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A Strategic Predictive Distribution for Tests of Probabilistic Calibration

Abstract

Forecasts of probability distributions are needed to support decision making in many
applications. The accuracy of predictive distributions should be evaluated by maximising
sharpness subject to calibration. Sharpness relates to the concentration of the predictive
distributions, while calibration concerns their statistical consistency with the data. This paper
focuses on calibration testing. It is important that a calibration test cannot be gamed by forecasts
that have been strategically designed to pass the test. The widely-used tests of probabilistic
calibration for predictive distributions are based on the probability integral transform. Drawing
on previous results for quantile prediction, we show that strategic distributional forecasting is
a concern for these tests. To address this, we provide a simple extension of one of the tests. We

illustrate ideas using simulated data.

Key words: Predictive Distributions; Calibration Testing; Probability Integral Transform;

Strategic Forecasting.



1. Introduction

Forecasts of probability distributions are needed to support decision making in many
applications. For example, predictive distributions are needed for macroeconomic variables to
inform policy making (Proietti et al., 2017), and for weather variables to reduce the impact of
extreme weather on society (Berrocal et al., 2010). Forecasts of distributions provide
predictions of quantiles and other functionals, which are needed, for example, in financial risk
management (Nieto and Ruiz, 2016), energy trading (Gianfreda and Bunn, 2018), and for
setting safety stock in supply chains (Kolassa, 2016).

The aim of distributional forecasting is to maximise sharpness subject to calibration
(Gneiting et al., 2007). Sharpness relates to the concentration of the predictive distributions,
while calibration concerns their statistical consistency with the data. If a predictive distribution
is calibrated, randomly sampled values from it will be indistinguishable from the observations
(Gneiting and Katzfuss, 2014). A scoring rule summarises calibration and sharpness, and is
proper if minimised when the forecast is the true distribution. Proper scoring rules encourage
honest reporting by forecasters (Gneiting and Raftery, 2007). While scores enable forecasters
to be ranked, calibration tests can provide insight leading to improved accuracy.

Quantile forecasts are also evaluated in terms of scores and calibration tests. A
consistent quantile score is one that is minimised by the true quantile. A forecast of the «
quantile is conditionally calibrated if the conditional probability of an observation falling below
the forecast is equal to «. A binary variable, indicating exceedance, should have no
autocorrelation, and a mean of «, and this has been the focus of calibration tests. However,
Engle and Manganelli (2004) present a quantile forecast that, although very poor, is able to
pass such a test. It can be viewed as a dishonest forecaster that has strategically manipulated
the forecasts in order to pass the test. Just as consistency is necessary for a quantile score to

ensure honest reporting, calibration tests should not permit strategic behaviour. Engle and



Manganelli (2004) provide a regression-based test that cannot be gamed by their strategic
forecasts. Strategic forecasting has also been considered in a variety of other settings (see, for
example, Olszewski, 2015; Ottaviani and Sgrensen, 2006; Lichtendahl et al., 2013).

We show that strategic forecasting is a concern for the widely-used calibration tests for
predictive distributions, including the regression-based test of Berkowitz (2001). To overcome
this, we draw on the work of Engle and Manganelli (2004) for quantiles to propose an
augmented version of the test of Berkowitz (2001), which simply involves the inclusion of an
additional regressor in the test. This new test has similarities to a calibration test proposed by
Tsyplakov (2014).

We acknowledge that strategic probabilistic forecasts are likely to be exposed as very
poor by a visual check. However, a visual check is often not performed. For example, it is
impractical when there are many methods or time series, which is typically the case in
forecasting competitions. We also acknowledge that strategic forecasts are likely to perform
relatively poorly in terms of commonly-used scores. However, there are several reasons why
it remains a concern that a calibration test can be gamed. First, comparing forecasting methods
may involve a trade-off between the results of a calibration test and a score, and so a seemingly
calibrated strategic forecasting method may be viewed as dominating a competitor that has a
better score but fails the calibration test. In fact, with best practice being to maximise sharpness
subject to calibration, a method that fails a calibration test should not really be considered
further. Second, predictive distributions are sometimes evaluated using only calibration. This
may be due to the focus being on model specification (Rossi and Sekhposyan, 2014), or it could
be due to tradition, the intuitive simplicity and informative nature of calibration tests, or
computational reasons. Third, a method that has strategic behaviour to some extent, or for some
of the time, may be competitive in terms of both a calibration test and score.

Section 2 lays the foundation for the paper by discussing calibration testing for quantile

forecasts. Section 3 shows how the widely-used calibration tests for predictive distributions



can be gamed, and presents a simple extension of the test of Berkowitz (2001) to address this

problem. Section 4 uses simulated data to illustrate the ideas.

2. Calibration Testing for Quantile Forecasts

A forecast of the a quantile g,(«) is calibrated if the probability of an observation y;
falling below the forecast is equal to «. More formally, consider the variable
Hit, =a — (Y, < G, («)) , where §,(«) is the forecast and I(:) is the indicator function. ¢, («)
is unconditionally calibrated if Hit, has zero unconditional expectation, and is conditionally
calibrated if Hit, has zero conditional expectation, conditional on information available at time
t-1 (Nolde and Ziegel, 2017).

