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Abstract 

Adaptive exponential smoothing methods allow smoothing parameters to change over time, in 

order to adapt to changes in the characteristics of the time series. This paper presents a new 

adaptive method for predicting the volatility in financial returns. It enables the smoothing 

parameter to vary as a logistic function of user-specified variables. The approach is analogous to 

that used to model time-varying parameters in smooth transition GARCH models. These non-

linear models allow the dynamics of the conditional variance model to be influenced by the 

sign and size of past shocks. These factors can also be used as transition variables in the new 

smooth transition exponential smoothing approach. Parameters are estimated for the method 

by minimising the sum of squared deviations between realised and forecast volatility. Using 

stock index data, the new method gave encouraging results when compared to fixed parameter 

exponential smoothing and a variety of GARCH models. 

 

Key words: volatility forecasting; adaptive exponential smoothing; smooth transition; non-linear 

GARCH. 
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1.  Introduction 

Accurate estimates of volatility are important for option pricing, portfolio analysis 

and risk management methodologies, such as value at risk. The observation that many 

financial series exhibit volatility clustering has led to the development of a great many time 

series methods for volatility forecasting. The two most popular time series approaches are 

GARCH models and smoothing methods. 

GARCH models enable statistical modelling of volatility. A recent development in 

this area has been the use of smooth transition models (see Hagerud, 1997, and González-

Rivera, 1998). These models allow a parameter to vary over time as a continuous function of 

a transition variable. The sign of past shocks has been used as a transition variable in order to 

model the asymmetry in stock return volatility, known as the “leverage effect”. This 

asymmetry is characterised by the tendency for negative returns to be followed by periods of 

greater volatility than positive returns of equal size. The size of the past shocks has also been 

used as a transition variable in order to allow a more flexible modelling of the dynamics of 

the conditional variance.  

In contrast to the statistical rigour of GARCH models, smoothing methods provide a 

pragmatic, ad hoc approach to volatility forecasting. Exponential smoothing is a popular 

approach, which has been found to perform well in empirical studies (e.g. Boudoukh et al., 

1997). It involves the allocation of exponentially decreasing weights to past squared shocks. 

Another common application of exponential smoothing is inventory control, where it is used to 

predict the level of a time series of demand. Researchers in this area have developed adaptive 

exponential smoothing methods, which allow smoothing parameters to change over time, in 

order to adapt to changes in the characteristics of the series (e.g. Trigg and Leach, 1967). This 

paper presents a new adaptive method for predicting the volatility in financial returns. It allows 

the smoothing parameter to vary as a logistic function of user-specified variables. The approach 

is analogous to that used to model the time-varying parameter in smooth transition GARCH 
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models. We propose that the same transition variables used in these models be used in the 

new smooth transition exponential smoothing method. We optimise the parameters in the 

new method by minimising the sum of squared in-sample 1-step-ahead prediction errors, 

where prediction error is defined as the difference between realised and forecast volatility. In 

our empirical work, we estimate the parameters for weekly volatility forecasting using 

realised weekly volatility calculated from daily data. 

In Section 2 we review the literature on GARCH models, including the recent work on 

smooth transition GARCH models. In Section 3 we introduce the new smooth transition 

exponential smoothing method. We describe how realised volatility can be used to estimate the 

parameters in the method, and we consider the method’s news impact curve. In Section 4 we use 

eight stock indices to compare forecasting performance of the new method to a variety of 

alternative methods. Section 5 provides a summary and concluding comments. 

 

2.  GARCH Models 

2.1.  Linear GARCH Models 

 The most popular statistical modelling approach to volatility forecasting is 

Autoregressive Conditional Heteroskedasticity (ARCH) modelling, which was introduced by 

Engle (1982). ARCH models provide estimates of the conditional variance of the return, rt, at 

time t conditional upon It-1, the information set of all observed returns up to time t-1. 

     )var( 1
2

−= ttt Irσ  

This can be viewed as the variance of an error term, εt, defined by: 

     )( 1−−= tttt IrErε  

εt is often referred to as the price “shock” or “news”. ARCH models express the conditional 

variance as a linear function of lagged squared error terms. Bollerslev (1986) extended the 

ARCH class of models to Generalised Autoregressive Conditional Heteroskedastic (GARCH) 
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models, which enables a more parsimonious representation in many applications. GARCH 

models express the conditional variance as a linear function of lagged squared error terms and 

also lagged conditional variance terms. For example, the GARCH(1,1) model is given by 

    2
11

2
11

2
−− ++= ttt σβεαωσ      (1) 

 Parameters are optimised using maximum likelihood. Although the conditional 

distribution of returns in the likelihood function is often assumed to be Gaussian, researchers 

have found this to be a poor assumption and have proposed the use of the t-distribution 

(Bollerlev, 1987) or the generalised error distribution (Taylor, 1994). 

Stochastic volatility models provide an alternative volatility modelling approach (see 

Taylor, 1994; Shephard, 1996). However, estimation of these models has proved difficult and 

consequently, they are not as widely used as ARCH models. 

