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A Strategic Predictive Distribution for Tests of Probabilistic Calibration 

Abstract 

Forecasts of probability distributions are needed to support decision making in many 

applications. The accuracy of predictive distributions should be evaluated by maximising 

sharpness subject to calibration. Sharpness relates to the concentration of the predictive 

distributions, while calibration concerns their statistical consistency with the data. This paper 

focuses on calibration testing. It is important that a calibration test cannot be gamed by forecasts 

that have been strategically designed to pass the test. The widely-used tests of probabilistic 

calibration for predictive distributions are based on the probability integral transform. Drawing 

on previous results for quantile prediction, we show that strategic distributional forecasting is 

a concern for these tests. To address this, we provide a simple extension of one of the tests. We 

illustrate ideas using simulated data. 

Key words: Predictive Distributions; Calibration Testing; Probability Integral Transform; 

Strategic Forecasting. 
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1. Introduction 

Forecasts of probability distributions are needed to support decision making in many 

applications. For example, predictive distributions are needed for macroeconomic variables to 

inform policy making (Proietti et al., 2017), and for weather variables to reduce the impact of 

extreme weather on society (Berrocal et al., 2010). Forecasts of distributions provide 

predictions of quantiles and other functionals, which are needed, for example, in financial risk 

management (Nieto and Ruiz, 2016), energy trading (Gianfreda and Bunn, 2018), and for 

setting safety stock in supply chains (Kolassa, 2016). 

The aim of distributional forecasting is to maximise sharpness subject to calibration 

(Gneiting et al., 2007). Sharpness relates to the concentration of the predictive distributions, 

while calibration concerns their statistical consistency with the data. If a predictive distribution 

is calibrated, randomly sampled values from it will be indistinguishable from the observations 

(Gneiting and Katzfuss, 2014). A scoring rule summarises calibration and sharpness, and is 

proper if minimised when the forecast is the true distribution. Proper scoring rules encourage 

honest reporting by forecasters (Gneiting and Raftery, 2007). While scores enable forecasters 

to be ranked, calibration tests can provide insight leading to improved accuracy.  

Quantile forecasts are also evaluated in terms of scores and calibration tests. A 

consistent quantile score is one that is minimised by the true quantile. A forecast of the 

quantile is conditionally calibrated if the conditional probability of an observation falling below 

the forecast is equal to  A binary variable, indicating exceedance, should have no 

autocorrelation, and a mean of , and this has been the focus of calibration tests. However, 

Engle and Manganelli (2004) present a quantile forecast that, although very poor, is able to 

pass such a test. It can be viewed as a dishonest forecaster that has strategically manipulated 

the forecasts in order to pass the test. Just as consistency is necessary for a quantile score to 

ensure honest reporting, calibration tests should not permit strategic behaviour. Engle and 
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Manganelli (2004) provide a regression-based test that cannot be gamed by their strategic 

forecasts. Strategic forecasting has also been considered in a variety of other settings (see, for 

example, Olszewski, 2015; Ottaviani and Sørensen, 2006; Lichtendahl et al., 2013).  

We show that strategic forecasting is a concern for the widely-used calibration tests for 

predictive distributions, including the regression-based test of Berkowitz (2001). To overcome 

this, we draw on the work of Engle and Manganelli (2004) for quantiles to propose an 

augmented version of the test of Berkowitz (2001), which simply involves the inclusion of an 

additional regressor in the test. This new test has similarities to a calibration test proposed by 

Tsyplakov (2014). 

We acknowledge that strategic probabilistic forecasts are likely to be exposed as very 

poor by a visual check. However, a visual check is often not performed. For example, it is 

impractical when there are many methods or time series, which is typically the case in 

forecasting competitions. We also acknowledge that strategic forecasts are likely to perform 

relatively poorly in terms of commonly-used scores. However, there are several reasons why 

it remains a concern that a calibration test can be gamed. First, comparing forecasting methods 

may involve a trade-off between the results of a calibration test and a score, and so a seemingly 

calibrated strategic forecasting method may be viewed as dominating a competitor that has a 

better score but fails the calibration test. In fact, with best practice being to maximise sharpness 

subject to calibration, a method that fails a calibration test should not really be considered 

further. Second, predictive distributions are sometimes evaluated using only calibration. This 

may be due to the focus being on model specification (Rossi and Sekhposyan, 2014), or it could 

be due to tradition, the intuitive simplicity and informative nature of calibration tests, or 

computational reasons. Third, a method that has strategic behaviour to some extent, or for some 

of the time, may be competitive in terms of both a calibration test and score.  

