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Forecasting Value at Risk and Expected Shortfall using a Model with a Dynamic 

Omega Ratio  

 

Abstract 

A joint model for the Value at Risk (VaR) and expected shortfall (ES) can be estimated using 

a joint scoring function. Previous work has modelled the ES as the product of the VaR and a 

constant factor. However, this implies the same dynamics for the ES and the VaR. We 

propose a time-varying multiplicative factor. The ES has been expressed as the product of an 

expectile and a constant factor that depends on the expectile level. We rewrite this as the 

product of a quantile and a function of a time-varying expectile level. The expectile level is a 

function of the Omega ratio, which is the ratio of the expected gain to the expected loss. This 

leads us to model the ES as the product of the VaR and a factor that is a function of a time-

varying Omega ratio. We provide empirical support using stock indices and individual stocks. 

 

JEL classification: C52, C53, C58 

Keywords: Expected shortfall; Value at Risk; Expectiles; Autoregressive models; Omega 

ratio. 
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1. Introduction 

For many years, Value at Risk (VaR) was the established measure of market risk. 

However, as a conditional tail quantile, the VaR conveys no information regarding potential 

exceedances of the returns beyond the quantile. Furthermore, the VaR is not coherent, 

meaning that it does not possess a number of attractive properties (Artzner et al., 1999). The 

Basel Committee on Banking Supervision now recommends the use of the expected shortfall 

(ES) (Basel Committee, 2016), which is a coherent risk measure (Acerbi, 2002; Acerbi and 

Tasche, 2002). The ES is defined as the conditional expectation of exceedances beyond the 

VaR. Although ES is theoretically appealing as a measure of risk, its estimation is typically 

challenging (Lazar and Zhang, 2019). Indeed, as the ES is defined with respect to the VaR, 

without reasonable estimation approaches for the ES, the VaR is often easier to estimate, and 

is therefore a more appealing measure of risk. In this paper, we aim to develop new models 

for predicting the ES. Although our main aim is to contribute methodologically to the 

literature on risk management, we have an applied agenda, and so much of the paper is 

devoted to empirical analysis. In addition to an empirical evaluation of our new models, we 

also assess the accuracy of a variety of previously proposed models, and so the paper aims to 

cast light on the relative merits of these different approaches, in terms of both VaR and ES 

estimation. 

A risk measure is elicitable if the correct forecast of the measure is the unique 

minimiser of the expectation of at least one scoring function. If such a scoring function exists, 

it is called strictly consistent for the measure. A strictly consistent scoring function can be 

used for forecast evaluation and as the loss function in model estimation (Gneiting and 

Raftery, 2007). Although ES is not elicitable, it has been shown that VaR and ES are jointly 

elicitable (Fissler and Ziegel, 2016), which enables the estimation of joint models for these 

two risk measures. Taylor (2019) shows that an example of a joint scoring function is the log 

likelihood of an asymmetric Laplace distribution, which has been used in the quantile 
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regression literature for statistical inference (see, for example, Komunjer, 2005). Taylor 

(2019) uses this scoring function to estimate dynamic models for the VaR and ES, and Patton 

et al. (2019) provide asymptotic results for this proposal. The advantage of directly modelling 

the VaR and ES is that a distributional assumption is avoided. This is appealing because there 

is no consensus regarding the distribution of daily returns, and indeed the distribution may 

vary over time. 

In this paper, we develop a new form of dynamic joint model for the VaR and ES. 

There is an established literature on VaR modelling, with a number of methods available for 

the direct modelling of the quantile, such as the conditional autoregressive VaR (CAViaR) 

models of Engle and Manganelli (2004) or the quantile autoregressive models of Koenker 

and Xiao (2006). In view of this, our emphasis is on modelling the ES. Following Taylor 

(2019), one simple approach is to treat the ES as a constant multiple of the VaR. Although it 

seems reasonable that the ES and VaR will, to some extent, vary together, the use of a 

constant multiplicative factor seems overly restrictive, as it implies that the dynamics of the 

ES are identical to those of the VaR. As an alternative, Taylor (2019) considers 

autoregressive models of the difference between the ES and VaR, which allows the dynamics 

of the ES and VaR to differ. However, this additive autoregressive structure seems 

inefficient, as the difference between the ES and VaR is likely to be at least partly related to 

changes in the VaR, with both being driven by changes in the volatility.  

In this paper, we model the ES as the product of the VaR and a time-varying factor. 

Our proposal is based on previous research that shows that if the quantile for a particular 

probability level is approximated by an expectile with a suitably chosen expectile level, the 

ES can be expressed as the product of the quantile and a constant factor, which depends on 

the expectile level (Taylor, 2008). With increasing interest in ES and expectiles over the past 

decade, this idea has received significant attention in the literature (see, for example, Gerlach 

and Chen, 2015; Gerlach and Wang, 2022; Jiang et al., 2022; Kim and Lee, 2016). The 



5 

 

justification for approximating a quantile by an expectile is that there is a one-to-one mapping 

between quantiles and expectiles for any distribution (Jones, 1994). However, as the returns 

distribution will be time-varying, the mapping between expectiles and quantiles will also vary 

over time. It is, therefore, more reasonable to view the quantile, for a particular probability 

level, as an expectile with time-varying expectile level. In view of this, we write the ES as the 

product of a quantile and a factor that is a function of a time-varying expectile level. To 

model the expectile level, we note that it is a simple function of the Omega ratio, which is the 

ratio of the expected gain to the expected loss. This leads us to model the ES as the product of 

the VaR and a factor that is a function of a dynamic Omega ratio, which we model using 

autoregressive expressions for the gain and loss. Note that, in this paper, the Omega ratio is 

not used in its traditional way as a measure of portfolio performance (Bernardo and Ledoit, 

2000; Bi et al., 2019). Instead, we use it to summarise an important time-varying feature of 

our proposed model. 

Section 2 reviews joint scoring functions for the VaR and ES. Section 3 describes 

limitations of previously proposed joint dynamic models that have been estimated using joint 

scoring functions. Section 4 first shows how the ES can be expressed as the product of the 

VaR and a factor that is a function of a time-varying Omega ratio. We then use this as the 

basis for our proposed new model. Empirical studies using stock indices and individual 

stocks are provided in Sections 5 and 6, respectively. Section 7 concludes the paper. 

 

2. Scoring functions for VaR and ES 

2.1. Scoring functions for VaR 

 For a variable yt, the VaR at level  is defined as inf{ | ( ) }t t ty F y  where Ft is the 

cumulative distribution function of yt. VaR is, therefore, the quantile with probability level  

of Ft. VaR is an elicitable risk measure. Consistent scoring functions are of the form: 
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         ( ) ( )( ) ( ) ( )( )1 1( ), ( ) ( )   = −  −t t t t t tS q y I y q H y H q  

where qt() is the quantile (i.e. the VaR) with probability level ; I is the indicator function; 

and H1 is a weakly increasing function. If H1 is strictly increasing, the scoring function is 

strictly consistent (Gneiting, 2011). In this paper, we consider daily returns rt, and adopt the 

common assumption that their conditional mean is a small constant c, estimated as the mean 

of the in-sample returns. We define yt as the residual yt = rt – c. 

The score of expression (1) is typically used for quantiles, due to its simplicity, and its 

familiarity as the quantile regression loss function. We refer to this as the quantile score. 

       ( ) ( )( )( )( ), ( ) ( )   = −  −t t t t t tS q y I y q y q     (1) 

 

2.2 Joint scoring functions for VaR and ES 

For a variable yt, the ES at level  is defined as the tail expectation ( | ( ))t t tE y y q . 

Although the ES is not elicitable, Fissler and Ziegel (2016) prove it is jointly elicitable with 

the VaR. They show that expression (2) is a consistent scoring function for the VaR and ES.  

 

( ) ( )( ) ( ) ( ) ( )

( ) ( )( )( )

( ) ( )

1 1

2

2

( ), ( ), ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

     

     

 

=  − − 

+ − +  −

− +

t t t t t t t t t

t t t t t t t

t t

S q ES y I y q H q I y q H y

H ES ES q I y q q y

ES a y

 (2) 

ESt() is the ES for probability level ; and H1, H2, 2 and a are functions for which 2 = H2, 

H1 is increasing, and 2 is increasing and convex. The scoring function is strictly consistent if 

2 is strictly increasing and strictly convex. The terms involving H1 constitute a consistent 

scoring function for a quantile, with the other terms evaluating both quantile and ES accuracy 

(Fissler et al., 2016).  

In our empirical analysis, we use the two versions of the joint score that are 

considered by Nolde and Ziegel (2017). We present the two scores in Table 1. For each score, 

2 is strictly increasing and strictly convex, implying that the scores are strictly consistent. 
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The AL score in Table 1 is so named because it differs by just a constant term from the 

negative of the log likelihood function of an asymmetric Laplace density with time-varying 

location and scale parameters. Taylor (2019) points out that using this score for estimation 

amounts to a simple extension of quantile regression. The AL score is the only version of 

Fissler and Ziegel’s (2016) joint score for which the score differences between competing 

forecasts is zero-homogeneous (Patton et al., 2019). This means that the score difference is 

unaffected by multiplying the return and risk measures by a positive value. Patton et al. 

(2019) explain that zero-homogeneity is an appealing property, which has been shown to 

have theoretical advantages in the context of volatility forecast evaluation. We refer to the 

other score in Table 1 as the NZ score, as it was proposed by Nolde and Ziegel (2017).  