 

2.2.  Non-linear GARCH Models 

A common finding in studies of financial stock returns is that negative returns tend to 

be followed by periods of greater volatility than positive returns of equal size. An 

explanation for this asymmetry is that positive and negative shocks lead to different values 

for the leverage of a firm, which in turn will result in different volatilities (Black, 1976). This 

“leverage effect” has prompted the development of a number of GARCH models that allow 

for asymmetry. These models are described as non-linear because the conditional variance is 

no longer modelled as a linear function of lagged squared error and lagged variance. The first 

asymmetric formulation was the exponential GARCH model of Nelson (1991). This model 

uses a log formulation for volatility in order to avoid the need for non-negativity parameter 

constraints. The result is that the impact of lagged squared residuals is exponential, which 

may exaggerate the impact of large shocks. A simpler attempt to accommodate the 

asymmetry is the GJRGARCH model of Glosten et al. (1993). The GJRGARCH(1,1) model 

is given by  
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where I[εt-1>0] is the indicator function, taking a value of 1 if εt-1>0 and 0 otherwise. 

Typically, it is found that α1 > γ1, which indicates the presence of the leverage effect. 

A recent development in GARCH modelling has been the use of smooth transition 

models. The essence of these models is that at least one parameter is modelled as a 

continuous function of a transition variable. Franses and van Dijk (ch. 4, 2000) provide a 

useful review of smooth transition GARCH models. The logistic smooth transition 

(LSTGARCH) model of Hagerud (1997) and González-Rivera (1998) enables a smooth 

transition between the α and γ coefficients of the lagged squared error terms in the 

GJRGARCH model. The LSTGARCH(1,1) model is given by 

      
2
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2
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2

111
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where        
)exp(1
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1
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εθ
ε       (2)       

The logistic function varies between 0 and 1, and adapts according to changes in the 

transition variable, εt-1. If θ > 0, the logistic function is a monotonically increasing function 

of εt-1. Hence, as εt-1 increases from a large negative value to a large positive value, the 

impact of εt-1
2 gradually shifts from α1 to γ1. Note that if θ is large and positive, the 

LSTGARCH model reduces to the GJRGARCH model. 

Hagerud (1997) also proposes the exponential smooth transition GARCH model 

(ESTGARCH). The ESTGARCH(1,1) model has the same formulation as the 

LSTGARCH(1,1) model, except the logistic function in expression (2) is replaced by the 

following exponential function: 

)exp(1)( 2
11 −− −−= ttF εθε      (3) 

The exponential function enables the dynamics of the conditional variance to depend 

on the magnitude of the shock. This non-linear GARCH model is symmetric with respect to 
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the sign of the error term. An exponential function is used instead of a logistic because an 

exponential allows F(εt-1) to vary between 0 and 1 as εt-1
2 varies between its extremes.  

Rabemananjara and Zakoïan (1993) argue that conditional volatility may depend on 

both the sign and the size of the shock, εt-1. They suggest that the relative impacts on 

volatility of positive and negative shocks of equal size depend on the size, so that small 

positive shocks introduce more volatility than small negative ones but large negative 

surprises exhibit the usual leverage effect and increase volatility more than positive shocks of 

equal size. To accommodate this, Fornari and Mele (1997) propose a model which involves 

switching between two GARCH(1,1) models according to the sign of εt-1. Anderson et al. 

(1999) develop this idea by proposing their ANSTGARCH(1,1) model in expression (4). 

This model involves smooth transition between GARCH(1,1) models with F(εt-1) defined as 

the logistic function in expression (2). 

))(()))((1( 2
11

2
111

2
11

2
111

2
−−−−−− +++++−= ttttttt FF σδεγυεσβεαωεσ   (4) 

 

3.  Smooth Transition Exponential Smoothing 

3.1.  Exponential Smoothing 

A simple and popular approach to volatility forecasting is to estimate the variance as a 

simple moving average of past squared shocks. Boudoukh et al. (1997) write that this estimator 

has two clear weaknesses. Firstly, if volatility clusters, there is strong appeal to giving more 

recent information greater weighting, and, secondly, the choice of how many past periods to 

include in the moving average is arbitrary. These criticisms have led many practitioners to use 

an exponentially weighted moving average of as many past squared shocks as are available. 

With a large history of observations available, the 1-step-ahead variance estimator can be 

written in the simple exponential smoothing recursive form with smoothing parameter, α: 

2
1

2
1

2 ˆ)1(ˆ −− −+= ttt σαεασ  
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Exponential smoothing is also widely used to produce forecasts for the level of a time 

series (see Gardner, 1985). Its robustness and accuracy for short-term forecasting has led to 

its widespread use in applications where a large number of series necessitates an automated 

procedure, such as demand forecasting for inventory control. Some researchers in this area 

have argued that a smoothing parameter should be allowed to change over time in order to 

adapt to the latest characteristics of the time series. For example, if there has been a level 

shift in the series, the exponentially weighted average should adjust so that the weight on the 

most recent observations increases. A variety of adaptive exponential smoothing methods 

have been developed to deal with this problem (e.g. Trigg and Leach, 1967; Williams and 

Miller, 1999). In this paper, we introduce a new adaptive method, and apply it to volatility 

forecasting. 