Section 2 lays the foundation for the paper by discussing calibration testing for quantile 

forecasts. Section 3 shows how the widely-used calibration tests for predictive distributions 
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can be gamed, and presents a simple extension of the test of Berkowitz (2001) to address this 

problem. Section 4 uses simulated data to illustrate the ideas. 

2. Calibration Testing for Quantile Forecasts 

A forecast of the  quantile )(tq is calibrated if the probability of an observation yt

falling below the forecast is equal to . More formally, consider the variable 

ˆ( ( ))t t tHit I y q    , where ˆ ( )tq   is the forecast and I(·) is the indicator function. ˆ ( )tq 

is unconditionally calibrated if tHit  has zero unconditional expectation, and is conditionally 

calibrated if 
tHit  has zero conditional expectation, conditional on information available at time 

t-1 (Nolde and Ziegel, 2017).  

Unconditional calibration implies that the proportion of observations falling below the 

quantile forecasts is . Deviations from this provide insight into how to improve the forecasts. 

However, one can “game the system” to achieve unconditional calibration by using forecasts 

equal to unattainably high and low values for proportions  and 1-, respectively, of the 

observations. Conditional calibration implies that  ˆPr ( )t ty q    . Christoffersen (1998) 

presents a likelihood ratio test for conditional calibration, which amounts to testing whether 

tHit  has zero mean and no autocorrelation. However, Engle and Manganelli (2004) introduce 

the strategically designed quantile forecast of expression (1), which is clearly very poor, but 

passes this test for any data generating process (DGP). 
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At and Bt are values chosen to be above and below the range of possible values for yt; and the 

vt are independent Bernoulli trials, each with probabilities of  and 1- for outcomes 1 and 0, 

respectively. Christoffersen’s (1998) test is passed because Hitt has zero mean and no 

autocorrelation. However, )(ˆ s
tq  is not conditionally calibrated because the conditional 



6 

expectation of tHit  is not , and this can be seen by noting that, once )(ˆ s
tq  is known, the 

value of 
tHit  is known.  

To address the strategic quantile forecast of expression (1), Engle and Manganelli 

(2004) develop the dynamic quantile test. This test uses a regression framework to perform a 

joint test of whether 
tHit  has zero mean, no autocorrelation, and is independent of the quantile 

forecast )(ˆ tq . Using 1tHit   and )(ˆ tq  as regressors, the test’s regression is: 

1 1 2
ˆ ( )t t t tHit c Hit q       ,   (2) 

where t is a discrete i.i.d. process. Engle and Manganelli (2004) present a 2 test for the null 

hypothesis of c= and i=0 for all i, which implies conditional calibration. For the strategic 

forecast of expression (1), 2=0 would be rejected. Pelletier and Wei (2016) suggest that the 

quantile forecast could be used as the sole regressor in expression (2), because a quantile 

forecast that reacts too slowly to changing features of the time series will be informative about 

the probability of the quantile forecast being exceeded. 

3. Calibration Testing for Predictive Distributions 

In this section, we first provide a brief review of calibration testing, including the 

widely-used test of Berkowitz (2001). After showing that this test can be gamed, we present an 

augmented test to overcome this problem. 

3.1. Established Tests for Calibration of a Predictive Distribution 

The probability integral transform (PIT) is the value of the predictive distribution tF̂  at 

the observation yt. It is computed as  ttt yFp ˆ , and this is illustrated in Fig. 1. Rosenblatt 

(1952) observes that a necessary condition for tF̂  to be a correct forecast is that the PIT is i.i.d. 

U(0,1). In view of this, Diebold et al. (1998) propose that predictive distributions are evaluated 



7 

by testing the PITs, and that for some applications a pragmatic approach is sufficient, involving 

just a visual check for uniformity of the histogram of PITs and an inspection of correlograms 

of the PITs. Gneiting et al. (2007) explain that, for the histogram, a hump shape indicates that 

tF̂  is, on average, too wide, a U-shape is indicative of tF̂  being too narrow, and a triangular-

shape implies that tF̂  is biased. Calibration can, therefore, provide insight into how a predictive 

distribution can be improved. 

Fig. 1. Generation of the PIT pt for observation yt and predictive distribution tF̂ . 

Gneiting et al. (2007) describe different forms of calibration for a predictive 

distribution. Uniformity of the PITs is defined as probabilistic calibration. Tsyplakov (2011, 

2014) explains that definitions of calibration should be clear in terms of conditioning. If an 

unconditional test is used for the uniformity of the PITs, such as a Kolmogorov-Smirnov test, 

this would be described as a test for unconditional probabilistic calibration. The definition of 

full probabilistic calibration has the additional requirement that the PITs are independent of 

information used to produce the forecast, which prompts conditional tests of calibration. 

