 

for quantiles of Boudoukh et al. (1998), which Taylor (2008) shows can be viewed as exponentially 

weighted quantile regression. Taylor (2005) finds that greater quantile forecast accuracy resulted 

when the decay parameter of this method is optimized using cross-validation with the quantile 

regression summation as cost function. We refer to the winsorizing with ES as ES-Winsorized, and we 
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use GARCH-Winsorized to denote winsorizing with GARCH(1,1) estimated using conditionally t-

distributed errors. 

Over the last decade, only limited literatures focusing on the applications of winsorizing in 

removing outliers. Among others are Lusk et al.(2011), Ghosh and Vogt (2012), Al-Khazaleh et 

al.(2015), Suleman et al. (2017), Kwak and Kim (2017). 

4. Simulation Study to Evaluate the Robustness of STES to Outliers 

4.1. The Simulated Data 

In this section, we carry out Monte Carlo experiments to evaluate the robustness to outliers of 

STES compared to other volatility forecasting methods. We focus on additive outliers and one-step-

ahead volatility forecasting. We use the contaminated GARCH(1,1) data-generating process of Park 

(2002). This process generates simulated returns, yt, using the following data generating process: 
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where ut ~ N(0,1), P(ot =1) =, P(ot =0) =1-. The likelihood of the occurrence of an outlier in each 

period is controlled by the probability . In all experiments, we set =0.005, as the occurrence of 

outliers is rare. The constant and GARCH parameters, , ,  and , take the values of 0, 0.02, 0.11 

and 0.87, respectively. These values are taken by averaging the parameter estimates of GARCH(1,1) 

across the eight stock market indices considered in Section 5. In order to investigate the effect of 

different magnitudes of outliers, we set  = {0, 4, 6, 8}. =0 clearly corresponds to the case of no 

outlier. For simplicity, we did not try to incorporate a leverage effect in the simulated series, and so 

we do not consider asymmetric GARCH or STES methods in this study.

We employed 1000 replications. For each, a time series of length 2500 observations is 

generated from the contaminated GARCH model. The first 500 observations are discarded to avoid 

initialisation effects, the next 1,500 observations are used for parameter estimation and the last 500 

observations are reserved for post-sample evaluation. We could have also included an investigation of 
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the effect of outliers for different sample sizes. However, as pointed out by Park (2002, p. 387), the 

estimation sample size only slightly affects the performance of the forecasting models. The software 

Gauss was used for all computational work in this study. Figures 2 and 3 show two of the time series 

generated with the magnitude of outliers set by = 4 and 8, respectively. 

In the study, we included two versions of the STES method, three standard volatility 

forecasting methods, and five robust methods. We present the methods in the next three subsections. 

----------  Figs. 2 and 3  ---------- 

4.2. Benchmark Methods 

As a simple benchmark method, we estimated the variance using a moving average of the 

previous 30 squared simulated returns. We refer to this as MA30. We implemented standard fixed 

parameter ES. As suggested in RiskMetrics (1996), we optimised parameters by minimising the sum 

of squared in-sample one-step-ahead prediction errors between predicted and actual variance, using 

squared residual as the proxy for actual variance. We refer to this as ES-Square. 

We included a standard GARCH(1,1) model. Even though the series was generated from a 

Gaussian distribution, the simulated series was contaminated by outliers, and so we opted to estimate 

the model assuming conditionally t-distributed errors. We refer to this simply as GARCH.  

We implemented the following robust volatility forecasting methods, as described in Section 

3: ES-Absolute, ES-Median, GARCH-MedianL, ES-Winsorized and GARCH-Winsorized. Both of 

these GARCH models are of order (1,1) with conditionally t-distributed errors. 