Unconditional calibration implies that the proportion of observations falling below the
quantile forecasts is a. Deviations from this provide insight into how to improve the forecasts.
However, one can “game the system” to achieve unconditional calibration by using forecasts
equal to unattainably high and low values for proportions « and 1-«, respectively, of the
observations. Conditional calibration implies that Pr(yt Sqt(a)):a. Christoffersen (1998)

presents a likelihood ratio test for conditional calibration, which amounts to testing whether

Hit, has zero mean and no autocorrelation. However, Engle and Manganelli (2004) introduce
the strategically designed quantile forecast of expression (1), which is clearly very poor, but
passes this test for any data generating process (DGP).

TR A @)

At and By are values chosen to be above and below the range of possible values for yt; and the

vt are independent Bernoulli trials, each with probabilities of o and 1-« for outcomes 1 and 0,

respectively. Christoffersen’s (1998) test is passed because Hit: has zero mean and no

autocorrelation. However, ¢’ (a) is not conditionally calibrated because the conditional



expectation of Hit, is not 0, and this can be seen by noting that, once ¢;(c) is known, the
value of Hit, is known.

To address the strategic quantile forecast of expression (1), Engle and Manganelli
(2004) develop the dynamic quantile test. This test uses a regression framework to perform a

joint test of whether Hit, has zero mean, no autocorrelation, and is independent of the quantile
forecast ¢, («) . Using Hit,_, and §,(a) as regressors, the test’s regression is:

Hit, =c + p, Hit_, + p,§, (o) + &, , (2)
where & is a discrete i.i.d. process. Engle and Manganelli (2004) present a 2 test for the null
hypothesis of c=0 and pi=0 for all i, which implies conditional calibration. For the strategic
forecast of expression (1), p2=0 would be rejected. Pelletier and Wei (2016) suggest that the
quantile forecast could be used as the sole regressor in expression (2), because a quantile

forecast that reacts too slowly to changing features of the time series will be informative about

the probability of the quantile forecast being exceeded.

3. Calibration Testing for Predictive Distributions
In this section, we first provide a brief review of calibration testing, including the
widely-used test of Berkowitz (2001). After showing that this test can be gamed, we present an

augmented test to overcome this problem.

3.1. Established Tests for Calibration of a Predictive Distribution

The probability integral transform (PIT) is the value of the predictive distribution Ift at
the observation y:. It is computed as p, = R(y,), and this is illustrated in Fig. 1. Rosenblatt

(1952) observes that a necessary condition for Ift to be a correct forecast is that the PIT is i.i.d.

U(0,1). In view of this, Diebold et al. (1998) propose that predictive distributions are evaluated



by testing the PITs, and that for some applications a pragmatic approach is sufficient, involving
just a visual check for uniformity of the histogram of PITs and an inspection of correlograms

of the PITs. Gneiting et al. (2007) explain that, for the histogram, a hump shape indicates that

A

F, is, on average, too wide, a U-shape is indicative of Ift being too narrow, and a triangular-

shape implies that Ift is biased. Calibration can, therefore, provide insight into how a predictive

distribution can be improved.

Fig. 1. Generation of the PIT p; for observation y; and predictive distribution F, .

Gneiting et al. (2007) describe different forms of calibration for a predictive
distribution. Uniformity of the PITs is defined as probabilistic calibration. Tsyplakov (2011,
2014) explains that definitions of calibration should be clear in terms of conditioning. If an
unconditional test is used for the uniformity of the PITs, such as a Kolmogorov-Smirnov test,
this would be described as a test for unconditional probabilistic calibration. The definition of
full probabilistic calibration has the additional requirement that the PITs are independent of
information used to produce the forecast, which prompts conditional tests of calibration.
Related to this, Mitchell and Wallis (2011) emphasise the importance of testing the
independence of the PITs. They define complete calibration as the case where the PITs are
both uniform and independent. In their empirical analysis, they use a Ljung-Box test for
autocorrelation in the PITs, as well as the well-established calibration test of Berkowitz (2001).