Related to this, Mitchell and Wallis (2011) emphasise the importance of testing the 

independence of the PITs. They define complete calibration as the case where the PITs are 

both uniform and independent. In their empirical analysis, they use a Ljung-Box test for 

autocorrelation in the PITs, as well as the well-established calibration test of Berkowitz (2001).  

Berkowitz’s (2001) test involves first transforming the PITs to give  tt pz 1 , where 

0

1

pt

yt
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  is the standard normal distribution function. The following regression is then performed1: 

1 1t t tz c z    .   (3) 

If the PITs are i.i.d. U(0,1), c and  will be zero, and t will be Gaussian with var(t)=1. 

Berkowitz (2001) tests these conditions using a likelihood ratio test. The advantage of 

transforming the PITs to the variable zt is that there are more tests available to test for normality 

than uniformity, it is easier to test for autocorrelation under normality than uniformity, and the 

likelihood ratio test can be based on the commonly used normal likelihood function (Mitchell 

and Wallis, 2011). As the test of Berkowitz (2001) only has power to test normality through 

the mean and variance, an additional test for normality should also be performed (see, for 

example, Proietti et al., 2017). Bao et al. (2007) relax the Gaussian assumption in the test by 

using a semi-parametric distribution that nests the normal distribution as a special case. 

Berkowitz (2001) discusses how the test can be extended to examine higher-order or 

nonlinear dependence by including additional regressors, and this is considered in the empirical 

study of Mitchell and Wallis (2011). Clements (2004) describes a version of the Berkowitz 

(2001) test that can be used to test for unconditional probabilistic calibration when the PITs are 

potentially serially correlated. For this, the null hypothesis is c=0 and var(t)=(1-1
2), which 

implies that var(zt)=1. In a similar vein, Knüppel (2015) and Rossi and Sekhposyan (2019) 

present tests of unconditional probabilistic calibration that are robust to potential serial 

correlation in the PITs. Such serial correlation is likely when dealing with multi-step-ahead 

prediction, and this is the motivation of Knüppel (2015) who proposes a test based on the raw 

moments of the standardised PITs. Rossi and Sekhposyan (2019) present a new form of 

goodness-of-fit test for the distribution of the PITs.  

1 The parameters are estimated by maximising the log-likelihood presented in Appendix 1. 
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3.2. Gaming the Tests for Calibration of a Predictive Distribution 

Hamill (2001) and Gneiting et al. (2007) provide examples of DGP’s for which there 

exist relatively poor predictive distributions that have PITs that are U(0,1). As these DGP’s 

contain no time series dynamics, the PITs are in fact i.i.d. U(0,1), and so it is clear that, although 

the PITs being i.i.d. U(0,1) is a necessary condition for forecast adequacy, it is not a sufficient 

condition. However, Mitchell and Wallis (2011) argue that the DGP’s used in these examples 

bear little resemblance to the type of data typically seen in time series forecasting applications. 

In this section, we do not contribute to this particular debate, but instead show that, regardless 

of the DGP, it is possible to produce predictive distributions that are clearly very poor, but that 

can “game the system” to pass tests of probabilistic calibration, such as the Berkowitz (2001) 

test, as well as simpler tests for independence and uniformity of the PITs.  

Consider the following new strategic predictive distribution s
tF̂  and corresponding 

strategic (discrete) density forecast s
tf̂ , which are produced in period t-1: 
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where At and Bt are unattainable upper and lower bounds for the observation yt; and ut is a value 

sampled independently each period from U(0,1). s
tF̂  and s

tf̂  are shown in Figs. 2 and 3, 

respectively. We discuss the practical issue of choosing At and Bt later in this section. We 

acknowledge that it is perhaps a strange choice of predictive distribution, but we should 

emphasise that we have chosen it with the specific strategic aim of “gaming” tests for 

probabilistic calibration, such as the Berkowitz (2001) test. 
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Fig. 2. Strategic predictive distribution s
tF̂  of expression (4). 

Fig. 3. Strategic (discrete) density forecast s
tf̂  of expression (5). 

Fig. 4. Generation of the PIT for observation yt and the strategic predictive distribution s
tF̂  of 

expression (4). 

As the PIT is the value of the predictive distribution at the observation yt, for the 

strategic predictive distribution of expression (4), the PIT is equal to ut, regardless of the value 

of yt, and this is illustrated in Fig. 4. As the ut are generated as i.i.d. U(0,1), it follows that the 

PITs will be i.i.d. U(0,1). Therefore, the PITs for the strategic predictive distribution will pass 

tests of probabilistic calibration, including the Berkowitz (2001) test of expression (3). 