 

3.2.  A New Adaptive Exponential Smoothing Method 

We propose the use of a logistic function of a user-specified variable as adaptive 

smoothing parameter, and hence the method can be viewed as smooth transition exponential 

smoothing (STES). Applied to volatility forecasting, the method is formulated as follows: 

2
11

2
11

2 ˆ)1(ˆ −−−− −+= ttttt σαεασ      (5) 

where  
)exp(1

1

1
1

−
− ++

=
t

t Vγβ
α  

The smoothing parameter varies between 0 and 1, and adapts according to changes in 

the transition variable, Vt-1. As the sign and size of past shocks have been used as transition 

variables in non-linear GARCH models, we propose the use of εt-1 and |εt-1| as transition 

variables in the STES method. Although εt-1
2 was used as transition variable in the 

ESTGARCH model to represent the magnitude of the shock, there is no obvious advantage in 

using it in the STES method in favour of the simpler |εt-1|. An exponential function, similar to 

that of expression (3) for the ESTGARCH model, could be used when |εt-1| is used as 
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transition variable. However, such an exponential function would be inappropriate if εt-1 is 

used as transition variable because it would not restrict the smoothing parameter αt to lie 

between 0 and 1. For simplicity, in this paper, we use a logistic function regardless of the 

choice of transition variable. Clearly, if the data indicates that the smoothing parameter 

should be fixed, γ will be zero and the value of the fixed parameter will be set by β. 

Empirical results for the GARCH(1,1) model have shown that often β1≈(1-α1) in 

expression (1). This prompted Nelson (1990) to propose the integrated GARCH model 

(IGARCH), in which β1=(1-α1). This model has the appeal of robustness since fewer 

parameters need to be estimated. The same can be said for fixed parameter exponential 

smoothing, which has the same formulation as the IGARCH(1,1) model with the additional 

restriction that ω=0. The STES method with εt-1 as transition variable is equivalent to the 

ANSTGARCH(1,1) model of expression (4) with ω=0, α1=0, β1=1, υ=0, γ1=1 and δ1=0. 

However, this constrained formulation will not be able to capture the complex variance 

dynamics modelled by the unconstrained ANSTGARCH model, namely the different 

asymmetry for small shocks to that for large shocks. To try to overcome this, we propose the 

use of εt-1 and |εt-1| together as transition variables in the STES method. In Section 3.4, we 

plot the news impact curve for this method to gain insight into the dynamics of the method. 

First, we consider parameter estimation.  

 

3.3.  Parameter Estimation for Smooth Transition Exponential Smoothing 

As there is no statistical model underlying exponential smoothing, we are not guided 

by statistical theory in our choice of parameter optimisation approach. In the context of using 

exponential smoothing to forecast the level of a series, the forecasting literature generally 

recommends the minimisation of the sum of in-sample 1-step-ahead prediction errors 
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(Gardner, 1985). Since exponential smoothing for volatility forecasting is formulated in 

terms of variance forecasts, 2ˆ iσ , RiskMetrics (1996) suggests the following minimisation: 

( )∑ −
i

ii
222 ˆmin σε                (6) 

In this expression, the in-sample squared error, εi
2, acts as a proxy for actual variance, 

which is unobservable. However, if interested in forecasting volatility (standard deviation), 

then a more suitable objective would be to minimise squared volatility prediction error. 

Although many authors use volatility-based cost functions to evaluate volatility forecasts 

(e.g. Jorion, 1995; Xu and Taylor, 1995; Boudoukh et al., 1997), the use of a volatility-based 

cost function to estimate parameters is rare. Perhaps the reason for this is that there is no 

simple proxy for actual volatility. In view of the use of εi
2 as a proxy for variance, it is 

tempting to use |εi| as a proxy for standard deviation. However, this is unsatisfactory because 

|εi| will almost certainly be a biased estimator of the conditional standard deviation (Andersen 

and Bollerslev, 1998).  

In their work on evaluating variance forecasts, Andersen and Bollerslev (1998) show 

how higher frequency data can be used to construct realised variance, which is a better proxy 

for true variance than εi
2. This is the approach adopted by Day and Lewis (1992) who use 

daily data to calculate realised weekly variance in order to evaluate variance forecasts for 

weekly data. Indeed, many authors calculate realised volatility from daily data in order to 

evaluate longer lead time forecasts (e.g. Xu and Taylor, 1995). We propose the use of higher 

frequency data to calculate realised volatility for use, not only in forecast evaluation, but also 

in parameter estimation for exponential smoothing. This proposal amounts to the parameters 

being derived using the following minimisation: 

( )∑ −
i

iRi
2ˆmin σσ                (7) 
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where σRi is realised volatility at period i calculated from the higher frequency data. For 

example, if we are forecasting volatility for weekly data, realised weekly volatility could be 

calculated from the observations for the five trading days in the week: 

∑
= +−

=
5

1

2

5
1j

jiRi εσ                (8) 

 A similar approach is used by Barndorff-Nielsen and Shephard (2002). They show 

how the parameters of stochastic volatility models for daily data can be estimated using 

realised volatility calculated from high frequency intra-day data. They also provide a 

theoretical basis for the use of realised volatility as an estimate of true volatility, which builds 

on the empirical studies of Andersen et al. (2000, 2001a, 2001b). Diebold (2001) reports that 

high frequeny data is now readily available and is being increasingly used in finance.  