Berkowitz’s (2001) test involves first transforming the PITs to give z, = ®*(p, ), where



® is the standard normal distribution function. The following regression is then performed?:
Z,=C+p,z,,+¢,. (3)
If the PITs are i.i.d. U(0,1), c and p1 will be zero, and & will be Gaussian with var(e)=1.
Berkowitz (2001) tests these conditions using a likelihood ratio test. The advantage of
transforming the PITs to the variable z; is that there are more tests available to test for normality
than uniformity, it is easier to test for autocorrelation under normality than uniformity, and the
likelihood ratio test can be based on the commonly used normal likelihood function (Mitchell
and Wallis, 2011). As the test of Berkowitz (2001) only has power to test normality through
the mean and variance, an additional test for normality should also be performed (see, for
example, Proietti et al., 2017). Bao et al. (2007) relax the Gaussian assumption in the test by
using a semi-parametric distribution that nests the normal distribution as a special case.
Berkowitz (2001) discusses how the test can be extended to examine higher-order or
nonlinear dependence by including additional regressors, and this is considered in the empirical
study of Mitchell and Wallis (2011). Clements (2004) describes a version of the Berkowitz
(2001) test that can be used to test for unconditional probabilistic calibration when the PITs are
potentially serially correlated. For this, the null hypothesis is ¢=0 and var(&)=(1-p12), which
implies that var(z;)=1. In a similar vein, Kniippel (2015) and Rossi and Sekhposyan (2019)
present tests of unconditional probabilistic calibration that are robust to potential serial
correlation in the PITs. Such serial correlation is likely when dealing with multi-step-ahead
prediction, and this is the motivation of Kniippel (2015) who proposes a test based on the raw
moments of the standardised PITs. Rossi and Sekhposyan (2019) present a new form of

goodness-of-fit test for the distribution of the PITs.

! The parameters are estimated by maximising the log-likelihood presented in Appendix 1.



3.2. Gaming the Tests for Calibration of a Predictive Distribution

Hamill (2001) and Gneiting et al. (2007) provide examples of DGP’s for which there
exist relatively poor predictive distributions that have PITs that are U(0,1). As these DGP’s
contain no time series dynamics, the PITs are in fact i.i.d. U(0,1), and so it is clear that, although
the PITs being i.i.d. U(0,1) is a necessary condition for forecast adequacy, it is not a sufficient
condition. However, Mitchell and Wallis (2011) argue that the DGP’s used in these examples
bear little resemblance to the type of data typically seen in time series forecasting applications.
In this section, we do not contribute to this particular debate, but instead show that, regardless
of the DGP, it is possible to produce predictive distributions that are clearly very poor, but that
can “game the system” to pass tests of probabilistic calibration, such as the Berkowitz (2001)

test, as well as simpler tests for independence and uniformity of the PITs.

Consider the following new strategic predictive distribution Ifts and corresponding

strategic (discrete) density forecast ﬂs, which are produced in period t-1:

X 0 y < B,
Fe(y)=4u B <y<A 4)
1 A<y
R U, y= Bt
fts(y): 1_ut y= Ac (5)
0 otherwise

where At and Bt are unattainable upper and lower bounds for the observation yt; and ut is a value
sampled independently each period from U(0,1). IftS and fts are shown in Figs. 2 and 3,

respectively. We discuss the practical issue of choosing A: and By later in this section. We
acknowledge that it is perhaps a strange choice of predictive distribution, but we should
emphasise that we have chosen it with the specific strategic aim of “gaming” tests for

probabilistic calibration, such as the Berkowitz (2001) test.
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Fig. 2. Strategic predictive distribution F* of expression (4).
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Fig. 3. Strategic (discrete) density forecast f° of expression (5).
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Fig. 4. Generation of the PIT for observation y; and the strategic predictive distribution F° of
expression (4).

As the PIT is the value of the predictive distribution at the observation vy, for the
strategic predictive distribution of expression (4), the PIT is equal to ut, regardless of the value
of yt, and this is illustrated in Fig. 4. As the u; are generated as i.i.d. U(0,1), it follows that the
PITs will be i.i.d. U(0,1). Therefore, the PITs for the strategic predictive distribution will pass
tests of probabilistic calibration, including the Berkowitz (2001) test of expression (3).
Although our strategic predictive distribution may not pass a visual check, as we said in Section
1, it remains a concern that a strategic predictive distribution exists that will pass probabilistic

calibration tests, regardless of the DGP.
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We acknowledge that if y: has unbounded support, unattainable upper and lower bounds
cannot be found. However, in finite samples, it is likely that extreme values can be chosen for
At and B that will be exceeded with very low probability, making it virtually impossible to
reject the null hypothesis of correct calibration.

Consider also a forecaster who has an accurate forecast for only the mean . We denote

this prediction as i, . For this situation, it is straightforward for the forecaster to produce a
predictive distribution that has mean i, , and that passes the Berkowitz (2001) test. This is

achieved using the strategic predictive distribution of expression (4), with A and Bt defined as
unattainable upper and lower bounds that satisfy the following expression:

uB +(1-u)A =1. (6)

PIT values of 0 or 1 are problematic because they cannot be transformed using the

standard normal distribution, prior to the application of the Berkowitz (2001) test. To avoid

PIT values of 0 or 1 in our simulation study, we replaced the strategic predictive distribution

of expression (4) with the following strategic predictive distribution, which is a mixture of

Gaussian distributions:

F(y)=uR™* (y)+(1-u)R (y) (7)
where R (y) and F* () are Gaussian distributions with low variance and means equal to At

and B, respectively. An example of this strategic predictive distribution is presented in Fig. 5,
which shows that the distribution is similar to the strategic predictive distribution of expression

(4) and Fig. 2.
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U, /
O Bt At
Fig. 5. Strategic predictive distribution F* of expression (7).