Although our strategic predictive distribution may not pass a visual check, as we said in Section 

1, it remains a concern that a strategic predictive distribution exists that will pass probabilistic 

calibration tests, regardless of the DGP. 
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We acknowledge that if yt has unbounded support, unattainable upper and lower bounds 

cannot be found. However, in finite samples, it is likely that extreme values can be chosen for 

At and Bt that will be exceeded with very low probability, making it virtually impossible to 

reject the null hypothesis of correct calibration. 

Consider also a forecaster who has an accurate forecast for only the mean t. We denote 

this prediction as ˆ
t . For this situation, it is straightforward for the forecaster to produce a 

predictive distribution that has mean ˆ
t , and that passes the Berkowitz (2001) test. This is 

achieved using the strategic predictive distribution of expression (4), with At and Bt defined as 

unattainable upper and lower bounds that satisfy the following expression: 

  ˆ1t t t t tu B u A    .   (6) 

PIT values of 0 or 1 are problematic because they cannot be transformed using the 

standard normal distribution, prior to the application of the Berkowitz (2001) test. To avoid 

PIT values of 0 or 1 in our simulation study, we replaced the strategic predictive distribution 

of expression (4) with the following strategic predictive distribution, which is a mixture of 

Gaussian distributions:  

       ˆ 1t tB As
t t t t tF y u F y u F y    (7) 

where  tA
tF y  and  tB

tF y  are Gaussian distributions with low variance and means equal to At

and Bt, respectively. An example of this strategic predictive distribution is presented in Fig. 5, 

which shows that the distribution is similar to the strategic predictive distribution of expression 

(4) and Fig. 2.  
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Fig. 5. Strategic predictive distribution s
tF̂  of expression (7). 

In our simulation study, we chose At and Bt as in the following expressions: 

ˆ ˆ
t y yA A k   

ˆ ˆ
t y yB B k   

where ˆ y  and ˆ y  are the mean and standard deviation of the in-sample observations, and k is 

a constant factor. We selected k=100, which according to the Chebyshev inequality, implies 

that at least 99.99% of the observations will fall between At and Bt. For common sizes of out-

of-sample periods, this percentage is likely to be large enough to ensure that statistical tests 

will not have sufficient power to reject the null hypothesis of correct calibration. For the 

Gaussian distributions,  tA
tF y  and  tB

tF y  in expression (7), which are centred at At and Bt, 

respectively, we set the standard deviation to be 0.01 multiplied by ˆ y . 

3.3. Augmenting the Berkowitz Test to Address Strategic Prediction 

The strategic predictive distributions of expressions (4) and (7) pass the Berkowitz 

(2001) test because it tests only for the PITs being i.i.d. U(0,1), when ideally the PIT in period 

t should also be independent of all information known in period t-1, the forecast origin. This is 

not the case for the PIT from the strategic predictive distributions because they are dictated by 

ut, which is generated in period t-1, and, as shown in Fig. 4, ut is also the PIT.  

In Section 2, the need to ensure independence of all information available at the forecast 

origin was also apparent for quantile conditional calibration testing. In Engle and Manganelli’s 

0

1

Bt At

ut
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(2004) regression-based test of expression (2), their strategic quantile forecast was exposed as 

poor by including the forecast itself as a regressor. Similarly, for a predictive distribution, the 

PIT should be independent of the distributional forecast. In view of this, and given the form of 

the strategic predictive distributions of expressions (4) and (7), we propose the inclusion of the 

median or skewness of the distributional forecast as an additional regressor in the Berkowitz 

(2001) test. The following expression presents the test’s regression model, augmented with the 

median2 ˆ
tm  of the predictive distribution to give an augmented Berkowitz test3: 

tttt mzcz    ˆ211 .  (8) 

For a calibrated distributional forecast, c=0, =0, =0, var(t)=1, and t will be Gaussian. 

Following Berkowitz (2001), a likelihood ratio test can be used to test for these conditions, 

along with a test for normality. For the strategic predictive distributions of expressions (4) and 

(7), a relatively high value of the median (or large negative skewness) will correspond to a 

relatively low value of the PIT, and a relatively low median (or large positive skewness) will 

correspond to a relatively high PIT. This implies that the hypothesis =0 will be rejected, 

revealing the strategic predictive distribution as being of poor quality.  