 

3.4.  News Impact Curve for Smooth Transition Exponential Smoothing 

A useful tool for summarising and comparing volatility forecasting methods is the 

“news impact curve” (NIC) of Engle and Ng (1993), which has been widely used to compare 

different GARCH models. The curve shows the impact of shocks, or news, εt-1, on the next 

period’s variance forecast, 2ˆ tσ . In this section, we compare the NIC for the STES method 

using εt-1 and |εt-1| together as transition variables (STES-E&AE) with the NIC for fixed 

parameter exponential smoothing (ES-RVOL). 

We follow the approach of Anderson et al. (1999) and produce NICs corresponding 

to parameters estimated from real data. In the next section, we compare volatility forecasting 

results for a range of methods applied to eight stock indices. In this section, for simplicity, 

we focus solely on one of these indices, the New York S&P500 index. Although chosen 

arbitrarily, the features described here for this index were also evident in the NICs for the 

other seven indices. The sample period used to estimate the NICs consisted of 1,000 trading 
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days, from 30 December 1987 to 30 October 1991. We focused on estimating volatility in 

weekly log returns. The sample period delivered 200 weekly log returns. 

We optimised the exponential smoothing parameters using the minimisation in (7) 

with realised volatility calculated from daily returns as in (8). The mean of the 200 weekly 

returns was subtracted from each of the returns prior to estimation of the parameters. All 

parameter optimisations in this paper were performed using the Newton-Raphson algorithm, 

which is the default in Gauss, the software used in this study. The estimated parameters are 

shown in expression (9) below. Obviously, since there is no statistical model underlying the 

estimation of the parameters in exponential smoothing formulations, parameter standard 

errors are not produced. This is a disadvantage of the exponential smoothing methods over 

statistical modelling approaches, such as GARCH. 

 
STES-E&AE  2

11
2

11
2 ˆ)1(ˆ −−−− −+= ttttt σαεασ  

where    
)07.1447.707.2exp(1

1

11
1

−−
− +++

=
tt

t εε
α             (9) 

 
ES-RVOL  2

1
2

1
2 ˆ893.0107.0ˆ −− += ttt σεσ  

 
 

The variance forecasts are conditional on the estimate of the previous period’s 

variance, 2
1ˆ −tσ . In constructing each NIC, we set 2

1ˆ −tσ  to be the unconditional variance of the 

200 returns. The NICs are shown in Figure 1. The x-axis extends in both directions by three 

times the unconditional standard deviation of the 200 returns.  

----------  Figure 1  ---------- 

The NIC for the STES-E&AE method exhibits the complex asymmetry discussed at 

the end of Sections 2.2 and 3.2; small positive shocks introduce slightly more volatility than 

small negative shocks, but large negative shocks increase volatility more than positive shocks 

of equal size. Figure 1 also shows that for values of εt-1 less than zero or greater than about 

0.02, the STES-E&AE NIC lies under the NIC for the ES-RVOL method, indicating that 
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STES-E&AE will often produce volatility forecasts below those from the other method. This 

cannot simply be due to the parameter estimation approach used because the ES-RVOL 

method uses the same approach. Insight can be gleaned from Figure 2, which shows the 

STES-E&AE smoothing parameter, given in expression (9), plotted against different values 

of the shock, εt-1. The plot shows that the parameter decreases as the size of the shock rises. 

This indicates that the dependence of the underlying conditional variance on the previous 

period’s squared shock is much greater for small shocks than for large. This non-linear 

dependence is the motivation for several of the non-linear GARCH models, such as the 

ESTGARCH model. The implication for the STES forecast function in expression (5) is that, 

as the size of the shock rises, the weight on εt-1
2 decreases. Figure 2 also plots the fixed 

parameter for the ES-RVOL method. The STES-E&AE smoothing parameter is larger than 

the fixed parameter only for very small shocks. In view of this, consider writing the forecast 

function of each of these two methods as a weighted sum of all past squared shocks. The 

STES-E&AE weighted sum is likely to be lower as it tends to give lower weights, than the 

ES-RVOL method, to all but the smallest of the squared shocks. This explains why the 

forecasts from the STES-E&AE method will very often be lower. 

----------  Figure 2  ---------- 

 
 
4.  Empirical Comparison of Volatility Forecasting Accuracy 

4.1.  Description of the Study 

To investigate the accuracy of the new volatility forecasting method, we carried out 

comparative analysis with fixed parameter exponential smoothing and a variety of GARCH 

models. We used stock indices from the following eight major stock markets: Amsterdam 

(EOE), Frankfurt (DAX), Hong Kong (Hang Seng), London (FTSE100), New York 

(S&P500), Paris (CAC40), Singapore (Singapore All Shares) and Tokyo (Nikkei). The 

sample period used in our study consisted of 2,000 trading days, from 30 December 1987 to 
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30 August 1995. We focused on forecasting volatility in weekly log returns. The sample 

period delivered 400 weekly log returns. 