 

Table 1. Two joint VaR and ES scoring functions from the set of scoring functions in expression (2). 
 

 H1(x) H2(x) ζ2(x) a(x) 

AL 0 -1/x -ln(-x) 0 

NZ 0 ½(-x)-½ -(-x)½ 0 

 

 

3. Limitations of previously proposed joint dynamic models for VaR and ES 

Taylor (2019) uses the AL score to estimate dynamic joint models for the VaR and 

ES. A CAViaR model is used for the VaR (see Appendix 1). For the ES, Taylor (2019) uses 

two formulations. The static multiplicative ES formulation of expression (3) models the ES as 

the product of the VaR and a constant factor, , which is constrained to be greater than 1.  

            
0( ) ( )  =t tES q        (3) 

A limitation of expression (3) is that it does not allow the ES and VaR to evolve with 

different dynamics. This is addressed by Taylor’s (2019) dynamic additive ES formulation, 

which autoregressively models the distance of the ES beyond the VaR. We present it in 

expressions (4) and (5), where the i are constant non-negative parameters. 
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( ) ( ) = −t t tES q x          (4) 

       where 
( )0 1 1 1 2 1 1 1

1

( ) ( )    − − − − −

−

 + − + 
= 



t t t t t

t

t

q y x if y q
x

x otherwise
    (5) 

A limitation of expressions (4) and (5) is that, for tail quantiles, there will be a small 

number of exceedances, implying that the formulation will respond only slowly to changing 

volatility, and certainly more slowly than the CAViaR model used to model the VaR. 

Furthermore, expressions (4) and (5) seem inefficient, as the difference between the ES and 

VaR is likely to be at least partly related to changes in the VaR, with changes in the volatility 

probably being the fundamental driver behind fluctuations in both. The limitations of the 

static multiplicative and dynamic additive formulations motivate us to develop, in Section 4, 

a new dynamic multiplicative formulation that expresses the ES as the product of the VaR 

and a factor that we model autoregressively, with structure based on theoretical reasoning.   

 

4. Modelling ES as the product of VaR and a dynamic factor 

In this section, we introduce a formulation that expresses the ES as the product of the 

VaR and a factor that we model autoregressively. Before describing our proposal, we 

summarise results from the literature relating expectiles and expected shortfall.  

 

4.1. Expectiles and expected shortfall 

An expectile is defined by Newey and Powell (1987) as the solution of an asymmetric 

least squares minimisation. Just as quantiles generalise the median, expectiles generalise the 

mean (Nolde and Ziegel, 2017). Expression (6) provides a strictly consistent scoring function 

for an expectile )(te  with expectile level . We refer to this as the expectile score. The 

general class of strictly consistent scoring functions is provided by Gneiting (2011).  

         ( ) ( ) ( )
2

( ), ( ) ( )   = −  −t t t t t tS e y I y e y e                (6) 
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The first order condition for the minimisation of the expected expectile score is: 

( )( )
( )( )

( ) ( ) 1

( ) ( )

  

 

 − −
=

 −

t t t t

t t t t

E I y e y e

E I y e y e
.                (7) 

 This can be rewritten as the following expression (Taylor, 2008): 

       
( ) ( )

( )( ) 1 ( )
1 2 1 2

 
 

   

 
= + −  − − 

t t tES e E y                (8) 

where  is the probability of exceeding )(te . Defining yt to be a zero mean residual term, 

resulting after the conditional mean is subtracted from the return, expression (8) becomes: 

( )
( ) 1 ( )

1 2


 

 

 
= +  − 

t tES e .                (9) 

As the probability of exceeding ( )te  is , )(te  is equal to the quantile with 

probability level . Taylor (2008) proposes that expression (9) is used to estimate the ES for 

probability level  by using the expectile ( )te , with suitably chosen expectile level , to 

approximate the quantile with probability level . On the face of it, this seems reasonable, 

because there is a one-to-one mapping between expectiles and quantiles for any distribution 

(Jones, 1994). However, the approach can be criticised because the conditional distribution of 

daily returns varies over time, and so the mapping is also likely to vary over time.  

In view of this, expression (9) should be rewritten because there is unlikely to be an 

expectile with constant expectile level  for which the probability of exceedance is a constant 

. Instead, if we wish to keep the constant probability level  in expression (9) we must 

redefine the expectile as having a time-varying expectile level. In view of this, we rewrite 

expression (9) as: 

( )
( ) 1 ( )

1 2


 

 

 
= +  − 

t
t t t

t

ES e .                         (10) 
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where  is the probability of exceeding ( )t te  . With ( )t te   defined in this way, it is equal to 

the quantile with probability level , and so we can rewrite expression (10) as: 

( )
( ) 1 ( )

1 2


 

 

 
= +  − 

t
t t

t

ES q .               (11) 

Equating a quantile, with constant probability level, to an expectile, with time-varying 

expectile level, relates to the work of Schmidt et al. (2021), who view a point forecast as a 

quantile with dynamic probability level, or expectile with dynamic expectile level. 

 

4.2. A new joint model with ES as the product of VaR and a dynamic factor 

Expression (11) is of practical relevance only if we can model the time-varying 

expectile level t. However, an autoregressive model for t is not immediately apparent, as 

there is no obvious forcing variable. (We use the term ‘forcing variable’ for the variable that 

is lagged and drives changes in an autoregressive model.) To address this, we first turn to 

Bellini and Di Bernardino (2017), who point out that the left-hand side of expression (7) is 

the Omega ratio of Keating and Shadwick (2002). This is an extension of the gain/loss ratio 

originally proposed by Bernardo and Ledoit (2000) as a measure of portfolio performance. 

The Omega ratio is the ratio of the expected gain to the expected loss, as in expression (12).  

        ( )
( )( )
( )( )

( ) ( )
( )

( ) ( )

 


 

 −
 =

 −

t t t t

t

t t t t

E I y e y e
e

E I y e y e
.              (12) 

Based on this expression and expression (7), we can write: 

     ( )
1

( )





−
 =te . 

We use this to rewrite expression (11) as expression (13), which shows the ES expressed as 

the product of the VaR and a factor that is a function of a time-varying Omega ratio t.  

     
( )( )

1
( ) 1 ( )

( ) 1
 

 

 
= + 

  − 
t t

t t

ES q
q

              (13) 
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This is useful because the dynamic Omega ratio ( )( )t tq  is something that we can model. 

We do this through autoregressions for the gain and loss corresponding to the quantile ( )tq . 

In view of the expression for the expected gain in the numerator of expression (12), the 

variable ( )( ) ( )  −t t t tI y q y q  is the natural choice of forcing variable in the 

autoregression for the gain corresponding to the quantile ( )tq . Similarly, the denominator 

of expression (12) suggests that the natural choice of forcing variable in the autoregression 

for the loss is ( )( ) ( )  −t t t tI y q y q . 

We present our proposal in the joint model of expressions (14) to (18), where we use 

asymmetric slope CAViaR for the VaR, and ES modelled using a dynamic Omega ratio. 

      ( ) ( )0 1 1 1 2 1 1 3 1( ) 0 0 ( )     − − − − −= +  +  +t t t t t tq I y y I y y q             (14) 

      
( )( )

1
( ) 1 ( )

( ) 1
 

 

 
= + 

  − 
t t

t t

ES q
q

               (15) 

where       ( )
( )

( )

( )
( )

( )





 =

t t

t t

t t

G q
q

L q
                  (16) 

      ( ) ( ) ( )0 1 1 1 1 1 2 1 1( ) ( ) ( ) ( )      − − − − − −= +  − +t t t t t t t tG q I y q y q G q             (17) 

      ( ) ( ) ( )0 1 1 1 1 1 2 1 1( ) ( ) ( ) ( )      − − − − − −= +  − +t t t t t t t tL q I y q y q L q             (18) 

Gt and Lt are the gain and loss. In our implementation of the model, we include the 

constraints that the constant parameters 1, 2, 1 and 2 are non-negative, and that  1+2<1 

and 1+2<1. We set 0 to be equal to (1-1-2) multiplied by the mean of the in-sample 

values of ( )( ) ( )  −t t t tI y q y q . Similarly, we set 0 to be equal to (1-1-2) multiplied by 

the mean of the in-sample values of ( )( ) ( )  −t t t tI y q y q . The static multiplicative ES 

formulation of expression (3) is a special case of this model, with i and i chosen so that Gt, 

Lt and t are constant. In terms of initialisation, we set 
0 ( )q  to be the  quantile of the 
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empirical distribution of the first 300 observations, which was the approach taken by Engle 

and Manganelli (2004) for their CAViaR models. In our empirical work, there was 

sometimes no quantile exceedances in the first 300 periods, so we opted to use all in-sample 

observations to initialise G0 and L0. We set these as the mean of the in-sample values of  

( )( ) ( )  −t t t tI y q y q  and ( )( ) ( )  −t t t tI y q y q , respectively. 

 The parameters in the VaR and ES parts of the model are estimated jointly by 

optimising one of Fissler and Ziegel’s (2016) joint scoring functions of expression (2). 

Hypothesis testing of the model parameters can be performed using the bootstrapping 

approach of Taylor (2019) or, when the AL score is used for estimation, the asymptotic 

results of Patton et al. (2019). 