In our simulation study, we chose At and B as in the following expressions:
A=A=pa,+ko,
B, =B=p,-ko,
where £, and ¢, are the mean and standard deviation of the in-sample observations, and k is

a constant factor. We selected k=100, which according to the Chebyshev inequality, implies
that at least 99.99% of the observations will fall between A: and B:. For common sizes of out-
of-sample periods, this percentage is likely to be large enough to ensure that statistical tests

will not have sufficient power to reject the null hypothesis of correct calibration. For the

Gaussian distributions, F* (y) and F® () in expression (7), which are centred at At and B,

respectively, we set the standard deviation to be 0.01 multiplied by &, .

3.3. Augmenting the Berkowitz Test to Address Strategic Prediction

The strategic predictive distributions of expressions (4) and (7) pass the Berkowitz
(2001) test because it tests only for the PITs being i.i.d. U(0,1), when ideally the PIT in period
t should also be independent of all information known in period t-1, the forecast origin. This is
not the case for the PIT from the strategic predictive distributions because they are dictated by
ut, which is generated in period t-1, and, as shown in Fig. 4, ut is also the PIT.

In Section 2, the need to ensure independence of all information available at the forecast

origin was also apparent for quantile conditional calibration testing. In Engle and Manganelli’s
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(2004) regression-based test of expression (2), their strategic quantile forecast was exposed as
poor by including the forecast itself as a regressor. Similarly, for a predictive distribution, the
PIT should be independent of the distributional forecast. In view of this, and given the form of
the strategic predictive distributions of expressions (4) and (7), we propose the inclusion of the
median or skewness of the distributional forecast as an additional regressor in the Berkowitz
(2001) test. The following expression presents the test’s regression model, augmented with the
median? M, of the predictive distribution to give an augmented Berkowitz test®:

Z, =C+ pz, 1+ p,M, +&,. (8)
For a calibrated distributional forecast, c=0, p1=0, p2=0, var(e&)=1, and & will be Gaussian.
Following Berkowitz (2001), a likelihood ratio test can be used to test for these conditions,
along with a test for normality. For the strategic predictive distributions of expressions (4) and
(7), a relatively high value of the median (or large negative skewness) will correspond to a
relatively low value of the PIT, and a relatively low median (or large positive skewness) will
correspond to a relatively high PIT. This implies that the hypothesis p2=0 will be rejected,
revealing the strategic predictive distribution as being of poor quality.

The ideas in this paper relate closely to the work of Tsyplakov (2011, 2014)*. As we
mentioned in Section 3.1, he formalises definitions of calibration, emphasising the need to be
clear about conditioning. He explains that probabilistic calibration requires that the PITs are
uniformly distributed and are independent of the information used to produce the forecast. The
strategic predictive distributions that we have presented are probabilistically calibrated.
However, they are not auto-calibrated. A predictive distribution is defined by Tsyplakov

(2011, 2014) to be auto-calibrated if the PITs are uniform and independent of the information

2 As the predictive distribution is a one step-ahead forecast, m

the median at time t.
3 The parameters are estimated by maximising the log-likelihood presented in Appendix 2.
* We are grateful to a reviewer for drawing our attention to the papers of Tsyplakov (2011, 2014).

is a forecast produced at time t-1 for

t
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used to produce the predictive distribution as well as the predictive distribution itself. The test
of Berkowitz (2001) only tests a “necessary condition of sequential auto-calibration”
(Tsyplakov, 2014). The augmented Berkowitz test that we have proposed is a test for auto-
calibration, because it uses information from the forecast itself. Interestingly, it has similarities
to a test for auto-calibration considered by Tsyplakov (2014), which essentially involves a test
of whether the PIT is correlated with the mean of the predictive distribution. We note that, in
the augmented Berkowitz test regression of expression (8), the mean should not be used instead
of the median, because this could be “gamed” using the strategic predictive distribution
discussed in relation to expression (6).°

We should point out that it would be too bold to claim that the augmented Berkowitz
test cannot with certainty be gamed by some other form of strategic predictive distribution.
However, the augmented test does address the only strategic predictive distribution that we can
envisage that can pass the Berkowitz (2001) test for any DGP.

In Section 2, we noted that Pelletier and Wei (2016) suggest that the quantile calibration
test of expression (2) could be implemented with the quantile forecast as sole regressor, as the
forecast itself is a form of summary of information available at the forecast origin. In a similar
way, the augmented test of expression (8) could be reduced to an alternative Berkowitz test

that has the median forecast as sole regressor, as in the following:

z,=C+pM +¢,.