The ideas in this paper relate closely to the work of Tsyplakov (2011, 2014)4. As we 

mentioned in Section 3.1, he formalises definitions of calibration, emphasising the need to be 

clear about conditioning. He explains that probabilistic calibration requires that the PITs are 

uniformly distributed and are independent of the information used to produce the forecast. The 

strategic predictive distributions that we have presented are probabilistically calibrated. 

However, they are not auto-calibrated. A predictive distribution is defined by Tsyplakov 

(2011, 2014) to be auto-calibrated if the PITs are uniform and independent of the information 

2 As the predictive distribution is a one step-ahead forecast, ˆ
tm  is a forecast produced at time t-1 for 

the median at time t. 
3 The parameters are estimated by maximising the log-likelihood presented in Appendix 2.
4 We are grateful to a reviewer for drawing our attention to the papers of Tsyplakov (2011, 2014). 
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used to produce the predictive distribution as well as the predictive distribution itself. The test 

of Berkowitz (2001) only tests a “necessary condition of sequential auto-calibration” 

(Tsyplakov, 2014). The augmented Berkowitz test that we have proposed is a test for auto-

calibration, because it uses information from the forecast itself. Interestingly, it has similarities 

to a test for auto-calibration considered by Tsyplakov (2014), which essentially involves a test 

of whether the PIT is correlated with the mean of the predictive distribution. We note that, in 

the augmented Berkowitz test regression of expression (8), the mean should not be used instead 

of the median, because this could be “gamed” using the strategic predictive distribution 

discussed in relation to expression (6).5

We should point out that it would be too bold to claim that the augmented Berkowitz 

test cannot with certainty be gamed by some other form of strategic predictive distribution. 

However, the augmented test does address the only strategic predictive distribution that we can 

envisage that can pass the Berkowitz (2001) test for any DGP.   

In Section 2, we noted that Pelletier and Wei (2016) suggest that the quantile calibration 

test of expression (2) could be implemented with the quantile forecast as sole regressor, as the 

forecast itself is a form of summary of information available at the forecast origin. In a similar 

way, the augmented test of expression (8) could be reduced to an alternative Berkowitz test 

that has the median forecast as sole regressor, as in the following: 

1
ˆ

t t tz c m    . 

5 It is worth noting that a strategic forecast of the conditional mean can easily be produced to game a 
common test of bias in which the forecast error is used as dependent variable with just an intercept 
included in the regression. Bias is assessed by testing for zero intercept. For example, a strategic 
conditional mean forecast can be generated as a randomly sampled value from a normal distribution 
with mean set as the unconditional mean of the historical observations, and variance set as the product 
of a large positive number and the variance of the historical observations. The bias test behaves like a 
test for probabilistic calibration. Instead, a test of auto-calibration of the conditional mean forecasts 
could be used in which the forecast itself is included as regressor. This leads to the regression of Mincer 
and Zarnowitz (1969). We are grateful to a reviewer for highlighting these issues. 
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4. Illustration with Simulated Data 

We now use simulated data to show how tests of probabilistic calibration can be gamed, 

and how this problem can be overcome by the augmented version of the Berkowitz (2001) test. 

4.1. Data Generating Processes 

We simulated data using the following autoregressive (AR) process of order 1: 

1 1t t ty y   , 

where t is i.i.d. N(0,1). We chose 1 to be either 0.5 or 0.9. With n1 and n2 defined as the size 

of the in-sample and out-of-sample periods, respectively, we considered: n1=10000 and 

n2=1000; n1=1000 and n2=100; n1=n2=100; n1=10 and n2=100; and n1=100 and n2=10. For each 

choice of n1, n2 and 1, we generated 10000 time series. For each series, method parameters 

were re-estimated on a rolling basis using a moving window of n1 observations to give a set of 

n2 one step-ahead out-of-sample forecasts. In selecting pairs of values for n1 and n2, we were 

interested to experiment with a variety of values that might be considered in practice. However, 

we should acknowledge that if n1, n2 and the ratio n1/n2 are small, there can be size distortions 

in the tests of forecast performance due to estimation error of the type described by West (1996) 

and West and McCracken (1998). 

4.2. Forecasting Methods 

The first method that we applied to each series involved the unrealistic assumption that 

the DGP and its parameters were known. For period t, the predictive distributions were 

Gaussian with mean of 1yt-1 and unit variance. We refer to this as the true DGP method. 

We implemented two benchmark forecasting methods. The first used least squares to 

fit an AR(1) model with intercept, and produced predictive distributions that were Gaussian 

with mean equal to the one step-ahead forecast, and variance given by the regression forecast 
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error variance expression. We refer to this as the fitted AR(1) model. The other benchmark 

method constructed the predictive distribution as a Gaussian distribution with mean and 

standard deviation set as the mean ˆ y  and standard deviation ˆ y  of the in-sample observations. 