We should point out that, in its traditional use as a measure of portfolio performance, 

the Omega ratio is not time-varying and has gain and loss defined with respect to a constant 

threshold. By contrast, to capture time-variation in the relationship between the ES and the 

VaR, in our model of expressions (14) to (18), the Omega ratio is time-varying due to the 

gain and loss being modelled autoregressively. Allowing time-variation in the gain and loss is 

an important aspect of the model, with the dynamic Omega ratio simply being a convenient 

way to summarise this. Indeed, it is worth noting that the Omega ratio is not in itself of great 

interest, and that substituting expression (16) into expression (15) removes the Omega ratio 

from the formulation.  

 

5. Empirical analysis with stock indices 

In this section, we compare the accuracy of day-ahead VaR and ES forecasts 

produced by our proposed approach and a set of benchmark methods. Our empirical study 

considered the following three probability levels: 1%, 2.5% and 5%. The levels 1% and 5% 

have been very widely considered in studies of VaR estimation, and 2.5% has relatively 
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recently been proposed, particularly when estimating the ES (Basel Committee, 2016).  

We used daily log returns for the following five stock indices: CAC 40, DAX 30, 

FTSE 100, NIKKEI 225 and S&P 500. Each series consisted of the 4000 daily observations 

ending on 29 June 2018. Due to different holiday periods in each country, the start dates 

differed for the five indices. The start dates were 14 November 2002, 2 October 2002, 3 

September 2002, 14 March 2002, and 12 August 2002 for the CAC 40, DAX 30, FTSE 100, 

NIKKEI 225 and S&P 500, respectively. In our forecasting study, we used a rolling window 

of 2,000 observations for the repeated re-estimation of parameters for a variety of methods. 

This delivered out-of-sample forecasts for the final 2,000 periods of each series. We used 

these forecasts to compare the accuracy of the various methods. As we stated in Section 2.1, 

our modelling focused on the variable yt = rt – c, where rt is the daily log return and c is a 

constant. We estimated c using the mean of each rolling window of 2,000 in-sample returns. 

 

5.1. Benchmark methods 

 We implemented a variety of time series methods for predicting the VaR and ES. 

These methods can be classed as nonparametric, parametric and semiparametric. As a simple 

nonparametric benchmark, we used historical simulation based on the most recent 250 

observations. The quantile of the empirical distribution of the 250 values was used as the 

VaR forecast for the next day, and the ES forecast was computed as the mean of the values 

exceeding the VaR forecast within the sample of 250. 

 In terms of parametric methods, we fitted the GARCH(1,1) and asymmetric GJR-

GARCH(1,1) models using maximum likelihood based on the Student t distribution. For each 

fitted model, we produced VaR and ES forecasts using three different approaches. Our first 

approach simply used the fitted Student t distribution. The second approach constructed VaR 

and ES forecasts as the product of the volatility forecast and the corresponding VaR or ES 

forecast of the empirical distribution of in-sample residuals yt standardised by the estimated 
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volatility (see Christoffersen, 2012, Section 6.4). We term this the filtered approach. The 

third approach was the method of McNeil and Frey (2000), which applies peaks-over-

threshold extreme value theory (EVT) to the standardised residuals. The filtered and EVT 

approaches can be classed as semiparametric methods, as they involve a model for the 

volatility, but avoid an assumption for the type of conditional distribution. The remaining 

methods that we describe in this section, and also the methods in Section 5.2, are also classed 

as semiparametric methods because they also involve model formulations, but avoid a 

distributional assumption. 

We implemented the method of Taylor (2008), which uses expression (9) to estimate 

the ES for probability level  with the expectile ( )te   used to approximate the quantile with 

probability level . Taylor (2008) introduces conditional autoregressive expectile (CARE) 

models for this purpose. The value of  is chosen so that the proportion of in-sample 

observations that exceed the fitted expectile values is close to  the probability level. To 

optimise , a CARE model is repeatedly re-estimated, reducing the  by 0.0001 each time, 

until the proportion of in-sample exceedances beyond the fitted expectile is closer to  than a 

predefined tolerance. We initialised the procedure with values of =0.0018, =0.0055, and 

=0.0167 for the 1%, 2.5% and 5% probability levels, respectively. These values were chosen 

after initial experimentation. In our implementation of the approach, we used the symmetric 

absolute value CARE and asymmetric slope CARE models, which are presented in 

expressions (19) and (20), respectively.  

       
0 1 1 2 1( ) ( )    − −= + +t t te y e                 (19) 

       ( ) ( )0 1 1 1 2 1 1 3 1( ) 0 0 ( )     − − − − −= +  +  +t t t t t te I y y I y y e             (20) 

The i are constant parameters, optimised using the procedure of Taylor (2008), which was 

closely based on the approach of Engle and Manganelli (2004) for CAViaR models. First, 104 
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candidate parameter vectors are sampled from uniform distributions with lower and upper 

bounds based on initial experimentation. The optimised parameter vector from the previous 

window of observations was also included as a candidate vector. Of all the candidate vectors, 

the ten giving the lowest value of the expectile score of expression (6) were then used in turn 

as the initial parameter vectors in a quasi-Newton algorithm. The resulting parameter vector 

with lowest expectile score was chosen as the final parameter vector. 

Patton et al. (2019) propose joint dynamic models for the VaR and ES, based on the 

generalised autoregressive score (GAS) models of Creal et al. (2013) and Harvey (2013), 

which are autoregressive with forcing variable specified as the lagged score of the log-

likelihood. The negative of the AL scoring function is used as a quasi-log-likelihood. In their 

work, the most accurate of their models was the following one-factor GAS model: 

( )( ) exp =t tq a                    (21) 

( )( ) exp =t tES b ,    where b < a < 0                (22) 

and 
( )

( )( ) ( )1 1 1 1 1

1

1 1
exp exp

exp
    

 
− − − − −

−

−  
= +  − 

 
t t t t t t

t

I y a y b
b

.            (23) 

where a, b,  and  are constant parameters. In this model, the ES is a constant multiple of the 

VaR, and so it can be viewed as using a static multiplicative formulation for the ES, as in 

expression (3). We fitted the model of expressions (21) to (23) to each of the five stock 

indices. In Appendix C of their paper, Patton et al. (2019) describe a parameter estimation 

approach that aims to overcome sensitivity to initial parameter values. Their approach 

involves initially estimating models using a “smoothed” form of the AL score that avoids the 

use of the indicator function in the score and in the model expressions. We did not find this 

approach to be useful in our empirical work, which differs from the study of Patton et al. 

(2019), in that we repeatedly re-estimate parameters, while they estimate the model just once 

for each stock index. To estimate the one-factor GAS model, we employed the same 
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approach used by Taylor (2019) for joint VaR and ES models. This is the same as the 

parameter optimisation procedure that we described for CARE models in the previous 

paragraph, with the expectile score replaced by the AL joint score.  

 

5.2. Joint models with CAViaR for VaR and four specifications for ES 

 We initially implemented six different joint models for VaR and ES. The different 

model specifications involved either the symmetric or asymmetric CAViaR models of 

Appendix 1, with one of the following three different specifications for the ES: the static 

multiplicative formulation of expression (3), the dynamic additive formulation of expressions 

(4) and (5), and our new dynamic Omega formulation of expressions (15) to (18). 

We estimated the six joint VaR and ES models using the AL and NZ scores. We used 

the same estimation approach as Taylor (2019). This is similar to the parameter optimisation 

procedure that we described for CARE models in Section 5.1 with two notable differences. 

First, the expectile score was replaced by either the AL or NZ joint scores. Second, for the 

104 candidate parameter vectors, we set the parameters in the CAViaR component of the joint 

model to be the values optimised separately by minimising the quantile score, while the other 

model parameters were randomly sampled. We did this to assist the optimization, and we 

found it to be preferable to the alternative of using a much larger number of candidate 

parameter vectors, each consisting of randomly sampled values for all the model parameters. 

In using, as starting values, CAViaR model parameters, estimated separately by minimising 

the quantile score, we have followed the approach of White et al. (2015) for their multi-

equation models. Note, however, that this approach was used only to get starting parameters, 

with the final optimised parameters estimated jointly by minimising the AL or NZ score. 

We now graphically present estimates from the joint model with asymmetric slope 

CAViaR for the VaR and our proposed new dynamic Omega formulation for the ES, with 

parameters estimated by minimising the in-sample AL score for the 2.5% probability level of 
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the S&P 500 returns. This is the model presented in expressions (14) to (18). For the out-of-

sample period, Figure 1 plots the minimised in-sample AL score values, and the parameters 

of the gain and loss expressions in the ES part of the model. The minimised AL score values 

change relatively smoothly over time, giving some reassurance that the minimisation is 

reasonably stable. In a GARCH volatility model, the coefficient of the forcing variable is 

typically quite small, while the autoregressive coefficient is quite close to 1. Figure 1 shows 

that the same is true for the forcing variable coefficients, 1 and 1, and the autoregressive 

coefficients, 2 and 2, of expressions (17) and (18). 1 is larger than 1 indicating that the 

gain is more rapidly evolving than the loss, which is perhaps due to the loss being more 

challenging to model using an autoregressive formulation, as the forcing variable for the loss 

relies on quantile exceedances, which occur just 2.5% of the time for this model (because the 

probability level has been chosen to be 2.5%).  