® It is worth noting that a strategic forecast of the conditional mean can easily be produced to game a
common test of bias in which the forecast error is used as dependent variable with just an intercept
included in the regression. Bias is assessed by testing for zero intercept. For example, a strategic
conditional mean forecast can be generated as a randomly sampled value from a normal distribution
with mean set as the unconditional mean of the historical observations, and variance set as the product
of a large positive number and the variance of the historical observations. The bias test behaves like a
test for probabilistic calibration. Instead, a test of auto-calibration of the conditional mean forecasts
could be used in which the forecast itself is included as regressor. This leads to the regression of Mincer
and Zarnowitz (1969). We are grateful to a reviewer for highlighting these issues.
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4. lllustration with Simulated Data
We now use simulated data to show how tests of probabilistic calibration can be gamed,

and how this problem can be overcome by the augmented version of the Berkowitz (2001) test.

4.1. Data Generating Processes
We simulated data using the following autoregressive (AR) process of order 1:
Yo =Y+ &

where & is i.i.d. N(0,1). We chose ¢ to be either 0.5 or 0.9. With n; and n> defined as the size
of the in-sample and out-of-sample periods, respectively, we considered: n;=10000 and
n2=1000; n1=1000 and n,=100; n1=n>=100; n;=10 and n,=100; and n;=100 and n,=10. For each
choice of n1, n2 and ¢1, we generated 10000 time series. For each series, method parameters
were re-estimated on a rolling basis using a moving window of n; observations to give a set of
n2 one step-ahead out-of-sample forecasts. In selecting pairs of values for ny and n2, we were
interested to experiment with a variety of values that might be considered in practice. However,
we should acknowledge that if n1, n2 and the ratio ni/n, are small, there can be size distortions
in the tests of forecast performance due to estimation error of the type described by West (1996)

and West and McCracken (1998).

4.2. Forecasting Methods

The first method that we applied to each series involved the unrealistic assumption that
the DGP and its parameters were known. For period t, the predictive distributions were
Gaussian with mean of ¢1yt.1 and unit variance. We refer to this as the true DGP method.

We implemented two benchmark forecasting methods. The first used least squares to
fit an AR(1) model with intercept, and produced predictive distributions that were Gaussian

with mean equal to the one step-ahead forecast, and variance given by the regression forecast
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error variance expression. We refer to this as the fitted AR(1) model. The other benchmark
method constructed the predictive distribution as a Gaussian distribution with mean and

standard deviation set as the mean 4, and standard deviation &, of the in-sample observations.

As these are estimates of the unconditional mean and standard deviation, we refer to this as the
unconditional method. This method is also sometimes termed the climatological method (see,
for example, Gneiting et al., 2007).

We implemented the strategic predictive distribution of expression (7) with A, Bt and

the standard deviations of F*(y) and F®(y) chosen as described in the final paragraph of

Section 3.2.

4.3. Out-of-Sample Evaluation

Unconditional probabilistic calibration can be assessed by testing the uniformity of the
PIT histogram. Fig. 6 enables a visual check of this for the out-of-sample strategic predictive
distributions applied to the first of the 10000 series generated from the DGP with ¢:=0.9 and
n:=10000 and n>=1000.

In all the tests that we consider, we use a nominal size of 5%. In other words, we test
with a 5% significance level, which implies that 5% is the ideal value for the percentage of the
10000 simulated series for which the null hypothesis was rejected.

Table 1 presents the results of the Kolmogorov-Smirnov test for the distribution of the
PITs being U(0,1). This is a test of unconditional calibration. Each column in the table
corresponds to one of the different types of simulated series. Each value in the table is the
percentage of the 10000 simulated series for which U(0,1) was rejected at the 5% significance
level. In Table 1, the value is close to the nominal size of 5% for the true DGP method and the
strategic method when n;=10000 and n,=1000. The percentages are also reasonably close to

5% elsewhere in the table, except for the unconditional method. This is perhaps surprising
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because, at least in large samples, this method is unconditionally calibrated by construction.
However, our results for this method are consistent with those of Mitchell and Wallis (2011),
who explain that the Kolmogorov-Smirnov test for uniformity assumes the data is a random
sample, which is not the case with the PITs from this method.

A necessary condition for full probabilistic calibration is that the PIT series is not
serially correlated. We tested for this using a Ljung-Box test that examined autocorrelation up
to lag 2. Each value in Table 2 is the percentage of the 10000 series for which the null
hypothesis of no autocorrelation was rejected at the 5% significance level. The table shows that
the results of the strategic method matched those of the true DGP, with values close to the
nominal size of 5%, except for the case with just 10 observations in the out-of-sample period.

We implemented the version of the test of Berkowitz (2001) proposed by Clements
(2004), which tests for unconditional probabilistic coverage. We discussed this version in
Section 3.1. Table 3 reports the percentage of the 10000 series for which unconditional
coverage was rejected at the 5% significance level. As in Tables 1 and 2, we see the strategic
method performing as well as the true DGP. In assessing the results of Table 3, it is worth
noting that the test proposed by Clements (2004) only allows for serial correlation of the
transformed PITs if it is an AR(1) process, which may well not be the case.