4.3. STES Methods  

We implemented the STES-AE and STES-SE methods as described in Section 2. Figures 4 

and 5 display post-sample one-step-ahead volatility forecasts for STES-AE and GARCH, with the 

magnitude of the outliers set as = 4 and 8, respectively. For clarity, we show only 100 out of 500 

post-sample one-step-ahead forecasts. In the figures, both series of volatility forecasts react quickly to 

the outliers, but it is interesting to note that STES-AE is quicker to return to the previous volatility 

level. This feature is consistent across different magnitudes of outliers. The secondary axis in each 
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figure shows the plot of the adaptive parameter for STES-AE. This plot shows a decrease 

immediately after the two outliers in order to put a reduced weight on the outliers. It is important to 

appreciate that the reaction to the outliers are post-sample results. 

----------  Figs. 4 and 5  ---------- 

Let us now consider briefly the adaptive smoothing parameter t-1 for STES with |t-1| as 

transition variable. Expressions (2) and (3) show t-1 for series with magnitude of outliers equal to 4 

and 8, respectively. These expressions correspond to the series of STES-AE forecasts in Figures 4 and 

5, respectively. The positive value for the coefficient of the transition variable implies that an increase 

in the size of the previous period’s shock will result in a decrease in t-1. This reduces the forecast 

function’s reaction to the outliers. The coefficient is larger for the series with larger outliers. 
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4.4. Post-Sample Forecasting Results  

Mean square error (MSE) or root mean square error (RMSE) is the most preferred accuracy 

criterion for evaluating the performance of volatility forecasting models, as indicated by Brooks 

(1998), among others. However, Franses and Ghijsels (1999) write that this criterion provides a 

quadratic loss function that can lead to spurious inference in the presence of outliers. Hence, in the 

post-sample forecasting evaluation, we consider not only MSE but also mean absolute error (MAE), 

which is more robust to outliers. In addition, since the mean itself is a biased estimate in the presence 

of outliers, we also implement median absolute error (MedAE). These measures of accuracy used are 

RMSE, MAE and MedAE, given by 
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where N is the post-sample size. The nature of the data, the fact that the volatility could be very close 

to zero, precludes the use of proportional accuracy measures, such as mean absolute percentage error 

(MAPE), advocated by Armstrong and Collopy (1992).  

We calculated the mean square error (RMSE) for the 500 post-sample periods for each of the 

1000 series simulated for each size of outlier. The average of the resulting 1000 RMSE values is 

shown, for each size of outlier, in the first four numerical columns of Table 1. In a similar way, we 

calculated the average MAE and average MedAE values, and these are also presented in Table 1. 

----------  Table 1  ---------- 

For all three error measures, and all magnitudes of outliers, the robust GARCH method, 

GARCH-MedianL, performs worse than standard GARCH across all magnitudes of outliers. The 

results for GARCH-Winsorized are similarly to standard GARCH for all magnitudes of outliers.  

Table 1 shows that, for all magnitudes of outliers, the robust ES method, ES-Median, 

performs poorly in terms of RMSE and MAE, but outperforms standard ES method, ES-Square, for 

the MedAE measure. The other two robust ES methods, ES-Absolute and ES-Winsorized, show more 

consistency, with both outperforming ES-Square for MedAE, and matching the performance of ES-

Square in terms of RMSE and MAE. 

Turning to the STES methods, we see that both STES-AE and STES-SE show the best 

results, in terms of all three measures, for the different magnitudes of outliers. Although the STES 

methods are matched by the performance of ES-Median for the MedAE, ES-Median is actually the 

poorest of all methods in terms of RMSE and MAE. The results for STES-SE and STES-AE are very 

encouraging. The feature of down-weighting the outlying observations is intuitively appealing, and is 

the key to the success of STES in terms of robustness.  
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5. Evaluating STES using Stock Index Data 

In this empirical study, we use stock index data to compare the forecast performance of the 

STES method against fixed parameter exponential smoothing and a variety of GARCH models. The 

study addresses the following issues: 

(i) In Taylor’s (2004b) empirical work, the focus was on forecasting weekly volatility with models 

estimated using realized volatility constructed from daily data. In this section, we evaluate STES for 

forecasting daily volatility estimated using daily returns (and not realized volatility). 

(ii) For the STES method, we consider several potential transition variables that were not considered 

by Taylor (2004b). Two of these relate to trading volume. 