Figure 2 shows the estimated values of the gain and loss. The ratio of expected gain to 

expected loss is the Omega ratio, and this is plotted in Figure 3, along with the factor that is 

multiplied by the VaR forecast to give the ES forecast. The formula for this dynamic 

multiplicative factor is given within the large parentheses of expression (15). Although, as 

shown in Figure 2, the estimated loss was always substantially smaller than the gain, we 

found that very occasionally the loss would be relatively large, leading to a relatively small 

Omega ratio, with the result that the multiplicative factor became unreasonably large. This 

occurs in two periods in Figure 3, and each can be attributed to sudden large negative values 

of the return in the previous period (-6.9% on 17 August 2011 and -4.2% on 2 February 

2018), which caused the loss to spike in Figure 2. Although we found that the very large 

values for the multiplicative factor had negligible effect on the out-of-sample evaluation 

summary results, we felt it was unappealing, and so we took the pragmatic step of including a 

cap on the multiplicative factor. For the 1% and 2.5% probability levels, we set the cap as 2, 
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and for the 5% probability level, we used a cap of 3. Each of these values was the smallest 

integer that exceeded the largest of the ratios of ES to VaR for any other method in our 

empirical analysis. Figure 4 plots the resulting capped multiplicative factor, along with the 

returns and the VaR and ES out-of-sample forecasts, which can be seen to vary with the 

volatility in the series. Our decision to cap the multiplicative factor amounts to an 

acknowledgement that the factor is exposed to the instability inherent in the Omega ratio due 

to occasional extreme values for the loss. This links to the concerns expressed about the 

Omega ratio as a measure of portfolio performance (see, for example, Caporin et al., 2018). 
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Figure 1. For the S&P 500 and 2.5% probability level, parameters and in-sample AL score from 

asymmetric slope CAViaR with dynamic Omega for ES, estimated by minimising the AL score. 
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Figure 2. For the S&P 500 and 2.5% probability level, out-of-sample estimates of the gain and loss 

from asymmetric slope CAViaR with dynamic Omega for ES, estimated by minimising the AL score. 
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Figure 3. For the S&P 500 and 2.5% probability level, out-of-sample estimates of the Omega ratio and 

ES multiplicative factor from asymmetric slope CAViaR with dynamic Omega for ES, estimated by 

minimising the AL score.  
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Figure 4. For the S&P 500 and 2.5% probability level, capped ES multiplicative factor and out-of-

sample VaR and ES forecasts from asymmetric slope CAViaR with dynamic Omega for ES, 

estimated by minimising the AL score.  

 

In the dynamic Omega formulation, the loss is challenging to model autoregressively 

because it relies on a relatively small number of quantile exceedances. The simple alternative 

is to assume the loss is constant, with one appeal of this being that it avoids the need to cap 

the multiplicative factor. To test whether the loss should be treated as constant requires a test 

of the significance of the parameter 1, which is the coefficient of the forcing variable in the 
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autoregressive model for the loss. The low estimates for 1 in Figure 1 also raise the issue of 

significance testing. For the test, we produced bootstrapped standard errors using the first 

estimation window of 2,000 observations for each of the five stock indices (see Taylor, 

2019). We applied the test to the models involving the dynamic Omega ratio with either 

symmetric or asymmetric CAViaR, and estimation based on the AL and NZ scores. As 

CAViaR models are well established, our interest here is in the significance of the parameters 

in the equations of expressions (17) and (18), which drive the dynamic omega ratio.  

In Table 2, we summarise significance of 1 and 1, which are the coefficients of the 

forcing variables in these two equations. The table shows the number of indices for which 1 

and 1 were significant in the different versions of the model. As we are considering five 

indices, the maximum value for any entry in the table is 5. We have three comments on the 

results. Firstly, the results are reasonably similar for the two different approaches to 

estimation (minimising the AL and NZ scores). Secondly, the parameters were significant 

more often for the symmetric CAViaR model. Thirdly, 1 was significant notably more often 

than 1. Indeed, for the formulation involving asymmetric CAViaR, the loss equation forcing 

parameter 1 was generally not significant. Although this may not be detrimental to the 

model, it seems worth considering an additional version of the dynamic Omega formulation 

in which the autoregressive model of the loss in expression (18) is replaced by a constant 

value, while the autoregressive model for the gain in expression (17) is kept in the 

formulation. We implemented this as a fourth form of joint model for the VaR and ES. In the 

tables of Section 5.3 in which we report out-of-sample results, we include the text “cst loss” 

to differentiate this version of the dynamic Omega formulation from the full version 

presented in expressions (15) to (18). Note that, even if the loss is treated as constant, 

expression (15) remains a multiplicative formulation in which the ES is expressed as the 

product of the VaR and a dynamic factor. With constant loss, this factor is modelled as time-
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varying due to the autoregressive modelling of the gain in expression (17). For tail quantiles, 

there are few quantile exceedances, implying that the gain, and hence the dynamic factor, is 

largely dictated by the absolute differences between the observation and the quantile, which 

will be related to the volatility. This is actually evident in Figure 2, which shows the gain 

varying over time in a similar fashion to the volatility in the returns in Figure 4. 

 

Table 2. The number of indices for which the parameters 1 and 1 were significant in the dynamic 

Omega formulation of expressions (15) to (18), fitted to the first estimation window of 2,000 

observations. Significance testing is based on bootstrapped standard errors. The four models 

correspond to two different forms of CAViaR, and estimation based on two different scores. 

 

 1   1  

 1% 2.5% 5% Mean  1% 2.5% 5% Mean 

AL score & symmetric CAViaR 3 3 3 3.00  2 3 4 3.00 

AL score & asymmetric CAViaR 2 1 1 1.33  0 0 0 0.00 

NZ score & symmetric CAViaR 3 4 4 3.67  0 1 5 2.00 

NZ score & asymmetric CAViaR 1 2 1 1.33  0 0 2 0.67 

Mean 2.25 2.5 2.25   0.5 1 2.75  

 

5.3. Out-of-sample results 

 We now describe the results of calibration tests and scoring functions that we used to 

evaluate the 2,000 out-of-sample VaR and ES forecasts for the five indices. Our discussion 

focuses on Tables 3 to 5, which summarise the results for the 1%, 2.5% and 5% probability 

levels, respectively. In each column of the tables, the best result is indicated in bold. 

If a quantile forecast ˆ ( )tq  is unconditionally calibrated, the percentage of VaR 

exceedances will be equal to the probability level . The first column of values in Tables 3 to 

5 presents this ‘VaR violation percentage’ averaged across the five indices. To test 

unconditional calibration, we investigated whether the variable ˆ( ( )) = − t t tHit I y q  has 

zero unconditional expectation. We tested this by applying a standard test for a proportion to 

the mean of the Hitt variable. In Tables 3 to 5, the second column of values show the number 

of indices for which unconditional calibration was rejected for each method at the 5% 



22 

 

significance level. The only notably poor unconditional calibration results were for historical 

simulation for the 1% probability level, and asymmetric CARE for the 5% probability level.  

We tested for quantile conditional calibration using Engle and Manganelli’s (2004) 

dynamic quantile (DQ) test, which tests the variable Hitt for zero conditional expectation. We 

included four lags in the test’s regression. In Tables 3 to 5, the third column of values shows 

the number of indices for which conditional calibration was rejected by this test, using a 5% 

significance level. For all three probability levels, historical simulation performed poorly, and 

conditional calibration tended to be better for the asymmetric GARCH and CAViaR models 

than for the symmetric versions of these models. The benefit from using asymmetric models 

is often reported in the literature (see, for example, Ning et al., 2015). We also assessed 

quantile conditional calibration using the VQR test of Gaglianone et al. (2011), which tests 

for zero intercept and unit coefficient in a quantile regression of the returns on the quantile 

forecast. For this test, the number of test rejections are presented in the fourth column of 

values in Tables 3 to 5. The only clear conclusion from these values is that historical 

simulation performed poorly. 

To evaluate calibration of the ES forecasts, we used the bootstrap test of McNeil and 

Frey (2000), which focuses on the discrepancy between a VaR exceedance and the ES 

forecast. We standardised by dividing each discrepancy by the VaR forecast. The 

standardised discrepancies were tested for zero mean. In Tables 3 to 5, the fifth column of 

values shows the number of indices for which calibration was rejected at the 5% significance 

level. The results show that for all methods involving asymmetric models, calibration was 

rejected for none or just one of the five indices. 

 We used the AL and NZ scores of Table 1 for the joint evaluation of the out-of-

sample VaR and ES forecasts. To summarise performance across the five stock indices, we 

calculated an overall skill score, which assessed performance relative to historical simulation. 

To obtain the skill score for each method, we calculated the geometric mean of the ratios of 
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the (arithmetic) mean score for the method to the (arithmetic) mean score for historical 

simulation, then subtracted this from 1, and multiplied the result by 100. The AL and NZ skill 

scores are presented in the final two columns in Tables 3 to 5. Note that higher values of the 

skill scores are better. In addition to using bold to indicate the best performing method in 

each column, we use underlining to highlight the best performing ES formulation within each 

group of four joint models estimated using the AL or NZ scores in the bottom 16 rows of 

each table. The underlining is of interest because our focus in this paper has been to propose 

the dynamic Omega formulation for ES as an alternative to the static multiplicative and 

dynamic additive ES formulations previously proposed.  

