Part B Electromagntism: Problem Sheet 1

[The material on this problem sheet covers section 1 of the lecture notes.]

1. In Cartesian coordinates on \mathbb{R}^{3} we define $\mathbf{r}=\left(x_{1}, x_{2}, x_{3}\right)$ and $r=|\mathbf{r}|$, as usual.
(a) Show that $\nabla \cdot \mathbf{r}=3$ and that, on $\mathbb{R}^{3} \backslash\{\mathbf{0}\}, \nabla r=\mathbf{r} / r$. Deduce that on $\mathbb{R}^{3} \backslash\{\mathbf{0}\}$

$$
\nabla^{2} f(r)=f^{\prime \prime}+\frac{2}{r} f^{\prime}=\frac{1}{r}(r f)^{\prime \prime}
$$

where a prime denotes derivative with respect to r.
(b) We define $\mathbf{E} \equiv-\nabla(\kappa / r)$ where κ is a constant. Show that on $\mathbb{R}^{3} \backslash\{\mathbf{0}\}$ we have both $\nabla \wedge \mathbf{E}=\mathbf{0}$ and $\nabla \cdot \mathbf{E}=0$, while

$$
\int_{\Sigma} \mathbf{E} \cdot \mathrm{d} \mathbf{S}=4 \pi \kappa
$$

holds for any closed surface Σ that bounds a region R containing the origin.
[Hint: First take Σ to be a sphere centred on the origin, then use the divergence theorem to obtain the result for more general Σ.]
2. Consider a spherically symmetric distribution of charge in which the charge density ρ is zero everywhere except for the region $0 \leq a \leq r \leq b$, in which it is a constant ρ_{0}. Use the symmetry of the problem to argue that the electric field \mathbf{E} must be radial, and hence determine the electric field \mathbf{E} everywhere using Gauss' law.
Using your answer, deduce that:
(a) The electric field outside a ball of constant charge density and total charge Q is the same as that generated by a point charge Q at the centre of the ball.
(b) In the limit $a \rightarrow b, \rho_{0} \rightarrow \infty$, with $(b-a) \rho_{0}=\sigma$ kept fixed, the normal component of the electric field is discontinuous across the resulting spherical shell of charge, jumping by σ / ϵ_{0}.
3. Consider two point charges $\pm q$, with $-q$ placed at the origin and $+q$ placed at position \mathbf{d}.
(a) Write down the electrostatic potential and electric field for this configuration. Roughly sketch the field lines.
(b) Define $\mathbf{p} \equiv q \mathbf{d}$, and consider the limit in which $q \rightarrow \infty$ and $d \equiv|\mathbf{d}| \rightarrow 0$, with \mathbf{p} kept fixed. Show that the electrostatic potential in this limit is

$$
\phi(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \mathbf{r}}{r^{3}} .
$$

Such a configuration is called an electric dipole.
(c) From the electric dipole potential compute the corresponding electric field. What do you expect the net charge of the configuration to be? Check this result using Gauss' law for a sphere centred on the dipole.
4. Consider an infinite cylinder of radius a and uniform charge density ρ_{0}. Find the electrostatic potential at all points in space. [Hint: Introduce cylindrical polar coordinates, and use the symmetry of the problem.]
5. In cylindrical polar coordinates (s, φ, z) consider the charge density

$$
\rho(s, \varphi, z)=\frac{Q}{2 \pi s} \delta(s-a) \delta(z)
$$

where Q is a constant. What does this charge density describe? Compute the electrostatic potential for all points in space with $s=0$. Can you compare this with anything you have seen before? [Note: we use (s, φ) for polar coordinates in the (x, y)-plane, so $x=s \cos \varphi$, $y=s \sin \varphi$.]
6. Show that the electrostatic energy of a sphere of radius b and constant charge density is

$$
W=\frac{3}{5} \frac{Q^{2}}{4 \pi \epsilon_{0} b},
$$

where Q is the total charge. [Hint: use results from question 2]. The energy of a point charge, obtained by taking $b \rightarrow 0$, is thus infinite!
7. (Optional) The time-averaged electric potential of a neutral hydrogen atom is given by

$$
\phi(\mathbf{r})=\frac{q}{4 \pi \epsilon_{0}} \frac{\mathrm{e}^{-\alpha r}}{r}\left(1+\frac{\alpha r}{2}\right),
$$

where $r=|\mathbf{r}|$, and q, α are positive constants. Find the distribution of charge that generates this potential, and interpret your result physically.

Please send comments and corrections to sparks@maths.ox.ac.uk.