Table 4 presents the results for the standard calibration test of Berkowitz (2001), which
uses expression (3). Each value is the percentage of the 10000 series for which calibration was
rejected at the 5% significance level. As expected, the value is close to the nominal size of 5%
for the unrealistic true DGP method, although the performance weakens when the out-of-
sample period is small. The Berkowitz (2001) test results for the true DGP are matched for all
sample sizes by the strategic method, which shows the limitation of this test. Indeed, the
strategic method performs better than the fitted AR(1) model for the cases in which the in-
sample size is 100 or 10. Comparing the results for the unconditional method in Tables 3 and

4, we see that, while unconditional probabilistic calibration was often not rejected in Table 3,
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calibration is generally rejected with the Berkowitz (2001) test in Table 4.

Table 5 presents the results for our augmented Berkowitz test, which is based on
expression (8). Reassuringly, calibration for the strategic method is rejected in all cases, except
when the out-of-sample period is small, in which case calibration was rejected for more than
90% of the series. For the unconditional method, when using a small out-of-sample period,
calibration is more often rejected in Table 5 than it was in Table 4, which suggests that the

augmented test has more power than the standard Berkowitz (2001) test.
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Probability Integral Transform

Fig. 6. PIT histogram for the out-of-sample prediction from the strategic method applied to the DGP
with AR(1) parameter ¢:=0.9, in-sample size n;=10000 and out-of-sample size n,=1000. Kolmogorov-
Smirnov statistic is 0.0222, which is below the 5% critical value, so unconditional probabilistic
calibration is not rejected.

Table 1

Kolmogorov-Smirnov test for unconditional probabilistic calibration (uniformity of PITs). Each value
is the percentage of simulated series for which calibration was rejected at 5% sig. level. ¢, is the
coefficient of the AR(1) DGP, and n: and n; are the in-sample and out-of-sample sizes, respectively.

& 0.5 0.9 05 0.9 05 0.9 05 0.9 05 0.9
N1 10000 10000 1000 1000 100 100 10 10 100 100
N2 1000 1000 100 100 100 100 100 100 10 10
True DGP 4.7 4.7 35 35 34 34 3.7 37 19 19
Fitted AR(1) 4.6 45 36 36 18 29 04 15 21 3.0
Unconditional 21.8 73.1 19.1 70.4 11.8 62.8 2.2 66.4 122 494
Strategic 4.5 4.5 36 3.6 3.7 3.7 3.7 37 1.8 1.8
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Table 2

Ljung-Box test for autocorrelation in the PITs. Each value is the percentage of simulated series for
which hypothesis of no autocorrelation was rejected at 5% sig. level. ¢ is the coefficient of the AR(1)
DGP, and n: and n; are the in-sample and out-of-sample sizes, respectively.

n 0.5 0.9 0.5 0.9 0.5 0.9 05 0.9 0.5 0.9

Ny 10000 10000 1000 1000 100 100 10 10 100 100

n2 1000 1000 100 100 100 100 100 100 10 10
True DGP 4.9 4.9 5.7 5.7 55 55 58 5.8 159 15.9
Fitted AR(1) 4.9 4.8 55 5.6 3.6 6.0 22.3 63.3 156 15.9
Unconditional 100.0 100.0 99.2 100.0 99.2 100.0 97.4 100.0 21.0 46.1
Strategic 4.9 4.9 5.7 5.7 5.7 5.7 57 57 148 14.8
Table 3

Unconditional Berkowitz test for unconditional probabilistic calibration, which is based on expression
(3), with null hypothesis ¢=0 and var(&)=1-p: (i.e. var(z;)=1). Each value is the percentage of simulated
series for which calibration was rejected at 5% sig. level. ¢ is the coefficient of the AR(1) DGP, and
ni and n; are the in-sample and out-of-sample sizes, respectively.

& 0.5 0.9 0.5 0.9 0.5 0.9 05 0.9 0.5 0.9

Ny 10000 10000 1000 1000 100 100 10 10 100 100

n2 1000 1000 100 100 100 100 100 100 10 10
True DGP 5.3 5.3 5.9 5.9 54 54 59 59 11.8 11.8
Fitted AR(1) 5.3 5.3 6.0 6.1 1.8 2.9 50.0 834 119 14.1
Unconditional 10.6 49.1 11.7 514 52 39.2 96.1 100.0 21.2 644
Strategic 4.9 4.9 55 55 5.6 5.6 55 55 11.3 113
Table 4

Standard Berkowitz test for probabilistic calibration, which is based on expression (3), with null
hypothesis c=p;=0 and var(&)=1. Each value is the percentage of simulated series for which calibration
was rejected at 5% sig. level. ¢ is the coefficient of the AR(1) DGP, and n; and n; are the in-sample
and out-of-sample sizes, respectively.

il 0.5 0.9 0.5 0.9 0.5 0.9 05 09 05 09

ni 10000 10000 1000 1000 100 100 10 10 100 100

n; 1000 1000 100 100 100 100 100 100 10 10
True DGP 5.0 5.0 5.4 5.4 5.1 51 55 55 6.8 6.8
Fitted AR(1) 5.0 4.9 5.7 5.8 1.2 3.5 62.6 96.4 70 87
Unconditional 100.0 100.0 99.8 100.0 99.5 100.0 99.6 100.0 28.7 90.7
Strategic 4.9 4.9 5.3 5.3 5.2 5.2 52 52 64 64
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Table 5