In Table 3, the bold indicates that, overall, the best AL and NZ skill scores for the 1% 

probability level correspond to the use of asymmetric CAViaR for the VaR with the dynamic 

Omega modelling of the ES, with parameters estimated by minimising either the AL or NZ 

scores. There was no clear superiority between the version with the loss modelled 

autoregressively and with the loss assumed constant. The same comment can be made for the 

2.5% and 5% probability levels in Tables 4 and 5. In these two tables, we see support for the 

two dynamic Omega ES formulations, regardless of whether the symmetric or asymmetric 

CAViaR models were used for the VaR, but particularly when the symmetric CAViaR model 

was used. These tables show that, overall, for the 2.5% and 5% probability levels, the best 

AL and NZ skill scores were produced by the joint VaR and ES models based on asymmetric 

CAViaR for the VaR with either of the two dynamic Omega formulations for the ES, 

estimated using either the AL or NZ scores.  

The joint VaR and ES score results in Tables 3 to 5 for the one-factor GAS model are 

poor. We feel that this is due to the choice of the forcing variable. Expression (23) shows that 

this forcing variable is such that the dynamics of the model are affected by the magnitude of 

the observations yt-1 only when they exceed the VaR, which limits the ability of the model to 

capture time-varying volatility. This is reminiscent of the adaptive CAViaR model of Engle 
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and Manganelli (2004), which is notably less accurate than the other CAViaR models. The 

similarity of the GAS model with the adaptive CAViaR model is evident in Figure 5 of 

Patton et al. (2019), which shows that the GAS model forecasts form a sequence of 

monotonic rising functions between periods when the observation exceeds the VaR. This 

behaviour is also found in the quantile forecasts from the adaptive CAViaR model. 

For each of the five stock indices, Table 6 presents the AL scores for the out-of-

sample period for the 2.5% probability level. Lower values are better. The best scores are for 

the asymmetric models, which is also the case for the corresponding averaged skill score 

values presented in the penultimate columns of Tables 3 to 5. For the 2,000 out-of-sample 

periods for the S&P 500, Figure 1 shows the minimised in-sample AL scores for the model 

that used asymmetric CAViaR for the VaR and dynamic Omega modelling of the ES. The 

final value in the plot is approximately 0.8, and this corresponds to the parameter 

optimisation being performed on the moving window of 2,000 observations that almost 

entirely coincides with the out-of-sample period. From Table 6, we can see that the out-of-

sample value was 0.827 for this model applied to the S&P 500, which is only a little higher 

than the in-sample minimised value.  

Although we have highlighted differences among the AL and NZ scores and skill 

scores, in many cases the differences are quite small, which motivates consideration of 

significance testing. The model confidence set (MCS) testing framework of Hansen et al. 

(2011) enables a set of models to be obtained for which there is a pre-specified probability 

that the set contains the best model, when judged by a chosen loss function. If a model is not 

contained in the MCS, it is considered less likely to be the best model than those that are 

included in the MCS. We implemented MCS testing separately based on the AL and NZ joint 

scores. In each MCS test, we used the equivalence test based on the Diebold-Mariano test, 

and the one-sided elimination rule described as Tmax,M by Hansen et al. (2011). We followed 

Hansen et al. (2011) by considering 75% and 90% confidence levels. For conciseness, we 
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report the results for only the 75% confidence level, as they show greater differences between 

the methods. For each of the three probability levels (1%, 2.5% and 5%), and for each scoring 

function (AL and NZ score), Table 7 reports the number of indices for which each method 

was included in the MCS. As we have five indices in our study, the best possible value in 

each table is 5. Historical simulation and the GAS model were clearly the worst methods. For 

the other methods, the table shows that it is better to use the asymmetric versions of the 

GARCH, CARE and CAViaR models, although this is more clearly the case for the 5% 

probability level than the 1% and 2.5% probability levels. The final 16 rows of values in 

Table 7 do not show clear preference for any one of the four ES formulations (static 

multiplicative, dynamic additive, dynamic Omega or dynamic Omega with constant loss). 

Nevertheless, it is interesting to see that joint models, with asymmetric CAViaR for the VaR 

and any of the four formulations for the ES, were included in the MCS for all five indices, for 

all three probability levels, and for estimation based on either the AL or NZ score. 
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Table 3. Summary of results for 1% VaR and ES estimated for the five stock indices. The first 

column of values is the percentage of VaR exceedances averaged across the indices; the ideal would 

be 1%. The next four columns present the number of indices for which calibration was rejected; lower 

values are better. The final two columns present skill scores; higher values are preferable. Horizontal 

lines separate different types of model, with hashed lines separating symmetric and asymmetric 

versions of the models. 

 

 
VaR 

violation % 

VaR 
 hit % 
test 

VaR  
DQ 
test  

VaR 
VQR 
test 

ES 
bootstrap 

test 

VaR & ES  
AL  

skill score  

VaR & ES  
NZ  

skill score 

Historical simulation and GAS        

    Historical simulation 1.6 4 5 5 2 0.0 0.0 

    1-factor GAS 1.1 0 2 1 1 10.5 5.9 

Symmetric GARCH and CARE        

    GARCH-t 1.3 1 3 2 1 17.5 10.3 

    GARCH-filtered 1.0 0 4 2 0 17.8 10.4 

    GARCH-EVT 0.8 0 3 3 0 17.8 10.3 

    Symmetric-CARE 0.9 0 1 2 0 17.9 10.5 

Asymmetric GARCH and CARE       

    GJR-GARCH-t 1.2 0 1 3 1 18.7 11.3 

    GJR-GARCH-filtered 1.0 0 0 2 0 18.6 11.2 

    GJR-GARCH-EVT 0.8 0 1 2 1 18.5 10.9 

    Asymmetric-CARE 0.8 0 2 0 0 18.0 10.8 

AL score for estimation with symmetric CAViaR      

    Static multiplicative for ES 1.0 0 2 1 0 17.5 10.3 

    Dynamic additive for ES 1.0 0 2 2 0 17.9 10.5 

    Dynamic  for ES 1.0 0 2 1 0 17.6 10.2 

    Dynamic  for ES: cst loss 1.0 0 2 1 0 17.7 10.3 

AL score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 0.9 0 1 0 0 19.1 11.5 

    Dynamic additive for ES 0.9 0 1 0 0 19.2 11.5 

    Dynamic  for ES 1.0 0 1 0 0 19.6 11.7 

    Dynamic  for ES: cst loss 0.9 0 1 1 0 19.4 11.6 

NZ score for estimation with symmetric CAViaR      

    Static multiplicative for ES 1.0 0 2 1 0 17.7 10.4 

    Dynamic additive for ES 1.0 0 3 0 0 17.8 10.4 

    Dynamic  for ES 1.0 0 2 1 0 18.0 10.4 

    Dynamic  for ES: cst loss 1.0 0 2 3 0 18.0 10.5 

NZ score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 0.9 0 1 1 0 19.2 11.6 

    Dynamic additive for ES 0.9 0 1 0 0 19.2 11.5 

    Dynamic  for ES 1.0 0 1 0 0 19.5 11.7 

    Dynamic  for ES cst loss 1.0 0 1 0 0 19.6 11.7 

Notes: Bold indicates the best performing method in each column. For each group of four models, estimated 

using either the AL or NZ score, underlining indicates the best skill score value. 
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Table 4 Summary of results for 2.5% VaR and ES estimated for the five stock indices. The first 

column of values is the percentage of VaR exceedances averaged across the indices; the ideal would 

be 2.5%. The next four columns present the number of indices for which calibration was rejected; 

lower values are better. The final two columns present skill scores; higher values are preferable. 

Horizontal lines separate different types of model, with hashed lines separating symmetric and 

asymmetric versions of the models. 

 

 
VaR 

violation % 

VaR 
 hit % 
test 

VaR  
DQ 
test  

VaR 
VQR 
test 

ES 
bootstrap 

test 

VaR & ES  
AL  

skill score  

VaR & ES  
NZ  

skill score 

Historical simulation and GAS        

    Historical simulation 2.9 0 5 3 3 0.0 0.0 

    1-factor GAS 2.2 0 2 0 0 10.8 5.1 

Symmetric GARCH and CARE       

    GARCH-t 3.0 2 1 0 1 13.9 6.7 

    GARCH-filtered 2.3 0 1 1 1 14.3 6.9 

    GARCH-EVT 2.3 0 2 0 0 14.4 6.9 

    Symmetric-CARE 2.1 1 1 1 2 14.3 6.8 

Asymmetric GARCH and CARE       

    GJR-GARCH-t 3.0 1 0 0 1 16.1 8.0 

    GJR-GARCH-filtered 2.3 0 0 0 0 16.2 7.9 

    GJR-GARCH-EVT 2.3 0 0 1 0 16.2 7.9 

    Asymmetric-CARE 2.0 1 1 0 0 16.4 8.1 

AL score for estimation with symmetric CAViaR      

    Static multiplicative for ES 2.2 1 1 0 2 14.1 6.8 

    Dynamic additive for ES 2.2 0 1 0 0 14.0 6.7 

    Dynamic  for ES 2.3 0 2 2 2 14.5 6.8 

    Dynamic  for ES: cst loss 2.3 0 2 0 1 14.4 6.9 

AL score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 2.1 1 1 0 1 16.3 8.0 

    Dynamic additive for ES 2.2 0 1 0 0 16.5 8.1 

    Dynamic  for ES 2.2 0 1 1 0 16.4 8.1 

    Dynamic  for ES: cst loss 2.2 0 1 0 0 16.5 8.1 

NZ score for estimation with symmetric CAViaR      

    Static multiplicative for ES 2.2 1 3 0 2 14.0 6.7 

    Dynamic additive for ES 2.2 0 2 0 0 14.0 6.7 

    Dynamic  for ES 2.2 0 2 0 0 14.6 6.9 

    Dynamic  for ES: cst loss 2.2 0 2 1 0 14.4 6.9 

NZ score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 2.1 1 1 0 1 16.2 8.0 

    Dynamic additive for ES 2.2 0 1 0 0 16.3 8.0 

    Dynamic  for ES 2.1 0 1 0 0 16.4 8.0 

    Dynamic  for ES: cst loss 2.1 0 1 0 0 16.5 8.1 

 

Notes: Bold indicates the best performing method in each column. For each group of four models, estimated 

using either the AL or NZ score, underlining indicates the best skill score value. 
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Table 5. Summary of results for 5% VaR and ES estimated for the five stock indices. The first 

column of values is the percentage of VaR exceedances averaged across the indices; the ideal would 

be 5%. The next four columns present the number of indices for which calibration was rejected; lower 

values are better. The final two columns present skill scores; higher values are preferable. Horizontal 

lines separate different types of model, with hashed lines separating symmetric and asymmetric 

versions of the models. 
 