For simplicity, in this initial study of smooth transition exponential smoothing, we 

focused solely on 1-step-ahead forecasting. We used 200 observations to estimate the 

parameters of the various forecasting methods. We carried out this procedure for 200 moving 

windows, each consisting of 200 weekly returns, to give 200 post-sample 1-step-ahead 

forecasts from each method. Franses and van Dijk (1996) also used four years of weekly 

returns to estimate parameters in their study of the accuracy of 1-step-ahead forecasts from 

non-linear GARCH models. We now present the 15 methods considered in our study. 

 

4.2.  Forecasting Methods 

GARCH Models Using Weekly Returns 

Although there are clearly many different GARCH models that we could have 

included, for reasons of practicality, we limited ourselves to the following five models, which 

were described earlier in the paper: GARCH, IGARCH, GJRGARCH, LSTGARCH and 

ESTGARCH. In a study of this nature, it is not practical to repeatedly re-specify the number of 

lags in the GARCH models. Therefore, we elected to use common specifications for all of the 

200 moving windows. Based on the analysis of an initial data set of 200 log returns for each of 

the stock index series, and in view of its general popularity, we concluded that a reasonable 

GARCH model to use for all the series was GARCH(1,1). In view of this, we also opted for 

(1,1) specifications in the other GARCH models.  

An ARMA model can be included for the conditional mean when estimating GARCH 

models. Using an initial data set of 200 log returns for each of the stock index series, we found a 

significant AR(2) term for the Tokyo index, but no significant ARMA terms for any of the other 

seven series. To ensure a legitimate comparison of volatility forecasts from the different 

methods for the Tokyo data, we analysed volatility in the residuals from the same AR(2) model. 
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This ensured that the methods would all be applied to the same error series, εt. We derived the 

ARMA and GARCH parameters from the weekly returns using maximum likelihood based on a 

t-distribution with optimised degrees of freedom. 

 

Fixed Parameter Exponential Smoothing Methods 

We implemented fixed parameter exponential smoothing using two different 

approaches. We optimised the parameter using the minimisation in (6) (ES-SQE) and the 

minimisation in (7) with realised volatility calculated from daily data as in (8) (ES-RVOL). 

We analysed initial series of 1000 observations for each of the daily returns on the eight 

indices and found autocorrelation in the Hong Kong, Singapore and Tokyo indices. In view 

of this, we fitted ARMA models to these three indices and used the resultant errors to 

calculate the realised volatility. We calculated realised volatility in the same way for these 

three indices throughout this study. 

 

Smooth Transition Exponential Smoothing 

We implemented the STES method for three different choices of transition variables: 

εt-1 (STES-E), |εt-1| (STES-AE), and εt-1 and |εt-1| together (STES-E&AE). We optimised the 

STES parameters using the minimisation in (7) with realised volatility defined as in (8). 

 

GARCH Models Using Daily Returns 

 As daily data is available, the GARCH models could be estimated using daily returns. 

The forecast for the volatility over a five day holding period would then serve as a forecast 

for weekly volatility. We implemented this approach for the following three models: 

GARCH(1,1), IGARCH(1,1) and GJRGARCH(1,1). We refer to these as DAILYGARCH, 

DAILYIGARCH and DAILYGJRGARCH. The appropriate frequency of data to use when 

forecasting volatility for any period is an interesting research issue. With the availability of 
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high frequency data, one could even argue that weekly volatility should not be estimated 

from weekly or daily returns but, instead, one should go to a much higher frequency, such as 

the five minute data used by Barndorff-Nielsen and Shephard (2002). 

 

Autoregressive Models for Realised Volatility 

 Andersen et al. (2003) show how daily exchange rate volatility can be forecasted by 

fitting long-memory, or fractionally-integrated, AR and VAR models to the log of realised 

daily volatility constructed from half-hourly returns. We included this method in our weekly 

volatility forecasting study, using daily returns to construct the realised weekly volatility. 

Following Andersen et al. (2003), we applied a long-memory filter to the log of realised 

weekly volatility, and then fitted an AR(5) model to the filtered data. We estimated the 

degree of fractional integration, d, for each moving window of 200 returns using the Geweke 

and Porter-Hudak (1983) log-periodogram regression estimator. We term this long-memory 

AR modelling of realised volatility the RV-LMAR method.  