Augmented Berkowitz test for probabilistic calibration, which is based on expression (8), with null
hypothesis c=p1=p,=0 and var(&)=1. Each value is the percentage of simulated series for which
calibration was rejected at 5% sig. level. ¢ is the coefficient of the AR(1) DGP, and n; and n; are the
in-sample and out-of-sample sizes, respectively.

n 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9
N1 10000 10000 1000 1000 100 100 10 10 100 100
N 1000 1000 100 100 100 100 100 100 10 10
True DGP 5.0 51 6.3 7.3 6.2 7.1 6.0 6.9 645 31.6
Fitted AR(1) 5.2 5.2 6.6 7.4 9.5 4.8 99.9 99.7 68.8 34.6
Unconditional 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 97.9 99.6
Strategic 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 93.6 93.2
Table 6

CRPS averaged across simulated series. Lower values are better. ¢ is the coefficient of the AR(1) DGP,
and n; and n; are the in-sample and out-of-sample sizes, respectively.

& 0.5 0.9 0.5 0.9 05 09 05 09 05 09

ni 10000 10000 1000 1000 100 100 10 10 100 100

n; 1000 1000 100 100 100 100 100 100 10 10
True DGP 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
Fitted AR(1) 0.56 0.56 0.56 0.56 0.57 0.57 0.66 0.67 0.57 0.57
Unconditional 0.65 1.29 0.65 1.30 0.65 1.29 0.68 0.97 0.66 1.29
Strategic 7.69 15.27 7.68 15.11 7.58 13.70 6.71 7.83 7.58 13.58

Table 6 evaluates the methods using the continuous ranked probability score (CRPS),
defined in such a way that lower values are preferable. As this is a proper scoring rule for
distributions (Gneiting and Raftery, 2007), it is no surprise to see the strategic method
performing badly in this table, as it was designed purely to game the tests for probabilistic
calibration. This confirms our comment in Section 1 that, although our strategic predictive
distribution passes the tests for calibration, a strategic predictive distribution will always be
exposed as very poor by a well-chosen score.

In this paper, we have implemented the strategic predictive distribution of expression
(7) with A¢ and Bt chosen so that the distribution is very wide in order to ensure probabilistic

calibration. As a result of the distribution being so wide, the CRPS is very poor. A narrower
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predictive distribution can be chosen that delivers much better CRPS, with only small
deterioration in the results of the probabilistic calibration tests. Further improvements in the
CRPS can be achieved by using the strategic predictive distribution with A: and Bt chosen, as
in expression (6), so that the mean is equal to an accurate point forecast produced by another
method. Although the CRPS would probably still be worse than the fitted AR(1) model in
Table 6, it does raise the issue that there are potentially strategic predictive distributions that,
in some circumstances, may not be poor in terms of the CRPS. This raises the practical

importance of seeking tests for calibration that cannot be gamed.

5. Summary

We have shown the existence of a strategic predictive distribution that can game the
established tests for probabilistic calibration, including the regression-based test of Berkowitz
(2001). To address this, we have proposed a simple augmented version of this test. Although
strategic predictive distributions may well be exposed as poor by well-chosen scores or visual
checks, it remains a practical concern if they are able to game a widely-used calibration test.
Best practice is to seek probabilistic forecasts that maximise sharpness subject to calibration.
This suggests that calibration should be viewed as a necessity, which is problematic when, as
in our simulation study, a strategic method is the only forecasting method producing
satisfactory results for the established tests of probabilistic calibration. This problem is

addressed by using the augmented version of the test.
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Appendix 1

As discussed in Section 3.1, the standard test of Berkowitz (2001) involves the

estimation of the model z, = ¢ + p, z, , + &, . Let us write var(e)=o~. The parameters ¢, p,

and o, are estimated by maximising the following exact log-likelihood function:

- og(em)~tog[ o2 /- i) |- C?S gl))
_%Iog(Zﬂ)— log(o?) - Z((Z = [z)“l)J

Note that the same log-likelihood expression is given by Berkowitz (2001), but it is incorrectly

described as corresponding to the model of expression (3) of that paper.

Appendix 2

In Section 3.3, we introduced the augmented Berkowitz test, which involves estimating

the model z, =c+ p,z,_, + p,M, +¢,. We write var(e)=o?. To obtain the exact log-likelihood,

we use the steps described, for example, by Bigrn (2011). We first rewrite the model as
A-p L)z, =c+p,mh, +¢,.