(iii) The presence of outliers in the stock index data means that the study also serves to investigate 

further the issue of robustness considered in Section 4.  

5.1. The Stock Index Data 

The data used in this study are the daily observed stock indices and their respective trading 

volume series. We used the same eight stock indices considered by Taylor (2004b). These are from 

the following major markets: Amsterdam (AEX), Frankfurt (DAX), Hong Kong (Hang Seng), 

London (FTSE100), New York (S&P500), Paris (CAC40), Singapore (STI) and Tokyo (Nikkei). 

Each time series consisted of 2000 log returns, implying a period of approximately eight years, with 

the sample period ending on 9 September 2010. Note that we opted to employ the data of this period 

which including the period of Global Financial Crisis, which is most probably providing us with 

outliers. The first 1500 observations are used for parameter estimation and the last 500 observations 

are reserved for post sample evaluation. We focused solely on one-step-ahead prediction. 

5.2. Benchmark Methods 

We implemented the standard and robust volatility forecasting methods that we included in 

the simulation study of Section 4. Since the leverage effect is often present in stock indices, we 

included in the study the following asymmetric GARCH models: GJRGARCH, LSTGARCH and 

ESTGARCH. For GJRGARCH, we also implemented the two robust forms of GARCH considered in 
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the simulation study of Section 4, and we refer to these as GJRGARCH-MedianL and GJRGARCH-

Winsorized. The results for these methods were better than for the corresponding robust GARCH 

models, and so for simplicity, later in Section 5, we report the results for only the robust forms of 

GJRGARCH. All GARCH models are of order (1,1) with conditionally t-distributed errors. 

5.3. STES Methods 

We implemented the two STES methods considered in the simulation study of Section 4: 

STES-AE and STES-SE. Given the potential leverage effect in the stock index data, we also included 

asymmetric versions of the STES method. These involved the lagged shock, t-1, as transition 

variable. More specifically, we considered STES with t-1 and |t-1| as transition variables, and STES 

with t-1 and t-1
2 as transition variables. We term these STES-E&AE and STES-E&SE, respectively. 

STES-EAE was considered by Taylor (2004b), but STES-ESE was not. 

We also used trading volume as a transition variable. Following the early work of Karpoff 

(1987), there have been many studies that have investigated the impact of volume on volatility, 

although few studies have considered the usefulness of volume for volatility prediction. Inclusion of a 

volume term in a GARCH model has been a common approach to investigating the relationship. The 

possible existence of a simultaneity problem is discussed by Lamoureux and Lastrapes (1990). 

Harvey (1989) addresses this and concludes that lagged volume should be used rather than 

contemporaneous volume. From a forecasting perspective, lagged volume is clearly more relevant. 

Unfortunately, Lamoureux and Lastrapes (1990) find that the lagged volume is a poor instrument for 

contemporaneous volume. Brooks (1998) concludes that lagged volume has little role to play in 

improving the out-of-sample forecasting performance of volatility models. By contrast, Donaldson 

and Kamtra (2005) conclude that lagged volume can significantly improve the accuracy of volatility 

forecasts when used with implied volatility within a GARCH model. Le and Zurbruegg (2010) 

combine the information from stock and option market to identify and confirm the forecast quality of 

volume. 

Although Taylor (2008) emphasizes the importance of information flow in determining the 

significance of volatility forecasting model, by incorporating volatility index (VIX) and trading 
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volume as exogenous variable in six different GARCH models, Kambouroudis and McMillan (2016) 

discover that volume contributes a significant but small additional degree of predictive power which 

is in compliance with Brooks (1998).  

However, by examining the predictive power of three information sets: daily trading volume, 

intraday returns and overnight returns, Fuertes, et al. (2015) find that volume is the most effective 

predictor. 