The estimated values of d tended to be significantly different from zero and 0.5 for 

half of the eight indices, indicating long-memory stationarity. For one index, d was generally 

not significantly different from zero, indicating stationarity, and for the remaining three 

indices, d was not significantly different from 0.5, implying non-stationarity. These mixed 

results and the sizeable standard errors for d of about 0.08, suggest that this approach would 

be more suited to longer time series. Another reason for concern regarding this method was 

that we found far greater variability in our realised (weekly) volatility than that described by 

Andersen et al. (2003) in their realised (daily) volatility. This is not surprising, given that our 

realised (weekly) volatility was constructed from just five (daily) returns, whilst their (daily) 

realised volatility was calculated from 48 (half-hourly) returns. In view of this, we also fitted 

AR(5) models to the log realised volatility without the long-memory filter. We term this 

method RV-AR.  



 15

4.3.  Post-Sample Forecasting Results 

Tables 1 and 2 summarise volatility forecasting performance for the 200 post-sample 

periods with realised weekly volatility used as proxy for actual volatility. The root mean 

squared error (RMSE) in Table 1 is calculated as follows: 

RMSE = ( )∑
=

−
200

1

2ˆ
200
1

i
iRi σσ  

We calculated the realised weekly volatility, σRi, using the observations from the five 

trading days in the week, as in expression (8). The values in bold in each column of the table 

indicate the best performing method for each index. To summarise the relative performances of 

the methods across the eight series, in the final column of Table 1, we show the mean value of a 

Theil-U measure calculated for each series as the ratio of the RMSE for that method to the 

RMSE for the STES-E&AE method. This measure has been suggested by Poon and Granger 

(2002). Lower values of the measure are better. Table 2 reports the coefficient of 

determination, R2, from the regression of realised volatility on the post-sample volatility 

forecasts. The regression corrects for forecast bias and so the R2 reflects the prediction error 

variance component of the RMSE (see Taylor, 1999a). The R2 can also be viewed as a measure 

of the informational content of the volatility estimator. The values in bold in each column of the 

table indicate the best performing method for each index. To summarise the relative 

performances of the methods across the eight series, in the final column of Table 2, we show the 

average ranking of each method. 

----------  Tables 1 and 2  ---------- 

Overall, the IGARCH and GJRGARCH models were the best performing of the five 

GARCH models estimated using weekly returns. The IGARCH performance indicates that there 

is value in imposing the constraint β1=(1-α1) on the GARCH(1,1) formulation in expression 

(1). The GJRGARCH results confirm the belief that there is a sizeable leverage effect in stock 

returns. The results for the LSTGARCH and ESTGARCH model are disappointing, suggesting 
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that they are no better than the linear GARCH model for 1-step-ahead forecasting. The GARCH 

models, estimated using weekly data, did not outperform exponential smoothing with fixed 

parameter estimated from the same data (ES-SQE). Statistically sophisticated methods have also 

failed to outperform exponential smoothing in various competitions comparing the accuracy of 

forecasts for the level of a series (e.g. Makridakis and Hibon, 2000). Interestingly, the 

GJRGARCH(1,1) model estimated using daily returns (DAILYGJRGARCH) outperforms all 

five GARCH models estimated using weekly returns. The extra information supplied by the 

higher frequency data is clearly beneficial for the GJRGARCH model. 

The results were mixed for the autoregressive modelling of realised volatility, inspired 

by Andersen et al. (2003). The long-memory RV-LMAR method performed poorly, particularly 

in respect of the R2 measure. As we discussed in Section 4.2, this method is probably more 

suited to longer series and higher frequency data. By contrast, the simpler AR modelling of log 

realised volatility, the RV-AR method, performed very well in terms of RMSE and quite 

competitively in terms of the R2 measure. 

The results in Tables 1 and 2 for the STES-E method are similar to those for the two 

fixed parameter exponential smoothing methods. The case for the other two smooth transition 

exponential smoothing methods is more convincing. Using εt-1 and |εt-1| together as transition 

variables (STES-E&AE) was more successful than using just |εt-1| (STES-AE). The STES-

E&AE method has the best R2 mean rank in Table 2, and has jointly the best mean Theil-U 

measure for the RMSE results in Table 1. It is important to note that the high performance of the 

STES-E&AE method cannot simply be the result of the parameter estimation approach because 

the method comfortably outperforms the ES-RVOL method, which uses the same approach. 

It could be argued that, by using realised volatility calculated from daily returns in the 

evaluation measures, the GARCH methods, estimated using weekly returns, are at a 

disadvantage. For completeness, in Tables 3 and 4, we show how the methods perform when 
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variance is evaluated using εi
2 as a proxy for actual variance in week i. RMSE in Table 3 was 

calculated as follows: 

RMSE = ( )∑
=

−
200

1

222 ˆ
200
1

i
ii σε  

----------  Tables 3 and 4  ---------- 

 While there is little to choose between the methods in Table 3, the relative performances 

of the methods in Table 4 are broadly similar to those in Tables 1 and 2. One point to note is 

that, in Tables 3 and 4, as one might have expected, the performances of the GARCH models 

estimated using weekly returns, relative to the same models estimated using daily observations, 

has improved from that in Tables 1 and 2. We also evaluated the variance forecasts using 

realised variance, calculated from daily returns, as a proxy for actual variance in the calculation 

of the evaluation measures. We do not report the results here because the relative performances 

of the methods were similar to that shown in Tables 1 to 2 for realised standard deviation. 