 
VaR 

violation % 

VaR 
 hit % 
test 

VaR  
DQ 
test  

VaR 
VQR 
test 

ES 
bootstrap 

test 

VaR & ES  
AL  

skill score  

VaR & ES  
NZ  

skill score 

Historical simulation and GAS        

    Historical simulation 5.2 0 5 3 1 0.0 0.0 

    1-factor GAS 4.4 1 2 1 1 9.8 3.8 

Symmetric GARCH and CARE       

    GARCH-t 5.5 1 1 0 1 12.3 4.7 

    GARCH-filtered 4.3 1 3 0 1 12.2 4.6 

    GARCH-EVT 4.5 1 3 0 0 12.2 4.6 

    Symmetric-CARE 4.2 2 1 0 0 12.1 4.6 

Asymmetric GARCH and CARE       

    GJR-GARCH-t 5.4 0 0 0 1 15.1 5.9 

    GJR-GARCH-filtered 4.2 1 1 1 1 14.8 5.7 

    GJR-GARCH-EVT 4.5 0 0 0 1 15.0 5.8 

    Asymmetric-CARE 4.0 3 1 2 1 14.8 5.8 

AL score for estimation with symmetric CAViaR      

    Static multiplicative for ES 4.4 2 2 1 1 12.1 4.5 

    Dynamic additive for ES 4.4 1 1 1 0 11.9 4.5 

    Dynamic  for ES 4.6 1 3 0 3 12.9 4.8 

    Dynamic  for ES: cst loss 4.6 0 2 0 3 12.6 4.7 

AL score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 4.1 1 1 1 1 15.1 5.9 

    Dynamic additive for ES 4.2 1 1 1 0 15.2 5.9 

    Dynamic  for ES 4.2 1 2 1 0 15.1 5.8 

    Dynamic  for ES: cst loss 4.1 1 2 1 0 15.1 5.9 

NZ score for estimation with symmetric CAViaR      

    Static multiplicative for ES 4.4 1 2 1 0 12.1 4.5 

    Dynamic additive for ES 4.4 0 2 0 0 12.0 4.5 

    Dynamic  for ES 4.5 0 3 0 2 12.8 4.7 

    Dynamic  for ES: cst loss 4.5 0 1 1 3 12.6 4.7 

NZ score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 4.1 2 1 1 1 15.0 5.9 

    Dynamic additive for ES 4.2 1 1 1 0 15.0 5.9 

    Dynamic  for ES 4.1 1 1 1 0 15.1 5.9 

    Dynamic  for ES: cst loss 4.1 1 1 1 0 15.1 5.9 

 

Notes: Bold indicates the best performing method in each column. For each group of four models, estimated 

using either the AL or NZ score, underlining indicates the best skill score value. 
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Table 6. AL score for 2.5% VaR and ES for each of the five stock indices. Lower values are 

preferable. Horizontal lines separate different types of model, with hashed lines separating symmetric 

and asymmetric versions of the models. 

 

 CAC 40 DAX 30  FTSE 100 NIKKEI 225  S&P 500 

Historical simulation and GAS      

    Historical simulation 1.266 1.256 0.994 1.457 1.067 

    1-factor GAS 1.173 1.135 0.871 1.333 0.892 

Symmetric GARCH and CARE      

    GARCH-t 1.115 1.088 0.848 1.283 0.876 

    GARCH-filtered 1.115 1.080 0.843 1.278 0.872 

    GARCH-EVT 1.115 1.082 0.841 1.278 0.871 

    Symmetric-CARE 1.113 1.080 0.839 1.285 0.875 

Asymmetric GARCH and CARE      

    GJR-GARCH-t 1.095 1.078 0.820 1.267 0.827 

    GJR-GARCH-filtered 1.095 1.077 0.819 1.263 0.827 

    GJR-GARCH-EVT 1.099 1.079 0.818 1.262 0.822 

    Asymmetric-CARE 1.091 1.061 0.818 1.256 0.838 

AL score for estimation with symmetric CAViaR    

    Static multiplicative for ES 1.117 1.080 0.843 1.279 0.884 

    Dynamic additive for ES 1.115 1.082 0.844 1.282 0.886 

    Dynamic  for ES 1.114 1.085 0.835 1.269 0.874 

    Dynamic  for ES: cst loss 1.109 1.080 0.840 1.269 0.882 

AL score for estimation with asymmetric CAViaR    

    Static multiplicative for ES 1.096 1.064 0.816 1.272 0.825 

    Dynamic additive for ES 1.088 1.064 0.815 1.268 0.827 

    Dynamic  for ES 1.092 1.065 0.816 1.268 0.827 

    Dynamic  for ES: cst loss 1.092 1.065 0.815 1.269 0.823 

NZ score for estimation with symmetric CAViaR    

    Static multiplicative for ES 1.119 1.081 0.842 1.281 0.886 

    Dynamic additive for ES 1.114 1.082 0.840 1.283 0.885 

    Dynamic  for ES 1.113 1.077 0.836 1.272 0.871 

    Dynamic  for ES: cst loss 1.113 1.078 0.840 1.272 0.878 

NZ score for estimation with asymmetric CAViaR    

    Static multiplicative for ES 1.094 1.066 0.819 1.276 0.828 

    Dynamic additive for ES 1.087 1.064 0.819 1.271 0.832 

    Dynamic  for ES 1.090 1.063 0.817 1.271 0.826 

    Dynamic  for ES: cst loss 1.090 1.063 0.818 1.267 0.826 

 

Notes: Bold indicates the best performing method in each column. For each group of four models, estimated 

using either the AL or NZ score, underlining indicates the best score value. 
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Table 7. Summary of model confidence set results, based on AL and NZ scores, for models applied to 

the five stock indices. Values presented are the number of indices for which each method is within the 

model confidence set for the 75% confidence level. Higher values are preferable. Horizontal lines 

separate different types of model, with hashed lines separating symmetric and asymmetric versions of 

the models. 

 

 1%  2.5%  5% 

 AL NZ  AL NZ  AL NZ 

Historical simulation and GAS         

    Historical simulation 1 1  0 0  0 0 

    GAS 2 1  0 0  0 0 

Symmetric GARCH and CARE         

    GARCH-t 5 5  4 5  4 4 

    GARCH-filtered 5 5  4 4  4 2 

    GARCH-EVT 5 5  4 4  4 3 

    Symmetric-CARE 5 5  4 4  3 1 

Asymmetric GARCH and CARE         

    GJR-GARCH-t 5 5  5 5  5 5 

    GJR-GARCH-filtered 5 5  5 5  5 5 

    GJR-GARCH-EVT 4 4  5 5  5 5 

    Asymmetric-CARE 5 5  5 5  5 5 

AL score for estimation with symmetric CAViaR       

    Static multiplicative for ES 5 5  4 4  3 1 

    Dynamic additive for ES 5 5  4 4  3 1 

    Dynamic  for ES 5 5  4 4  4 2 

    Dynamic  for ES: cst loss 5 5  4 4  4 3 

AL score for estimation with asymmetric CAViaR       

    Static multiplicative for ES 5 5  5 5  5 5 

    Dynamic additive for ES 5 5  5 5  5 5 

    Dynamic  for ES 5 5  5 5  5 5 

    Dynamic  for ES: cst loss 5 5  5 5  5 5 

NZ score for estimation with symmetric CAViaR        

    Static multiplicative for ES 5 5  4 3  4 1 

    Dynamic additive for ES 5 5  4 4  4 2 

    Dynamic  for ES 5 5  4 4  3 2 

    Dynamic  for ES: cst loss 5 5  4 4  4 3 

NZ score for estimation with asymmetric CAViaR       

    Static multiplicative for ES 5 5  5 5  5 5 

    Dynamic additive for ES 5 5  5 5  5 5 

    Dynamic  for ES 5 5  5 5  5 5 

    Dynamic  for ES: cst loss 5 5  5 5  5 5 
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6. Empirical analysis with individual stocks 

As stock indices are portfolios, their extreme behaviour is somewhat limited. In view 

of this, we also analysed a set of individual stocks1. We chose five individual U.S. stocks that 

had been components of the S&P 500 for the full 4000-day period for which we had analysed 

the S&P 500 returns in Section 5. We chose the five stocks that had highest market 

capitalisation on 29 June 2018, which was the final day of our dataset of index returns. These 

stocks were Apple, Microsoft, Amazon, Berkshire Hathaway and JP Morgan. We performed 

the same analysis as in Section 5 for the indices, with rolling windows of 2,000 observations 

for estimation, and an out-of-sample period of the same length. We summarise the results for 

the 1%, 2.5% and 5% probability levels in Tables 8 to 10, respectively.  