In this paper, we carry out our own empirical analysis of the usefulness of lagged trading 

volume for volatility prediction. We consider the use of trading volume as STES transition variable to 

govern the weight on old versus new information. More specifically, we experimented with two 

alternative trading volume transition variables: the natural logarithm of lagged volume, and also the 

high/low volume indicator variable, 1tIndVol , as implemented by Donaldson and Kamstra (2005): 


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We set n = 5 so that IndVolt-1=1 if lagged volume is above its one-week lagged moving 

average. We also investigate a variety of other lag lengths, but the results were not affected 

qualitatively, which is consistent with the finding of Donaldson and Kamstra (2005). We considered 

STES with the individual transition variables, as well as pairs of transition variables. In Table 2, we 

list and define the ten different versions of STES that we included in our study.  

----------  Table 2  ---------- 

5.4. Post-Sample Forecasting Results 

Table 3 presents the RMSE calculated for the 500 post-sample forecasts produced by each 

method. The final column shows the ranking of each method averaged across the eight stock indices. 

The best five methods in each column are indicated by bold and underlining. For each method, the 

results are reasonably consistent across the eight stock indices. Of the standard methods, the best 

results correspond to GJRGARCH. Indeed, this was the best performing of all the methods in terms 

of RMSE. Of the five robust methods, the best RMSE results were produced by the GJRGARCH 
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model with winsorizing. For the STES method, the lowest RMSE results were achieved with t-1 and 

|t-1| as transition variables, or with t-1 and t-1
2 as transition variables. These two versions of the 

STES method were only outperformed by GJRGARCH and by GJRGARCH with winsorizing. 

Although the results are reasonable for the versions of the STES method that feature trading volume 

in the transition variables, it would seem that better results can be achieved without trading volume.  

----------  Table 3  ---------- 

Tables 4 and 5 present the MAE and MedAE results. In both tables, we see all of the STES 

methods outperforming all of the standard models, and all of the robust fixed parameter ES methods. 

In terms of MAE, the best STES methods used either |t-1| alone as transition variable, or t-1 and t-1
2

together. In terms of MedAE, using |t-1| alone produced the best results for the STES method. As 

with the RMSE results, the MAE and MedAE results show that the trading volume transition 

variables did not seem to benefit the STES method. For MAE and MedAE, the best performing 

method was the GJRGARCH model estimated by maximising the median likelihood. Although the 

MAE and MedAE results for this method are impressive, it is interesting to note from Table 3 that it 

was one of the worst performing methods in terms of RMSE.  

----------  Tables 4 to 5  ---------- 

In Table 6, we summarise the performance of the methods for the three error measures. The 

table shows the mean ranks taken from the final column of each of Tables 3, 4 and 5. The final 

column of Table 6 shows the average of the three mean ranks for each method. This final column 

shows good overall performance from GJRGARCH in its standard form, and when estimated by 

maximising the median likelihood. It is also clear from Table 6 that several of the STES methods 

performed very competitively, with the best overall results of all methods across all three measures 

coming from STES with either |t-1| alone as transition variable, or t-1 and t-1
2 together. Note that t-1

and t-1
2 were not considered together as STES transition variables by Taylor (2004b). The results for 

all the STES methods are better than those for all the fixed parameter ES methods. The poorest 

overall results in Table 6 correspond to the moving average, MA30, and the two smooth transition 
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GARCH models, LSTGARCH and ESTGARCH. The poor performance of these two GARCH 

models is consistent with the results of Taylor (2004b) for weekly volatility prediction. 

----------  Table 6  ---------- 

We also applied to the model confidence set testing (MCS test) of Hansen et al. (2011). In 

Tables 7 and 8, present the compositions of the Superior Set of Models (SSM) discriminating by 

model. The different entries in each column represent the number of models that belong to the SSM at 

the end of the MCS procedure discriminated by model. Using the absolute forecast errors, we found 

that STES methods are least eliminated model among all the models used in this study. However, the 

results from squared forecast errors show that the SSM is quite homogeneous with respect to the type 

of the methods. 