As these are estimates of the unconditional mean and standard deviation, we refer to this as the 

unconditional method. This method is also sometimes termed the climatological method (see, 

for example, Gneiting et al., 2007). 

We implemented the strategic predictive distribution of expression (7) with At, Bt and 

the standard deviations of  tA
tF y  and  tB

tF y  chosen as described in the final paragraph of 

Section 3.2. 

4.3. Out-of-Sample Evaluation 

Unconditional probabilistic calibration can be assessed by testing the uniformity of the 

PIT histogram. Fig. 6 enables a visual check of this for the out-of-sample strategic predictive 

distributions applied to the first of the 10000 series generated from the DGP with 1=0.9 and 

n1=10000 and n2=1000.  

In all the tests that we consider, we use a nominal size of 5%. In other words, we test 

with a 5% significance level, which implies that 5% is the ideal value for the percentage of the 

10000 simulated series for which the null hypothesis was rejected.  

Table 1 presents the results of the Kolmogorov-Smirnov test for the distribution of the 

PITs being U(0,1). This is a test of unconditional calibration. Each column in the table 

corresponds to one of the different types of simulated series. Each value in the table is the 

percentage of the 10000 simulated series for which U(0,1) was rejected at the 5% significance 

level. In Table 1, the value is close to the nominal size of 5% for the true DGP method and the 

strategic method when n1=10000 and n2=1000. The percentages are also reasonably close to 

5% elsewhere in the table, except for the unconditional method. This is perhaps surprising 
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because, at least in large samples, this method is unconditionally calibrated by construction. 

However, our results for this method are consistent with those of Mitchell and Wallis (2011), 

who explain that the Kolmogorov-Smirnov test for uniformity assumes the data is a random 

sample, which is not the case with the PITs from this method. 

A necessary condition for full probabilistic calibration is that the PIT series is not 

serially correlated. We tested for this using a Ljung-Box test that examined autocorrelation up 

to lag 2. Each value in Table 2 is the percentage of the 10000 series for which the null 

hypothesis of no autocorrelation was rejected at the 5% significance level. The table shows that 

the results of the strategic method matched those of the true DGP, with values close to the 

nominal size of 5%, except for the case with just 10 observations in the out-of-sample period.  

We implemented the version of the test of Berkowitz (2001) proposed by Clements 

(2004), which tests for unconditional probabilistic coverage. We discussed this version in 

Section 3.1. Table 3 reports the percentage of the 10000 series for which unconditional 

coverage was rejected at the 5% significance level. As in Tables 1 and 2, we see the strategic 

method performing as well as the true DGP. In assessing the results of Table 3, it is worth 

noting that the test proposed by Clements (2004) only allows for serial correlation of the 

transformed PITs if it is an AR(1) process, which may well not be the case. 

Table 4 presents the results for the standard calibration test of Berkowitz (2001), which 

uses expression (3). Each value is the percentage of the 10000 series for which calibration was 

rejected at the 5% significance level. As expected, the value is close to the nominal size of 5% 

for the unrealistic true DGP method, although the performance weakens when the out-of-

sample period is small. The Berkowitz (2001) test results for the true DGP are matched for all 

sample sizes by the strategic method, which shows the limitation of this test. Indeed, the 

strategic method performs better than the fitted AR(1) model for the cases in which the in-

sample size is 100 or 10. Comparing the results for the unconditional method in Tables 3 and 

4, we see that, while unconditional probabilistic calibration was often not rejected in Table 3, 
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calibration is generally rejected with the Berkowitz (2001) test in Table 4. 

Table 5 presents the results for our augmented Berkowitz test, which is based on 

expression (8). Reassuringly, calibration for the strategic method is rejected in all cases, except 

when the out-of-sample period is small, in which case calibration was rejected for more than 

90% of the series. For the unconditional method, when using a small out-of-sample period, 

calibration is more often rejected in Table 5 than it was in Table 4, which suggests that the 

augmented test has more power than the standard Berkowitz (2001) test.  

Fig. 6. PIT histogram for the out-of-sample prediction from the strategic method applied to the DGP 
with AR(1) parameter 1=0.9, in-sample size n1=10000 and out-of-sample size n2=1000. Kolmogorov-
Smirnov statistic is 0.0222, which is below the 5% critical value, so unconditional probabilistic 
calibration is not rejected.  

