Part B Electromagntism: Problem Sheet 2

[The material on this problem sheet covers section 2 of the lecture notes.]

1. Two infinite, grounded, conducting planes are located at $x=a / 2$ and $x=-a / 2$, with $a>0$. A point charge q is placed between the planes at the point $\left(x_{0}, y_{0}, z_{0}\right)$, so that $-a / 2<x_{0}<a / 2$.
Use the method of images to satisfy the boundary conditions on the potential. Hence write down the Dirichlet Green's function $G_{D}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ for the region between the conducting planes.
[Hint: The original charge will have an image for each conducting plane, but those images will also have images ... have you ever looked at two mirrors facing each other?]
2. A conducting grounded sphere of radius a is placed in a uniform electric field E_{0} along the z-axis direction.
(a) Use the method of images to show that the potential outside the sphere is

$$
\phi(x, y, z)=-E_{0} z+\frac{E_{0} a^{3} z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} .
$$

[Hint: A uniform electric field along the z-axis can be generated by starting with two opposite charges $\pm q$, at positions $z= \pm d / 2$ on the z-axis. In the limit in which $d \rightarrow \infty$, with an appropriate scaling of q one obtains a uniform electric field.]
(b) Hence determine the induced surface charge density on the sphere.
3. Consider a sphere of radius a, centred on the origin, that is made of an insulator. The potential in the upper hemisphere is kept at $\phi=+V$ while the potential at the lower hemisphere is kept at $\phi=-V$. Use the Dirichlet Green's function for the sphere found in lectures to compute the potential for all points on the z-axis with $z>a$.
4. A hollow cube has conducting walls defined by the six planes $x=y=z=0$ and $x=y=$ $z=a$. The walls at $z=0$ and $z=a$ are held at constant potential $\phi=V$. The other four sides are at zero potential.
Using orthonormal functions find the potential $\phi(x, y, z)$ at any point inside the cube.
5. Use orthonormal functions to find the potential at all points outside a sphere of radius a, where the potential on the sphere is fixed in spherical polar coordinates to be

$$
\phi(a, \theta, \varphi)=\frac{1}{\sqrt{4 \pi}} \sin ^{2} \theta
$$

6. The Dirichlet Green's function in the region between two spherical shells of radius a and $b>a$ is given by

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=4 \pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{\left(r_{<}^{\ell}-\frac{a^{2 \ell+1}}{r_{<}^{\ell+1}}\right)\left(r_{>}^{-(\ell+1)}-\frac{r_{>}^{\ell}}{b^{2 \ell+1}}\right)}{(2 \ell+1)\left(1-\frac{a^{2 \ell+1}}{b^{2 \ell+1}}\right)} \overline{Y_{\ell, m}\left(\theta^{\prime}, \varphi^{\prime}\right)} Y_{\ell, m}(\theta, \varphi),
$$

with notation as in the lecture notes. Use this to compute the potential in this region, if the potential at the boundaries is fixed to be $\phi(r=a, \theta, \varphi)=0$ and $\phi(r=b, \theta, \varphi)=1$.
Could you have solved this problem in a simpler way?
Please send comments and corrections to sparks@maths.ox.ac.uk.