----------  Tables 7 and 8  ---------- 

6. Summary 

The aim of this paper was to provide further empirical evidence on the accuracy of the STES 

method for volatility prediction. By contrast with the only previous study of this method, which 

considered weekly volatility, we focused in this paper on the prediction of daily volatility, which is 

likely to be of more practical use. Our analysis of eight stock indices showed the STES method 

performing well in comparison with a range of standard and robust ES and GARCH models. With 

regard to the choice of STES transition variables, our results suggest that the size of the previous 

period’s shock is the most important variable to use, and that it may be beneficial to also include the 

sign of the previous period’s shock as a second transition variable. Our results do not support the 

incorporation of trading volume in a STES transition variable. Of the other methods, GJRGARCH 

performed particularly well in terms of RMSE, while the best MAE and MedAE results came from a 

robust form of this model that had parameters optimised by maximising the median likelihood.   

STES has been reported to have robust feature in the presence of outliers when used to 

forecast the level of a time series. In this paper, we extended consideration of the robustness of STES 

to volatility forecasting. The results from the simulation study show that, regardless of the magnitude 

of the outliers and post-sample forecast evaluation criterion used, the STES methods outperformed 
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standard methods, including standard ES, GARCH and several robust volatility forecasting methods. 

Hence, we can conclude that in the presence of outliers, STES with suitable transition variables is a 

robust volatility forecasting method.  

In terms of future research, it would be interesting to consider alternative transition variables, 

such as implied volatility. The evaluation of multi-step-ahead prediction from STES is another 

potential area of research. It would also be interesting to investigate the use of STES with intraday 

returns data. Another potential research area would be the development of STES for conditional 

quantile forecasting, with a view to contributing to the literature on value at risk estimation. 
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Fig. 1. S&P500 (NewYork), 2000 daily log return 

Fig. 2. Simulated time series generated from the GARCH (1,1) with outlier magnitude =4. 
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Fig. 3. Simulated time series generated from the GARCH (1,1) with outlier magnitude =8. 
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Fig. 4. Volatility forecasts for the STES-AE and GARCH models for simulated time series with 
outlier magnitude =4.  
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Fig. 5. Volatility forecasts for the STES-AE and GARCH models for simulated time series with 
outlier magnitude =8.  

-10

-5

0

5

10

15

1 11 21 31 41 51 61 71 81 91

R
et

u
rn

Return GARCH STES-AE



23 

Table 1 
Evaluation of 500 post-sample one-step-ahead forecasts for 1000 simulated series from the 
contaminated GARCH (1,1) process.  is the outlier magnitude. 

Mean RMSE Mean MAE Mean MedAE 

  

 0 4 6 8  0 4 6 8  0 4 6 8 

Standard Methods 

    MA30  1.78 2.46 3.71 5.61  1.02 1.18 1.38 1.67  0.59 0.66 0.70 0.72

    ES-Square 1.75 2.45 3.72 5.60  1.00 1.17 1.36 1.64  0.57 0.67 0.81 1.03

    GARCH 1.75 2.44 3.71 5.63  1.02 1.16 1.34 1.58  0.62 0.66 0.69 0.72

Robust Methods 

    ES-Absolute 1.75 2.45 3.71 5.59  1.00 1.17 1.38 1.64  0.57 0.66 0.77 0.91

    ES-Median  1.88 2.76 4.22 6.42  1.05 1.27 1.48 1.78  0.55 0.58 0.60 0.61

    ES-Winsorized 1.75 2.44 3.71 5.61  0.99 1.16 1.36 1.61  0.57 0.64 0.68 0.73

    GARCH-MedianL  2.11 2.69 3.94 5.76  1.30 1.31 1.44 1.60  0.93 0.80 0.79 0.78

    GARCH-Winsorized  1.75 2.44 3.71 5.63  1.03 1.18 1.37 1.64  0.63 0.67 0.69 0.70

STES Method 

    STES-AE 1.74 2.43 3.68 5.56 0.96 1.09 1.22 1.42 0.53 0.57 0.60 0.66

    STES-SE 1.75 2.44 3.67 5.54 0.96 1.08 1.21 1.40 0.54 0.57 0.59 0.63

Note: Bold and underline indicates best two values in each column. 