Using this, we can write:

2, =C/(L—p) + PN+ p, D i + D pre - 9)

i=1 i=0

In order to obtain the mean and variance of z,, we introduce constant parameters . and
a;m for the mean and variance of the penultimate summation of expression (9). The exact log-

likelihood function is then written in terms of the parameters ¢, p,, p,, 0., p,, and o, as:

1 1 2 2 2/ 2 _(Zl_c/(l_pl)_pZ(m1+ﬂplm)2
Gt GOt gy

T 1|0g(2ﬂ_)__|0g( ) Z( —C- pétzl pzm)j

22



Acknowledgements
We are very grateful to the handling editor, an associate editor and two referees for

providing very useful comments on the paper.

References

Bao, Y., Lee, T. H., & Saltoglu, B. (2007). Comparing density forecast models. Journal of
Forecasting, 26(3) 203-225.

Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal
of Business & Economic Statistics, 19(4) 465-474.

Berrocal, V.J., Raftery, A.E. Gneiting, T., & Steed, R.C. (2010). Probabilistic weather
forecasting for winter road maintenance. Journal of the American Statistical Association,
105(490) 522-537.

Bigrn, E. (2011). Estimation of ARX and VARX models by ML. Unpublished lecture notes.
ECON 5101 Advanced Econometrics, Lecture note no. 6.

Christoffersen, P.F. (1998). Evaluating interval forecasts. International Economic Review,
39(4) 841-862.

Clements, M. P. (2004). Evaluating the Bank of England density forecasts of inflation. The
Economic Journal, 114(498), 844-866.

Diebold, F.X., Gunther, T.A., & Tay, A. (1998). Evaluating density forecasts with applications
to financial risk management. International Economic Review, 39(4) 863-883.

Engle, R.F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by
regression quantiles. Journal of Business & Economic Statistics, 22(4) 367-381.

Gianfreda, A., & Bunn, D.W. (2018). A stochastic latent moment model for electricity price
formation. Operations Research, 66(5) 1189-1203.

Gneiting, T., Balabdaoui, F., & Raftery, A.E. (2007). Probabilistic forecasts, calibration and
sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2)
243-268.

Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and its
Application, 1(1) 125-151.

Gneiting, T., & Raftery, A.E. (2007). Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477) 359-378.

Hamill, T.M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly
Weather Review, 129(3) 550-560.

23



Knuppel, M. (2015). Evaluating the calibration of multi-step-ahead density forecasts using raw
moments. Journal of Business & Economic Statistics, 33(2), 270-281.

Kolassa, S. (2016). Evaluating predictive count data distributions in retail sales forecasting.
International Journal of Forecasting, 32(3) 788-803.

Lichtendahl Jr, K.C., Grushka-Cockayne, Y., & Pfeifer, P.E. (2013). The wisdom of
competitive crowds. Operations Research, 61(6) 1383-1398.

Mincer, J. A., & Zarnowitz, V. (1969). The evaluation of economic forecasts. In Economic
Forecasts and Expectations: Analysis of Forecasting Behavior and Performance (pp. 3-46).
NBER.

Mitchell, J., & Wallis, K.F. (2011). Evaluating density forecasts: Forecast combinations, model
mixtures, calibration and sharpness. Journal of Applied Econometrics, 26(6) 1023-1040.

Nieto, M.R., & Ruiz, E. (2016). Frontiers in VaR forecasting and backtesting. International
Journal of Forecasting, 32(2) 475-501.

Nolde, N., & Ziegel, J.F. (2017). Elicitiability and backtesting: perspectives for banking
regulation. Annals of Applied Statistics, 11(4) 1833-1874.

Olszewski, W. (2015). Calibration and expert testing. In Handbook of Game Theory with
Economic Applications, edited by H. P. Young and S. Zamir, 4 949-984, Elsevier.

Ottaviani, M., & Sgrensen, P.N. (2006). The strategy of professional forecasting. Journal of
Financial Economics, 81(2) 441-466.

Pelletier, D., & Wei, W. (2015). The geometric-VaR backtesting method. Journal of Financial
Econometrics 14(4) 725-745.

Proietti, T., Marczak, M., & Mazzi, G. (2017). Euromind-D: A density estimate of monthly
gross domestic product for the Euro Area. Journal of Applied Econometrics, 32(3) 683-703.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathematical
Statistics, 23(3) 470-472.

Rossi, B., & Sekhposyan, T. (2014). Evaluating predictive densities of US output growth and
inflation in a large macroeconomic data set. International Journal of Forecasting, 30(3) 662-
682.

Rossi, B., & Sekhposyan, T. (2019). Alternative tests for correct specification of conditional
predictive densities. Journal of Econometrics, 208(2), 638-657.

Tsyplakov, A. (2011). Evaluating density forecasts: a comment. MPRA Paper 31184, University
Library of Munich, Germany.

Tsyplakov, A. (2014). Theoretical guidelines for a partially informed forecast examiner. MPRA
Paper 67333, University Library of Munich, Germany.

24



West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica: Journal of the
Econometric Society, 1067-1084.

West, K. D., & McCracken, M. W. (1998). Regression-based tests of predictive ability (No.
t0226). National Bureau of Economic Research.

25