 We have used |εt-1| as transition variable in the STES method because it is the simplest 

representation of the magnitude of the previous period’s shock. However, we should point out 

that using εt-1
2, instead of |εt-1|, led to similar volatility forecasting accuracy. 

 

5.  Summary and Conclusion 

Exponential smoothing is a popular, pragmatic approach to volatility forecasting. In 

this paper, we have introduced a new smooth transition exponential smoothing method that 

uses a logistic function as adaptive smoothing parameter. We propose the use of εt-1 and |εt-1| 

as transition variables in order to try to replicate the conditional variance dynamics of the 

smooth transition GARCH models. We propose that parameters for the method be estimated 

by minimising the sum of squared deviations between realised and forecast volatility. In our 

work, we estimated the parameters for weekly volatility forecasting using realised weekly 

volatility calculated from daily data. With the increasing availability of high frequency data, 
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intra-day data can be used to calculate realised daily volatility for use in the estimation of 

parameters for daily volatility forecasting.  

Using eight stock indices, we compared the accuracy of weekly volatility forecasts 

from the new approach to fixed parameter exponential smoothing, a range of GARCH 

models and autoregressive models for realised volatility. The results were very encouraging 

for the new smooth transition exponential smoothing method with εt-1 and |εt-1| together as 

transition variables. The news impact curve for this method shows the complex asymmetric 

behaviour initially suggested by Rabemananjara and Zakoïan (1993); small positive shocks 

introduce more volatility than small negative ones, but large negative surprises exhibit the 

usual leverage effect by increasing volatility more than positive shocks of equal size. Another 

method that performed very well in the empirical comparison was an AR model for log 

realised volatility, which was inspired by the recent work of Andersen et al. (2003). 

In this introductory paper, we have focused solely on 1-step-ahead forecasting. An 

interesting issue for further research is multi-step-ahead forecasting from the new STES 

method. Franses and van Dijk (p. 194, 2000) note that for some non-linear GARCH models, 

such as ESTGARCH, analytic expressions for the multi-step-ahead conditional variance 

forecast do not exist, in which case simulation must be used to generate the forecasts. 

Analytic expressions also do not exist for smooth transition exponential smoothing when |εt-1| 

or εt-1
2 are used as transition variables. With fixed parameter exponential smoothing, a 

popular approach to forecasting volatility over a k-period holding period is to multiply the 1-

step-ahead forecast by k½. However, a number of authors have warned against this (e.g. 

Diebold et al., 1998), showing that it can often substantially misestimate the volatility. An 

alternative is to adapt the nonparametric methods of Taylor (1999b, 2000) to find a more 

appropriate inflationary factor than k½. 
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Figure 1:  News impact curves for smooth transition exponential 
smoothing (STES-E&AE) and fixed parameter exponential smoothing 
(ES-RVOL) applied to 200 weekly log returns of the S&P 500 index. 
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Figure 2:  Smoothing parameter for smooth transition exponential smoothing 
(STES-E&AE) and fixed parameter exponential smoothing (ES-RVOL) 

applied to 200 weekly log returns of the New York S&P 500 index. 
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Table 1: RMSE for 200 post-sample weekly volatility 
forecasts using realised volatility as actual. 

 
 
 
 

 
 

Table 2: R2 for 200 post-sample weekly volatility forecasts  
using realised volatility as actual. R2 values are percentages. 