For brevity, we focus our comments on the AL and NZ skill scores in the final two 

columns of each table. For all three probability levels, the skill scores show that each 

asymmetric model was preferable to the corresponding symmetric model. For the asymmetric 

models, the CAViaR-based joint models were more accurate than the GARCH and CARE 

models. The same was true for the symmetric models.  

It is interesting to see the relative performances of the four joint models estimated 

using the AL or NZ scores in the bottom 16 rows of each table. The underlining in these rows 

shows that, for each block of four models, the most accurate ES formulation was one of the 

two dynamic Omega models. This is the case for all three probability levels. For the 1% level 

in Table 8, modelling the ES using the dynamic Omega formulation with constant loss was 

preferable, while for the 5% level, the dynamic Omega formulation with loss not constrained 

to be constant was more accurate. Both performed well for the 2.5% level. It is reasonable 

that a constant loss is more advisable for the 1% level than the 5% level, because the 

autoregressive modelling of the loss in expression (18) relies on exceedances beyond the 

VaR, which occur much less often for the 1% level than the 5% level. 

 
1 We are grateful to a reviewer for suggesting this additional empirical analysis. 
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Table 8. Summary of results for 1% VaR and ES estimated for the five individual stocks. The first 

column of values is the percentage of VaR exceedances averaged across the stocks; the ideal would be 

1%. The next four columns present the number of stocks for which calibration was rejected; lower 

values are better. The final two columns present skill scores; higher values are preferable. Horizontal 

lines separate different types of model, with hashed lines separating symmetric and asymmetric 

versions of the models. 

 

 
VaR 

violation % 

VaR 
 hit % 
test 

VaR  
DQ 
test  

VaR 
VQR 
test 

ES 
bootstrap 

test 

VaR & ES  
AL  

skill score  

VaR & ES  
NZ  

skill score 

Historical simulation and GAS        

    Historical simulation 1.5 
 

3 
 

4 
 

5 
 

1 0.0 0.0 

    1-factor GAS 1.0 0 4 5 0 4.7 2.2 

Symmetric GARCH and CARE        

    GARCH-t 1.0 0 1 4 0 10.3 6.5 

    GARCH-filtered 1.1 0 3 4 0 10.2 6.5 

    GARCH-EVT 1.0 0 2 4 0 10.1 6.3 

    Symmetric-CARE 0.9 0 3 5 0 9.6 6.2 

Asymmetric GARCH and CARE       

    GJR-GARCH-t 0.9 0 1 3 0 11.0 7.1 

    GJR-GARCH-filtered 1.0 0 1 3 0 10.9 7.0 

    GJR-GARCH-EVT 1.0 0 0 2 0 11.0 7.0 

    Asymmetric-CARE 0.7 1 2 4 0 10.3 6.6 

AL score for estimation with symmetric CAViaR      

    Static multiplicative for ES 0.9 0 1 2 0 10.6 7.0 

    Dynamic additive for ES 1.0 0 2 2 0 10.5 6.9 

    Dynamic  for ES 1.0 0 2 3 0 10.5 6.9 

    Dynamic  for ES: cst loss 0.9 0 1 3 0 11.1 7.2 

AL score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 0.9 0 2 2 0 11.2 7.5 

    Dynamic additive for ES 0.9 0 1 4 0 11.3 7.5 

    Dynamic  for ES 1.0 0 2 1 0 11.4 7.5 

    Dynamic  for ES: cst loss 0.9 0 0 2 0 11.7 7.7 

NZ score for estimation with symmetric CAViaR      

    Static multiplicative for ES 0.9 0 2 4 0 10.2 6.7 

    Dynamic additive for ES 1.0 0 2 2 0 10.4 6.8 

    Dynamic  for ES 1.0 0 2 2 0 10.8 7.0 

    Dynamic  for ES: cst loss 0.9 0 2 2 0 10.8 7.0 

NZ score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 0.9 0 1 2 0 11.5 7.7 

    Dynamic additive for ES 0.9 0 1 2 0 11.5 7.6 

    Dynamic  for ES 0.9 0 1 2 0 11.7 7.6 

    Dynamic  for ES cst loss 0.9 0 1 2 0 11.9 7.8 

 

Notes: Bold indicates the best performing method in each column. For each group of four models, estimated 

using either the AL or NZ score, underlining indicates the best skill score value. 
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Table 9 Summary of results for 2.5% VaR and ES estimated for the five individual stocks. The first 

column of values is the percentage of VaR exceedances averaged across the stocks; the ideal would be 

2.5%. The next four columns present the number of stocks for which calibration was rejected; lower 

values are better. The final two columns present skill scores; higher values are preferable. Horizontal 

lines separate different types of model, with hashed lines separating symmetric and asymmetric 

versions of the models. 

 

 
VaR 

violation % 

VaR 
 hit % 
test 

VaR  
DQ 
test  

VaR 
VQR 
test 

ES 
bootstrap 

test 

VaR & ES  
AL  

skill score  

VaR & ES  
NZ  

skill score 

Historical simulation and GAS        

    Historical simulation 3.0 
 

1 
 

5 
 

4 0 0.0 0.0 

    1-factor GAS 2.1 1 4 0 0 6.5 3.4 

Symmetric GARCH and CARE       

    GARCH-t 2.2 0 3 0 1 8.0 4.3 

    GARCH-filtered 2.3 0 3 0 0 8.0 4.4 

    GARCH-EVT 2.3 0 3 2 0 8.0 4.4 

    Symmetric-CARE 2.1 1 2 0 0 8.7 4.8 

Asymmetric GARCH and CARE       

    GJR-GARCH-t 2.1 0 2 0 1 8.9 4.8 

    GJR-GARCH-filtered 2.3 0 4 1 0 8.9 4.9 

    GJR-GARCH-EVT 2.3 0 3 1 0 8.9 4.8 

    Asymmetric-CARE 1.9 2 2 2 0 9.4 5.2 

AL score for estimation with symmetric CAViaR      

    Static multiplicative for ES 2.2 0 2 1 0 9.2 5.1 

    Dynamic additive for ES 2.3 0 1 3 0 9.1 5.1 

    Dynamic  for ES 2.3 0 2 1 0 9.6 5.3 

    Dynamic  for ES: cst loss 2.3 0 1 0 0 9.5 5.2 

AL score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 2.2 0 2 0 0 10.0 5.5 

    Dynamic additive for ES 2.3 0 1 1 0 9.9 5.5 

    Dynamic  for ES 2.3 0 2 2 0 10.2 5.6 

    Dynamic  for ES: cst loss 2.3 0 2 0 0 10.2 5.6 

NZ score for estimation with symmetric CAViaR      

    Static multiplicative for ES 2.2 0 2 1 0 9.4 5.2 

    Dynamic additive for ES 2.3 0 2 3 0 9.3 5.2 

    Dynamic  for ES 2.2 0 2 2 0 9.6 5.3 

    Dynamic  for ES: cst loss 2.2 0 2 3 0 9.6 5.3 

NZ score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 2.2 0 2 0 0 10.1 5.6 

    Dynamic additive for ES 2.2 0 1 1 0 9.9 5.5 

    Dynamic  for ES 2.2 0 3 2 0 10.3 5.6 

    Dynamic  for ES: cst loss 2.2 0 2 2 0 10.2 5.6 

 

Notes: Bold indicates the best performing method in each column. For each group of four models, estimated 

using either the AL or NZ score, underlining indicates the best skill score value. 
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Table 10. Summary of results for 5% VaR and ES estimated for the five individual stocks. The first 

column of values is the percentage of VaR exceedances averaged across the stocks; the ideal would be 

5%. The next four columns present the number of stocks for which calibration was rejected; lower 

values are better. The final two columns present skill scores; higher values are preferable. Horizontal 

lines separate different types of model, with hashed lines separating symmetric and asymmetric 

versions of the models. 
 