Table 2 
STES methods and their choices of transition variables  

   STES Method Transition variables 

   STES-AE |t-1| 

   STES-SE t-1
2

   STES-E&AE t-1 and |t-1|

   STES-E&SE t-1 and t-1
2

   STES-IndVol Indicator for high/low volume 

   STES-IndVol&AE Indicator for high/low volume and |t-1| 

   STES-IndVol&SE Indicator for high/low volume and t-1
2

   STES-LnVol Log volume 

   STES-LnVol&AE Log volume and |t-1| 

   STES-LnVol&SE Log volume and t-1
2
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Table 3 
RMSE (106) for 500 post-sample one-step-ahead variance forecasts for eight stock indices. 

Amsterdam Frankfurt
Hong 
Kong 

London
New 
York 

Paris Singapore Tokyo Mean Rank

Standard Methods 

   MA30 1144 1038 1544 895 1111 1092 272 1412 19.9 

   ES-Square 1115 1029 1466 875 1094 1072 268 1345 10.3 

   GARCH 1111 1025 1513 872 1099 1068 265 1326 7.8 

   GJRGARCH 1099 985 1463 849 1074 1026 262 1285 2.3 

   LSTGARCH 1115 1029 1543 875 1099 1073 267 1337 11.6 

   ESTGARCH 1118 1036 1530 876 1106 1070 265 1344 12.6 

Robust Methods 

   ES-Absolute 1115 1029 1512 876 1135 1076 267 1366 14.1 

   ES-Median 1181 1055 1466 902 1144 1076 267 1286 15.3 

   ES-Winsorized 1124 1033 1483 876 1098 1080 266 1348 14.6 

   GJRGARCH-MedianL 1123 1027 1470 932 1098 1149 280 1297 14.1 

   GJRGARCH-Winsorized 1099 987 1473 852 1082 1034 264 1302 3.9 

STES Method 

   STES-AE 1117 1024 1441 876 1096 1070 265 1361 9.3 

   STES-SE 1114 1023 1439 873 1094 1067 266 1374 7.6 

   STES-E&AE 1094 1029 1370 857 1087 1046 268 1345 5.8 

   STES-E&SE 1101 1009 1391 853 1082 1053 264 1389 5.0 

   STES-IndVol 1119 1029 1441 874 1099 1071 266 1345 9.5 

   STES-IndVol&AE 1119 1029 1467 873 1099 1072 265 1345 9.6 

   STES-IndVol&SE 1132 1029 1440 874 1099 1081 265 1346 11.4 

   STES-LnVol 1123 1029 1459 875 1091 1099 268 1345 12.0 

   STES-LnVol&AE 1114 1027 1444 873 1088 1080 266 1345 8.1 

   STES-LnVol&SE 1124 1029 1447 872 1087 1081 268 1345 10.5 

Note: Bold and underline indicates best five values in each column. 
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Table 4 
MAE (106) for 500 post-sample one-step-ahead variance forecasts for eight stock indices. 

