Quantum Theory Sheet 1 - MT21 (Questions on sections $0-3$ of the lecture notes)

1. The potential energy for an electron in a hydrogen atom is

$$
V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

where $-e$ is the charge of the electron, r is its distance from the nucleus, and ϵ_{0} is a constant. In a circular orbit the electron has angular momentum $L=m v r$, where m is the electron mass and v is its speed. In 1913 Bohr proposed that L is quantized, satisfying $L=n \hbar$ where n is a positive integer.
(a) Given that Newton's second law for circular orbits is

$$
m \frac{v^{2}}{r}=V^{\prime}(r)
$$

show that Bohr's quantization implies $r=n^{2} a$, where $a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}}$ is called the Bohr radius.
(b) Show that the total energy $E=\frac{1}{2} m v^{2}+V(r)$ is given by

$$
E=-\frac{\hbar^{2}}{2 m a^{2}} \cdot \frac{1}{n^{2}} .
$$

[This successfully reproduces the hydrogen atom energy levels (1.3) in the lecture notes, but a full quantum mechanical treatment will only appear at the end of our course.]
2. A particle of mass m moves in the interval $[-a, a]$ where the potential $V=V_{0}$ is constant. Using the stationary state Schrödinger equation show that the energy levels of the system are

$$
E_{n}=V_{0}+\frac{n^{2} \pi^{2} \hbar^{2}}{8 m a^{2}}
$$

where n is a positive integer, and find the corresponding normalized wave functions. Show that the wave functions are all either even or odd functions of x.
3. A particle of mass m moving on the x-axis has a (non-normalized) ground state wave function $\operatorname{sech}^{2} x$ with energy $-2 \hbar^{2} / m$.
(a) Show that the potential is $V(x)=-\frac{3 \hbar^{2}}{m} \operatorname{sech}^{2} x$.
(b) An excited state wave function for the particle is $\psi(x)=\tanh x \operatorname{sech} x$. What is the energy of this state?
4. Consider a particle of mass m confined to a box in three dimensions, with potential

$$
V(x, y, z)= \begin{cases}0, & 0<x<a, 0<y<b, 0<z<c \\ +\infty & \text { otherwise }\end{cases}
$$

where (x, y, z) are Cartesian coordinates. By separating variables in the stationary state Schrödinger equation, show that the allowed energies of the particle are

$$
E_{n_{1}, n_{2}, n_{3}}=\frac{\pi^{2} \hbar^{2}}{2 m}\left(\frac{n_{1}^{2}}{a^{2}}+\frac{n_{2}^{2}}{b^{2}}+\frac{n_{3}^{2}}{c^{2}}\right),
$$

where n_{1}, n_{2}, n_{3} are positive integers, and find the corresponding normalized wave functions. [You may use the results for the one-dimensional box.]
5. A particle of mass m moves on the x-axis in a potential $V(x)$, where V is an even function (that is $V(x)=V(-x)$). Let $\psi(x)$ be a normalized wave function satisfying the stationary state Schrödinger equation with energy E.
(a) Show that $\tilde{\psi}(x) \equiv \psi(-x)$ is also a normalized wave function.
(b) By considering the wave functions $\psi_{ \pm}=\psi \pm \tilde{\psi}$, or otherwise, deduce that there is either an even or an odd wave function (or both) satisfying the same Schrödinger equation.
6. Suppose that $\Psi(x, t)$ satisfies the one-dimensional time-dependent Schrödinger equation with potential $V(x)$ (assumed real). We define $\rho(x, t)=|\Psi(x, t)|^{2}$ and

$$
j(x, t)=\frac{\mathrm{i} \hbar}{2 m}\left(\Psi \frac{\partial \bar{\Psi}}{\partial x}-\bar{\Psi} \frac{\partial \Psi}{\partial x}\right) .
$$

(a) Show that, as a consequence of the Schrödinger equation,

$$
\frac{\partial \rho}{\partial t}+\frac{\partial j}{\partial x}=0 .
$$

(b) Show further that j vanishes identically if and only if there exists a nowhere zero function $\lambda(t)$ such that $\lambda(t) \Psi(x, t)$ takes only real values.
7. * Optional) Verify that the Gaussian wave packet

$$
\Psi(x, t)=\frac{1}{\pi^{1 / 4} \sqrt{1+(\mathrm{i} \hbar t / m)}} \exp \left[-\frac{x^{2}}{2[1+(\mathrm{i} \hbar t / m)]}\right]
$$

satisfies the free Schrödinger equation and is normalized for all times t.