 
VaR 

violation % 

VaR 
 hit % 
test 

VaR  
DQ 
test  

VaR 
VQR 
test 

ES 
bootstrap 

test 

VaR & ES  
AL  

skill score  

VaR & ES  
NZ  

skill score 

Historical simulation and GAS        

    Historical simulation 5.3 0 5 4 1 0.0 0.0 

    1-factor GAS 4.0 2 5 3 0 6.4 3.1 

Symmetric GARCH and CARE       

    GARCH-t 4.2 2 4 2 1 7.6 3.5 

    GARCH-filtered 4.5 0 4 1 0 7.8 3.7 

    GARCH-EVT 4.4 0 3 1 0 7.8 3.7 

    Symmetric-CARE 4.2 1 3 0 0 8.3 3.9 

Asymmetric GARCH and CARE       

    GJR-GARCH-t 3.9 2 4 1 0 8.6 4.0 

    GJR-GARCH-filtered 4.3 1 3 1 0 8.7 4.1 

    GJR-GARCH-EVT 4.3 1 3 1 0 8.7 4.1 

    Asymmetric-CARE 4.1 2 4 3 1 8.8 4.1 

AL score for estimation with symmetric CAViaR      

    Static multiplicative for ES 4.5 0 3 0 0 8.8 4.2 

    Dynamic additive for ES 4.6 0 3 1 1 8.5 4.1 

    Dynamic  for ES 4.5 0 4 0 0 9.2 4.3 

    Dynamic  for ES: cst loss 4.6 0 4 0 0 8.9 4.2 

AL score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 4.2 2 1 1 0 9.5 4.5 

    Dynamic additive for ES 4.5 1 1 2 0 9.2 4.4 

    Dynamic  for ES 4.4 0 3 1 0 9.8 4.6 

    Dynamic  for ES: cst loss 4.3 0 1 1 0 9.6 4.5 

NZ score for estimation with symmetric CAViaR      

    Static multiplicative for ES 4.5 0 4 0 0 8.8 4.2 

    Dynamic additive for ES 4.6 0 4 0 0 8.5 4.1 

    Dynamic  for ES 4.6 0 4 0 0 9.2 4.3 

    Dynamic  for ES: cst loss 4.6 0 4 0 0 8.9 4.2 

NZ score for estimation with asymmetric CAViaR      

    Static multiplicative for ES 4.3 1 1 1 0 9.5 4.5 

    Dynamic additive for ES 4.5 1 1 2 0 9.1 4.3 

    Dynamic  for ES 4.3 1 3 1 0 9.7 4.5 

    Dynamic  for ES: cst loss 4.3 1 2 1 0 9.6 4.5 

 

Notes: Bold indicates the best performing method in each column. For each group of four models, estimated 

using either the AL or NZ score, underlining indicates the best skill score value. 
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7. Summary and concluding remarks 

 We have presented a new joint model for the VaR and ES, in which the ES is 

modelled as the product of the VaR and a factor that is a simple function of a dynamic 

Omega ratio. We model the VaR using the autoregressive quantile models of Engle and 

Manganelli (2004), and we model the Omega ratio using autoregressive expressions for the 

gain and loss. Parameters are estimated jointly by optimising a joint scoring function from the 

class proposed by Fissler and Ziegel (2016). The new model extends the work of Taylor 

(2019), who obtained promising results by using this estimation approach when modelling 

the ES as the product of the VaR and a constant factor. Our use of a factor that is a function 

of the Omega ratio is a development of the proposal of Taylor (2008) to approximate the ES 

as the product of an expectile and a factor that depends on the expectile level. Our empirical 

analyses considered the 1%, 2.5% and 5% probability levels. For five stock indices, the out-

of-sample results showed that the dynamic Omega formulation for the ES produced slightly 

better forecast accuracy than previously proposed ES formulations. We obtained similar 

accuracy with the dynamic Omega formulation when treating the loss as a constant, rather 

than modelling it autoregressively. We also considered five individual stocks, and found that 

the dynamic Omega ES formulation produced the best results, with benefit from modelling 

the loss autoregressively for the 5% probability level. In terms of future research, it would be 

interesting to extend the ideas in this paper to the multivariate context (see Merlo et al., 

2021). 
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Appendix 1 

The symmetric absolute value and asymmetric slope CAViaR models of Engle and 

Manganelli (2004) are presented in expressions (24) and (25), respectively. The i in these 

models are constant parameters. Asymmetric slope CAViaR aims to capture the asymmetric 

leverage effect that is typically observed in stock indices. 

0 1 1 2 1( ) ( )    − −= + +t t tq y q                 (24) 

( ) ( )0 1 1 1 2 1 1 3 1( ) 0 0 ( )     − − − − −= +  +  +t t t t t tq I y y I y y q             (25) 

 

References 

Acerbi, C. 2002. Spectral measures of risk: A coherent representation of subjective risk 

aversion. Journal of Banking & Finance 26(7), 1505-1518. 

Acerbi, C., Tasche, D. 2002. On the coherence of expected shortfall. Journal of Banking and 

Finance 26(7), 1487-1503. 

Artzner, P., Delbaen, F., Eber, J.M., Heath, D. 1999. Coherent measures of risk. 

Mathematical Finance 9(3), 203-228. 

Basel Committee 2016. Minimum Capital Requirements for Market Risk. Technical report, 

Basel Committee on Banking Supervision. 

Bellini, F., Di Bernardino, E. 2017. Risk management with expectiles. European Journal of 

Finance 23(6), 487-506. 

Bernardo, A.E., Ledoit, O. 2000. Gain, loss, and asset pricing. Journal of Political Economy 

108(1), 144-172. 

Bi, H., Huang, R.J., Tzeng, L.Y., Zhu, W. 2019. Higher-order Omega: A performance index 

with a decision-theoretic foundation. Journal of Banking & Finance 100, 43-57. 

Caporin, M., Costola, M., Jannin, G., Maillet, B. 2018. On the (Ab)use of Omega?. Journal 

of Empirical Finance 46(March), 11-33. 



37 

 

Christoffersen, P. 2012. Elements of Financial Risk Management. Academic Press. 

Creal, D. D., Koopman, S.J., Lucas, A. 2013. Generalized autoregressive score models with 

applications. Journal of Applied Econometrics 28(5), 777-795. 

Engle, R.F., Manganelli, S. 2004. CAViaR: Conditional autoregressive value at risk by 

regression quantiles. Journal of Business & Economic Statistics 22(4), 367-381. 

Fissler, T., Ziegel, J.A. 2016. Higher order elicitability and Osband’s Principle. Annals of 

Statistics 44(4), 1680-1707. 

Fissler, T., Ziegel, J.A., Gneiting, T. 2016. Expected shortfall is jointly elicitable with value 

at risk - implications for backtesting. Risk January, 58-61. 

Gaglianone, W.P., Lima, L.R. Linton, O., Smith, D.R. 2011. Evaluating value-at-risk Models 

via quantile regression. Journal of Business & Economic Statistics 29(1), 150-160.   

Gerlach, R.H., Chen, C.W. S. 2015. Bayesian expected shortfall forecasting incorporating the 

intraday range. Journal of Financial Econometrics 14(1), 128-158. 

Gerlach, R.H., Wang, C. 2022. Bayesian semi-parametric realized conditional autoregressive 

expectile models for tail risk forecasting. Journal of Financial Econometrics 20(1), 105-

138. 

Gneiting, T. 2011. Making and evaluating point forecasts. Journal of the American Statistical 

Association 106(494), 746-762. 

Gneiting, T., Raftery, A.E. 2007. Strictly proper scoring rules, prediction, and estimation. 

Journal of the American Statistical Association 102(477), 359-378. 

Hansen, P.R., Lunde, A., Nason, J.M. 2011. The model confidence set. Econometrica 79(2), 

453-497. 

Harvey, A.C. 2013. Dynamic Models for Volatility and Heavy Tails, Econometric Society 

Monograph 52 Cambridge University Press, Cambridge. 

Jiang, R., Hu, X., Yu, K. 2022. Single-index expectile models for estimating conditional 

value at risk and expected shortfall. Journal of Financial Econometrics 20(2), 345-366. 



38 

 

Jones, M. C. 1994. Expectiles and M-quantiles are quantiles. Statistics & Probability Letters 

20(2), 149-153. 

Keating, C., Shadwick, W. 2002. A universal performance measure. Journal of Performance 

Measurement 6(3), 59-84. 

Kim, M., Lee, S. 2016. Nonlinear expectile regression with application to value-at-risk and 

expected shortfall estimation. Computational Statistics & Data Analysis 94, 1-19. 

Koenker, R., Xiao, Z. 2006. Quantile autoregression. Journal of the American Statistical 

Association 101(475), 980-990. 

Komunjer, I. 2005. Quasi-maximum likelihood estimation for conditional quantiles. Journal of 

Econometrics 128(1), 137-164. 

Lazar, E., Zhang, N. 2019. Model risk of expected shortfall. Journal of Banking & Finance 105, 

74-93. 

McNeil, A.J., Frey, R. 2000. Estimation of tail-related risk measures for heteroscedastic 

financial time series: an extreme value approach. Journal of Empirical Finance 7(3-4), 

271-300. 

Merlo, L., Petrella, L., Raponi, V. 2021. Forecasting VaR and ES using a joint quantile 

regression and its implications in portfolio allocation. Journal of Banking & Finance 133, 

106248. 

Newey, W.K., Powell, J.L. 1987. Asymmetric least squares estimation and testing. 

Econometrica 55, 819-847. 

Ning, C., Xu, D., Wirjanto, T.S. 2015. Is volatility clustering of asset returns asymmetric?. 

Journal of Banking & Finance 52, 62-76. 

Nolde, N., Ziegel, J.F. 2017. Elicitability and backtesting: perspectives for banking 

regulation. Annals of Applied Statistics 11(4), 1833-1874. 

Patton, A.J., Ziegel, J.F., Chen, R. 2019. Dynamic semiparametric models for expected 

shortfall (and value-at-risk). Journal of Econometrics 211(2), 388-413. 



39 

 

Schmidt, P., Katzfuss, M., Gneiting, T. 2021. Interpretation of point forecasts with unknown 

directive. Journal of Applied Econometrics 36(6), 728-743. 

Taylor, J.W. 2008. Estimating value at risk and expected shortfall using expectiles. Journal of 

Financial Econometrics 6(2), 231-252. 

Taylor, J.W. 2019. Forecasting value at risk and expected shortfall using a semiparametric 

approach based on the asymmetric Laplace distribution. Journal of Business and 

Economic Statistics 37(1), 121-133. 

White, H., Kim, T.-H., Manganelli, S. 2015. VAR for VaR: measuring tail dependence using 

multivariate regression quantiles, Journal of Econometrics 187(1), 169-188. 