Amsterdam Frankfurt Hong Kong London New York Paris Singapore Tokyo Mean Theil

GARCH 0.77 0.86 1.52 0.89 0.66 0.90 1.09 1.44 1.14

IGARCH 0.72 0.88 1.52 0.85 0.66 0.88 1.05 1.34 1.10

GJRGARCH 0.73 0.88 1.52 0.85 0.66 0.88 1.05 1.35 1.11

LSTGARCH 0.75 0.87 1.54 0.87 0.66 0.90 1.07 1.48 1.13

ESTGARCH 0.87 0.93 1.75 0.88 0.67 0.97 1.21 1.45 1.22

DAILYGARCH 0.69 0.78 1.56 0.74 0.61 0.88 1.03 1.39 1.06

DAILYIGARCH 0.73 0.81 1.77 0.76 0.60 0.97 1.04 1.39 1.10

DAILYGJRGARCH 0.69 0.78 1.53 0.73 0.58 0.87 0.98 1.31 1.03

RV-LMAR 0.68 0.86 1.75 0.75 0.59 0.92 0.93 1.57 1.09

RV-AR 0.64 0.72 1.61 0.71 0.57 0.88 0.86 1.32 1.00

ES-SQE 0.72 0.81 1.65 0.85 0.63 0.90 0.98 1.43 1.10

ES-RVOL 0.75 0.82 1.54 0.86 0.62 0.94 0.96 1.44 1.10

STES-E 0.76 0.82 1.53 0.80 0.62 0.94 0.97 1.38 1.09

STES-AE 0.67 0.76 1.54 0.75 0.58 0.91 0.90 1.40 1.03

STES-EAE 0.65 0.76 1.45 0.73 0.57 0.91 0.85 1.35 1.00

Amsterdam Frankfurt Hong Kong London New York Paris Singapore Tokyo Mean rank

GARCH 9.4 10.6 22.1 2.8 5.2 3.3 7.5 24.9 9.0

IGARCH 12.7 10.4 20.1 0.9 4.6 7.1 7.6 30.7 7.8

GJRGARCH 12.1 11.0 20.4 1.1 4.9 7.2 7.8 29.2 7.4

LSTGARCH 8.6 8.5 20.0 0.4 5.4 2.9 6.6 24.2 11.5

ESTGARCH 8.7 10.8 9.7 0.6 6.7 3.2 8.0 27.2 9.4

DAILYGARCH 6.9 14.7 14.5 9.8 6.1 4.4 12.4 28.2 7.1

DAILYIGARCH 8.3 15.7 15.6 8.4 6.6 3.8 17.4 28.6 5.3

DAILYGJRGARCH 6.5 14.8 17.0 11.6 6.7 5.7 15.4 29.3 5.3

RV-LMAR 2.7 9.6 5.5 1.7 3.9 0.5 0.1 1.9 14.1

RV-AR 6.8 17.1 15.2 12.8 4.4 3.4 11.7 30.1 7.3

ES-SQE 7.3 11.0 11.3 0.7 6.0 3.4 8.5 23.4 10.1

ES-RVOL 7.8 13.9 26.1 0.0 6.0 3.1 13.0 29.3 7.6

STES-E 7.0 13.7 20.8 6.4 5.9 2.8 11.9 33.0 7.3

STES-AE 9.6 14.4 17.6 4.6 6.5 2.1 8.2 31.7 6.9

STES-EAE 11.1 14.8 24.7 8.2 6.3 3.2 14.6 33.0 4.1
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Table 3: RMSE for 200 post-sample weekly variance forecasts 
using εi

2 as actual. RMSE values have been multiplied by 106. 
 
 
 
 
 

 
 

Table 4: R2 for 200 post-sample weekly variance forecasts 
using εi

2 as actual. R2 values are percentages. 

Amsterdam Frankfurt Hong Kong London New York Paris Singapore Tokyo Mean Theil

GARCH 530 735 2255 889 398 793 624 2107 1.00

IGARCH 533 737 2231 884 404 784 625 2023 1.00

GJRGARCH 531 735 2233 887 403 784 623 2025 1.00

LSTGARCH 527 742 2266 885 399 793 626 2141 1.01

ESTGARCH 552 746 2307 882 398 811 655 2118 1.02

DAILYGARCH 529 725 2323 878 387 791 671 2089 1.01

DAILYIGARCH 536 733 2507 885 386 817 749 2097 1.04

DAILYGJRGARCH 530 724 2321 877 385 783 653 2073 1.00

RV-LMAR5 536 748 2362 895 389 825 637 2180 1.02

RV-AR5 535 730 2318 890 390 808 627 2083 1.01

ES-SQE 521 731 2280 882 391 800 620 2105 1.00

ES-RVOL 529 738 2332 887 394 809 625 2153 1.01

STES-E 531 739 2269 887 394 811 622 2119 1.01

STES-AE 525 738 2277 892 390 813 628 2135 1.01

STES-EAE 527 735 2255 889 388 809 623 2091 1.00

Amsterdam Frankfurt Hong Kong London New York Paris Singapore Tokyo Mean rank

GARCH 0.6 0.1 1.9 1.5 1.3 0.1 1.7 7.1 8.5

IGARCH 0.3 1.2 3.0 0.1 0.7 1.8 1.3 11.9 7.4

GJRGARCH 0.4 1.4 2.9 0.3 0.7 1.7 1.5 11.8 6.3

LSTGARCH 0.5 0.0 1.5 0.6 1.2 0.1 0.9 6.4 11.8

ESTGARCH 0.5 0.2 0.3 1.3 2.2 0.1 2.1 6.9 9.1

DAILYGARCH 0.0 0.8 0.6 0.9 3.0 1.2 0.7 7.0 8.9

DAILYIGARCH 0.2 0.9 0.5 0.3 3.2 1.2 1.4 6.7 8.8

DAILYGJRGARCH 0.0 1.0 0.8 1.3 3.7 2.3 1.1 7.9 7.3

RV-LMAR5 0.2 1.3 1.5 0.1 1.6 0.9 0.0 1.3 10.1

RV-AR5 0.2 1.9 2.3 0.8 1.5 0.7 3.3 9.3 5.6

ES-SQE 1.0 0.3 0.9 1.6 2.3 0.1 1.3 6.5 8.1

ES-RVOL 0.8 0.3 2.2 1.8 1.6 0.3 2.9 6.8 6.5

STES-E 0.7 0.2 2.0 0.0 1.5 0.2 3.0 8.3 8.4

STES-AE 1.1 0.2 2.3 0.1 2.2 0.1 1.3 8.1 8.4

STES-EAE 1.1 0.7 3.2 0.3 2.3 0.4 2.8 8.7 5.0