Table 1 
Kolmogorov-Smirnov test for unconditional probabilistic calibration (uniformity of PITs). Each value 
is the percentage of simulated series for which calibration was rejected at 5% sig. level. 1 is the 
coefficient of the AR(1) DGP, and n1 and n2 are the in-sample and out-of-sample sizes, respectively. 

1 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 

n1 10000 10000 1000 1000 100 100 10 10 100 100 

 n2 1000 1000 100 100 100 100 100 100 10 10 

True DGP 4.7 4.7  3.5 3.5  3.4 3.4  3.7 3.7  1.9 1.9 

Fitted AR(1) 4.6 4.5  3.6 3.6  1.8 2.9  0.4 1.5  2.1 3.0 

Unconditional 21.8 73.1  19.1 70.4  11.8 62.8  2.2 66.4  12.2 49.4 

Strategic 4.5 4.5  3.6 3.6  3.7 3.7  3.7 3.7  1.8 1.8 
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Table 2 
Ljung-Box test for autocorrelation in the PITs. Each value is the percentage of simulated series for 
which hypothesis of no autocorrelation was rejected at 5% sig. level.1 is the coefficient of the AR(1) 
DGP, and n1 and n2 are the in-sample and out-of-sample sizes, respectively. 

1 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 

n1 10000 10000 1000 1000 100 100 10 10 100 100 

 n2 1000 1000 100 100 100 100 100 100 10 10 

True DGP 4.9 4.9  5.7 5.7  5.5 5.5  5.8 5.8  15.9 15.9 

Fitted AR(1) 4.9 4.8  5.5 5.6  3.6 6.0  22.3 63.3  15.6 15.9 

Unconditional 100.0 100.0  99.2 100.0  99.2 100.0  97.4 100.0  21.0 46.1 

Strategic 4.9 4.9  5.7 5.7  5.7 5.7  5.7 5.7  14.8 14.8 

Table 3 
Unconditional Berkowitz test for unconditional probabilistic calibration, which is based on expression 
(3), with null hypothesis c=0 and var(t)=1-2 (i.e. var(zt)=1). Each value is the percentage of simulated 
series for which calibration was rejected at 5% sig. level.1 is the coefficient of the AR(1) DGP, and 
n1 and n2 are the in-sample and out-of-sample sizes, respectively. 

1 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 

n1 10000 10000 1000 1000 100 100 10 10 100 100 

 n2 1000 1000 100 100 100 100 100 100 10 10 

True DGP 5.3 5.3  5.9 5.9  5.4 5.4  5.9 5.9  11.8 11.8 

Fitted AR(1) 5.3 5.3  6.0 6.1  1.8 2.9  50.0 83.4  11.9 14.1 

Unconditional 10.6 49.1  11.7 51.4  5.2 39.2  96.1 100.0  21.2 64.4 

Strategic 4.9 4.9  5.5 5.5  5.6 5.6  5.5 5.5  11.3 11.3 

Table 4 
Standard Berkowitz test for probabilistic calibration, which is based on expression (3), with null 
hypothesis c==0 and var(t)=1. Each value is the percentage of simulated series for which calibration 
was rejected at 5% sig. level.1 is the coefficient of the AR(1) DGP, and n1 and n2 are the in-sample 
and out-of-sample sizes, respectively. 

1 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 

n1 10000 10000 1000 1000 100 100 10 10 100 100 

 n2 1000 1000 100 100 100 100 100 100 10 10 

True DGP 5.0 5.0  5.4 5.4  5.1 5.1  5.5 5.5  6.8 6.8 

Fitted AR(1) 5.0 4.9  5.7 5.8  1.2 3.5  62.6 96.4  7.0 8.7 

Unconditional 100.0 100.0  99.8 100.0  99.5 100.0  99.6 100.0  28.7 90.7 

Strategic 4.9 4.9  5.3 5.3  5.2 5.2  5.2 5.2  6.4 6.4 
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Table 5 
Augmented Berkowitz test for probabilistic calibration, which is based on expression (8), with null 
hypothesis c===0 and var(t)=1. Each value is the percentage of simulated series for which 
calibration was rejected at 5% sig. level.1 is the coefficient of the AR(1) DGP, and n1 and n2 are the 
in-sample and out-of-sample sizes, respectively. 

