Quantum Theory
Sheet 3 — MT21

(Questions on sections 5—7 of the lecture notes)

1. Define a linear operator R acting on wave functions ¢ on the z-axis by

(Bp)(x) = ¢(==) .

This is called the parity operator.
(a) Show that R is self-adjoint, and R? = 1.

(b) What are the possible eigenvalues of R, and how can its eigenspaces be character-
ized?

(c) Suppose now that a particle of mass m moves under an even potential V(z), so
that V(z) = V(—x).
(i) Show that R commutes with the Hamiltonian H, i.e. (RH — HR)y = 0 for all
¥().
(ii) Show that Rw is an eigenstate of H with energy F if and only if ¢ is. By
considering v + R, deduce that there is either an even or an odd eigenstate
(or both) with energy F.

2. Show that for any infinitely differentiable function ¢ (x) whose Taylor series converges

to ¢(x), one has for all real s

(e ) (2) = ¥z —s)

where P is the momentum operator. Deduce that on the subspace of such functions one

has the equality of operators
e—isP/hXeisP/fL — X —s1
where X is the position operator and 1 is the identity operator.

3. (a) Show that the expectation value E,(A) = (¢|Ay) of an observable A in a state 1

is necessarily real.

(b) Show the converse result: if (1| At) is real for all ¢ then A satisfies

<¢1|A@/}2> = <A¢1|¢2> )

for all 11,19, implying that A is self-adjoint.
[Hint: look at v = 1y & 1by and 1 = 1y £ ithy.]
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4. Consider the state space H = C3?, so that a wave function is a three-component column
vector 1 = (1 (t),¥s(t),3(t))?. The Hamiltonian is

1 2 0
0 2 -1

with Schrodinger equation ih% = H1, and stationary state equation Hy = E1.
(a) Find the stationary states of this quantum system.

(b) Consider the observable

10 0
A=10 0 0 ;
00 -1

and suppose that at time ¢ = 0 the eigenvalue 1 has just been measured.
(i) Find #(t) at subsequent times ¢ by solving the Schrédinger equation.

(ii) What is the probability that when A is measured at time ¢ one again obtains

the eigenvalue 17

5. (a) Prove Ehrenfest’s Theorem: for any observable A,

d i 0A
E<A> = —?_L<[A,H]) + <E> ;

where we have denoted expectation value (A) = E,(A), and ¢ is arbitrary. Note
here that A might potentially depend explicitly on time ¢, hence the last term.
(b) Hence show that for the Hamiltonian H = P?/2m + V(X) we have
d 1 d
—(X)=—(P —(P) = —(V"(X
S =P, P = V().

and deduce that mf—fz(X ) = —(V'(X)). Do you recognize this equation?

6. The state ¢ = ¢, is a normalized eigenvector for the energy level E = E,, = (n + 1 )hw

of the harmonic oscillator with Hamiltonian H = P?/2m + %mwQX 2,

(a) Show that
1 1
E=—Eu(P?) + -mw’Ey(X?) .
B (P?) 4+ gmeEy(X?)
(b) By considering (¢|(P 4 imwX )*) for k = 1,2, and using orthogonality of eigen-

states, or otherwise, show that
Ey(P)=0=E,(X), Eu(P?) =m’w’Ey(X?) =mE .

(c) Deduce that Ay(X)Ay(P) = E/w, and discuss how this relates to Heisenberg’s

uncertainty principle.
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