Amsterdam Frankfurt
Hong 
Kong 

London
New 
York 

Paris Singapore Tokyo Mean Rank

Standard Methods 

   MA30 543 471 621 399 502 512 139 556 18.6 

   ES-Square 526 466 596 385 499 499 137 542 12.8 

   GARCH 518 455 599 377 500 483 138 526 10.8 

   GJRGARCH 538 435 576 388 490 464 142 509 11.0 

   LSTGARCH 535 477 626 393 506 510 145 552 18.5 

   ESTGARCH 543 494 652 394 528 496 135 566 18.1 

Robust Methods 

   ES-Absolute 528 466 606 385 518 502 137 549 14.8 

   ES-Median 549 474 593 395 522 500 139 533 16.9 

   ES-Winsorized 528 466 597 385 500 498 137 543 13.4 

   GJRGARCH-MedianL 542 416 546 324 453 444 120 485 3.1 

   GJRGARCH-Winsorized 539 468 624 387 517 505 153 569 18.5 

STES Method 

   STES-AE 491 437 563 357 465 459 132 515 4.3 

   STES-SE 502 439 566 369 473 472 135 519 6.8 

   STES-E&AE 496 466 567 356 489 460 137 540 8.5 

   STES-E&SE 489 428 555 359 481 457 134 512 4.5 

   STES-IndVol 521 464 557 377 474 492 129 534 7.0 

   STES-IndVol&AE 485 466 576 367 474 457 131 532 5.6 

   STES-IndVol&SE 487 466 561 377 474 455 133 534 5.9 

   STES-LnVol 521 465 591 385 487 479 132 542 10.3 

   STES-LnVol&AE 496 461 566 378 475 461 130 542 7.9 

   STES-LnVol&SE 489 466 563 377 474 452 132 541 6.0 

Note: Bold and underline indicates best five values in each column. 
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Table 5 
MedAE (106) for 500 post-sample one-step-ahead variance forecasts for eight stock indices. 

Amsterdam Frankfurt
Hong 
Kong 

London
New 
York 

Paris Singapore Tokyo Mean Rank

Standard Methods 

   MA30 202 187 213 153 180 214 74 201 13.0 

   ES-Square 197 191 214 149 182 207 77 202 14.5 

   GARCH 196 183 203 146 187 200 74 205 11.6 

   GJRGARCH 209 171 197 161 179 194 76 201 10.6 

   LSTGARCH 212 205 236 162 189 224 83 229 19.1 

   ESTGARCH 218 211 247 162 208 208 72 235 18.5 

Robust Methods 

   ES-Absolute 201 190 206 148 207 220 77 209 14.9 

   ES-Median 194 214 215 143 204 202 72 211 14.5 

   ES-Winsorized 204 192 205 151 184 212 72 202 14.5 

   GJRGARCH-MedianL 226 147 189 72 142 144 44 165 3.5 

   GJRGARCH-Winsorized 213 199 249 162 197 227 93 257 19.8 

STES Method 

   STES-AE 185 174 209 134 164 187 71 194 4.9 

   STES-SE 191 178 215 142 175 196 72 202 9.1 

   STES-E&AE 181 191 211 134 175 186 77 201 8.0 

   STES-E&SE 182 177 212 140 182 196 71 196 6.9 

   STES-IndVol 194 190 190 144 162 203 69 201 7.1 

   STES-IndVol&AE 188 191 201 137 162 193 67 201 5.9 

   STES-IndVol&SE 193 191 189 144 162 205 70 201 7.5 

   STES-LnVol 190 189 211 149 171 176 71 202 8.8 

   STES-LnVol&AE 188 188 216 144 167 180 67 202 7.8 

   STES-LnVol&SE 189 191 218 145 168 188 71 202 10.0 

Note: Bold and underline indicates best five values in each column. 
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Table 6 
Summary of the ranking of methods in Tables 3, 4 and 5 for the eight stock indices.  

Mean Rank 
for RMSE 

from Table 3 

Mean Rank 
for MAE 

from Table 4 

Mean Rank 
for MedAE 

from Table 5 

Mean of 
Mean Ranks 

Standard Methods 

   MA30 19.9 18.6 13.0 17.2 

   ES-Square 10.3 12.8 14.5 12.5 

   GARCH 7.8 10.8 11.6 10.0 

   GJRGARCH 2.3 11.0 10.6 8.0 

   LSTGARCH 11.6 18.5 19.1 16.4 

   ESTGARCH 12.6 18.1 18.5 16.4 

Robust Methods 

   ES-Absolute 14.1 14.8 14.9 14.6 

   ES-Median 15.3 16.9 14.5 15.5 

   ES-Winsorized 14.6 13.4 14.5 14.2 

   GJRGARCH-MedianL 14.1 3.1 3.5 6.9 

   GJRGARCH-Winsorized 3.9 18.5 19.8 14.0 

STES Method 

   STES-AE 9.3 4.3 4.9 6.1 

   STES-SE 7.6 6.8 9.1 7.8 

   STES-E&AE 5.8 8.5 8.0 7.4 

   STES-E&SE 5.0 4.5 6.9 5.5 

   STES-IndVol 9.5 7.0 7.1 7.9 

   STES-IndVol&AE 9.6 5.6 5.9 7.0 

   STES-IndVol&SE 11.4 5.9 7.5 8.3 

   STES-LnVol 12.0 10.3 8.8 10.3 

   STES-LnVol&AE 8.1 7.9 7.8 7.9 

   STES-LnVol&SE 10.5 6.0 10.0 8.8 

Note: Bold and underline indicates best five values in each column. 
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Table 7 
Composition of remaining models in the Superior Set for eight stock indices using squared forecast 
errors 