1 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 

n1 10000 10000 1000 1000 100 100 10 10 100 100 

 n2 1000 1000 100 100 100 100 100 100 10 10 

True DGP 5.0 5.1  6.3 7.3  6.2 7.1  6.0 6.9  64.5 31.6 

Fitted AR(1) 5.2 5.2  6.6 7.4  9.5 4.8  99.9 99.7  68.8 34.6 

Unconditional 100.0 100.0  100.0 100.0  99.8 100.0  100.0 100.0  97.9 99.6 

Strategic 100.0 100.0  100.0 100.0  100.0 100.0  100.0 100.0  93.6 93.2 

Table 6 
CRPS averaged across simulated series. Lower values are better.1 is the coefficient of the AR(1) DGP, 
and n1 and n2 are the in-sample and out-of-sample sizes, respectively. 

1 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 

n1 10000 10000 1000 1000 100 100 10 10 100 100 

 n2 1000 1000 100 100 100 100 100 100 10 10 

True DGP 0.56 0.56  0.56 0.56  0.56 0.56  0.56 0.56  0.56 0.56 

Fitted AR(1) 0.56 0.56  0.56 0.56  0.57 0.57  0.66 0.67  0.57 0.57 

Unconditional 0.65 1.29  0.65 1.30  0.65 1.29  0.68 0.97  0.66 1.29 

Strategic 7.69 15.27  7.68 15.11  7.58 13.70  6.71 7.83  7.58 13.58

Table 6 evaluates the methods using the continuous ranked probability score (CRPS), 

defined in such a way that lower values are preferable. As this is a proper scoring rule for 

distributions (Gneiting and Raftery, 2007), it is no surprise to see the strategic method 

performing badly in this table, as it was designed purely to game the tests for probabilistic 

calibration. This confirms our comment in Section 1 that, although our strategic predictive 

distribution passes the tests for calibration, a strategic predictive distribution will always be 

exposed as very poor by a well-chosen score.  

In this paper, we have implemented the strategic predictive distribution of expression 

(7) with At and Bt chosen so that the distribution is very wide in order to ensure probabilistic 

calibration. As a result of the distribution being so wide, the CRPS is very poor. A narrower 
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predictive distribution can be chosen that delivers much better CRPS, with only small 

deterioration in the results of the probabilistic calibration tests. Further improvements in the 

CRPS can be achieved by using the strategic predictive distribution with At and Bt chosen, as 

in expression (6), so that the mean is equal to an accurate point forecast produced by another 

method. Although the CRPS would probably still be worse than the fitted AR(1) model in 

Table 6, it does raise the issue that there are potentially strategic predictive distributions that, 

in some circumstances, may not be poor in terms of the CRPS. This raises the practical 

importance of seeking tests for calibration that cannot be gamed.  

5. Summary 

We have shown the existence of a strategic predictive distribution that can game the 

established tests for probabilistic calibration, including the regression-based test of Berkowitz 

(2001). To address this, we have proposed a simple augmented version of this test. Although 

strategic predictive distributions may well be exposed as poor by well-chosen scores or visual 

checks, it remains a practical concern if they are able to game a widely-used calibration test. 

Best practice is to seek probabilistic forecasts that maximise sharpness subject to calibration. 

This suggests that calibration should be viewed as a necessity, which is problematic when, as 

in our simulation study, a strategic method is the only forecasting method producing 

satisfactory results for the established tests of probabilistic calibration. This problem is 

addressed by using the augmented version of the test. 
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Appendix 1 

As discussed in Section 3.1, the standard test of Berkowitz (2001) involves the 

estimation of the model 1 1t t tz c z    . Let us write var(t)=
2
 . The parameters c, 1

and   are estimated by maximising the following exact log-likelihood function:  

2
2 2 1 1

1 2 2
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2 1 1

2
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( (1 ))1 1
log(2 ) log (1 )

2 2 2 (1 )
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Note that the same log-likelihood expression is given by Berkowitz (2001), but it is incorrectly 

described as corresponding to the model of expression (3) of that paper. 

Appendix 2 

In Section 3.3, we introduced the augmented Berkowitz test, which involves estimating 

the model tttt mzcz    ˆ211 . We write var(t)=
2
 . To obtain the exact log-likelihood, 

we use the steps described, for example, by Biørn (2011). We first rewrite the model as 

1 2
ˆ(1 )     t t tL z c m . 

Using this, we can write: 

1 1 2 1 2 1 1 1 1
1 0

ˆ ˆ(1 )     
 

 
 

     i i
i i

i i

z c m m .   (9) 

In order to obtain the mean and variance of 1z , we introduce constant parameters 
1 ˆ m  and 

1

2
ˆ m  for the mean and variance of the penultimate summation of expression (9). The exact log-

likelihood function is then written in terms of the parameters c, 1 , 2 ,  , 
1 ˆ m  and 

1 ˆ m  as: 
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