Amsterdam Frankfurt
Hong 
Kong 

London
New 
York 

Paris Singapore Tokyo 
Total 
Count 

Standard Methods 

   MA30 1 1 1 1 1 1 1 1 8 

   ES-Square 1 1 1 1 1 1 1 1 8 

   GARCH 1 1 1 1 1 1 1 1 8 

   GJRGARCH 1 1 1 1 1 1 1 1 8 

   LSTGARCH 1 1 1 1 1 1 1 1 8 

   ESTGARCH 1 1 1 1 1 1 1 1 8 

Robust Methods 

   ES-Absolute 1 1 1 1 1 1 0 1 7 

   ES-Median 1 1 1 1 1 1 0 1 7 

   ES-Winsorized 1 1 1 1 1 1 1 1 8 

   GJRGARCH-MedianL 1 1 1 1 1 1 1 0 7 

   GJRGARCH-Winsorized 1 1 1 1 1 1 0 1 7 

STES Method 

   STES-AE 1 1 1 1 1 1 1 1 8 

   STES-SE 1 1 1 1 1 1 1 1 8 

   STES-E&AE 1 1 1 1 1 1 1 1 8 

   STES-E&SE 1 1 1 1 1 1 1 1 8 

   STES-IndVol 1 1 1 1 1 1 1 1 8 

   STES-IndVol&AE 1 1 1 1 1 1 1 1 8 

   STES-IndVol&SE 1 1 1 1 1 1 1 1 8 

   STES-LnVol 1 1 1 1 1 1 1 1 8 

   STES-LnVol&AE 1 1 1 1 1 1 1 1 8 

   STES-LnVol&SE 1 1 1 1 1 1 1 1 8 
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Table 8:  
Composition of remaining models in the Superior Set for eight stock indices using absolute forecast 
errors  

Amsterdam Frankfurt
Hong 
Kong 

London
New 
York 

Paris Singapore Tokyo 
Total 
Count 

Standard Methods 

   MA30 0 0 0 0 0 0 1 0 1 

   ES-Square 0 0 0 0 1 0 1 0 2 

   GARCH 0 0 0 1 1 0 1 0 3 

   GJRGARCH 0 1 1 1 1 0 1 0 5 

   LSTGARCH 0 0 0 0 0 0 1 0 1 

   ESTGARCH 0 0 0 0 0 0 0 0 0 

Robust Methods 

   ES-Absolute 0 0 0 0 1 0 1 0 2 

   ES-Median 0 0 0 1 1 0 1 0 3 

   ES-Winsorized 0 0 0 0 1 0 1 0 2 

   GJRGARCH-MedianL 0 1 1 1 1 1 1 1 7 

   GJRGARCH-Winsorized 0 0 0 0 1 0 0 0 1 

STES Method 

   STES-AE 1 1 1 1 1 0 1 0 6 

   STES-SE 0 0 0 1 1 0 1 0 3 

   STES-E&AE 1 1 0 0 1 0 1 0 4 

   STES-E&SE 1 1 1 1 1 0 1 0 6 

   STES-IndVol 0 0 0 1 1 0 1 0 3 

   STES-IndVol&AE 1 1 0 1 1 0 1 0 5 

   STES-IndVol&SE 1 1 1 1 1 0 1 0 6 

   STES-LnVol 0 1 0 0 1 0 1 0 3 

   STES-LnVol&AE 1 1 0 0 1 0 1 0 4 

   STES-LnVol&SE 1 1 1 0 1 0 1 0 5 


