
Quantum Theory

Sheet 3 — MT21

(Questions on sections 5–7 of the lecture notes)

1. Define a linear operator R acting on wave functions ψ on the x-axis by

(Rψ)(x) = ψ(−x) .

This is called the parity operator.

(a) Show that R is self-adjoint, and R2 = 1.

(b) What are the possible eigenvalues of R, and how can its eigenspaces be character-

ized?

(c) Suppose now that a particle of mass m moves under an even potential V (x), so

that V (x) = V (−x).

(i) Show that R commutes with the Hamiltonian H, i.e. (RH−HR)ψ = 0 for all

ψ(x).

(ii) Show that Rψ is an eigenstate of H with energy E if and only if ψ is. By

considering ψ ± Rψ, deduce that there is either an even or an odd eigenstate

(or both) with energy E.

2. Show that for any infinitely differentiable function ψ(x) whose Taylor series converges

to ψ(x), one has for all real s (
e−isP/~ ψ

)
(x) = ψ(x− s) ,

where P is the momentum operator. Deduce that on the subspace of such functions one

has the equality of operators

e−isP/~X eisP/~ = X − s1 ,

where X is the position operator and 1 is the identity operator.

3. (a) Show that the expectation value Eψ(A) = 〈ψ|Aψ〉 of an observable A in a state ψ

is necessarily real.

(b) Show the converse result: if 〈ψ|Aψ〉 is real for all ψ then A satisfies

〈ψ1|Aψ2〉 = 〈Aψ1|ψ2〉 ,

for all ψ1, ψ2, implying that A is self-adjoint.

[Hint: look at ψ = ψ1 ± ψ2 and ψ = ψ1 ± iψ2.]
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4. Consider the state space H = C3, so that a wave function is a three-component column

vector ψ = (ψ1(t), ψ2(t), ψ3(t))
T . The Hamiltonian is

H = ~ω

1 2 0

2 0 2

0 2 −1

 ,

with Schrödinger equation i~dψ
dt

= Hψ, and stationary state equation Hψ = Eψ.

(a) Find the stationary states of this quantum system.

(b) Consider the observable

A =

1 0 0

0 0 0

0 0 −1

 ,

and suppose that at time t = 0 the eigenvalue 1 has just been measured.

(i) Find ψ(t) at subsequent times t by solving the Schrödinger equation.

(ii) What is the probability that when A is measured at time t one again obtains

the eigenvalue 1?

5. (a) Prove Ehrenfest’s Theorem: for any observable A,

d

dt
〈A〉 = − i

~
〈[A,H]〉+ 〈∂A

∂t
〉 ,

where we have denoted expectation value 〈A〉 ≡ Eψ(A), and ψ is arbitrary. Note

here that A might potentially depend explicitly on time t, hence the last term.

(b) Hence show that for the Hamiltonian H = P 2/2m+ V (X) we have

d

dt
〈X〉 =

1

m
〈P 〉 , d

dt
〈P 〉 = −〈V ′(X)〉 ,

and deduce that m d2

dt2
〈X〉 = −〈V ′(X)〉. Do you recognize this equation?

6. The state ψ = ψn is a normalized eigenvector for the energy level E = En = (n+ 1
2
)~ω

of the harmonic oscillator with Hamiltonian H = P 2/2m+ 1
2
mω2X2.

(a) Show that

E =
1

2m
Eψ(P 2) +

1

2
mω2Eψ(X2) .

(b) By considering 〈ψ|(P ± imωX)kψ〉 for k = 1, 2, and using orthogonality of eigen-

states, or otherwise, show that

Eψ(P ) = 0 = Eψ(X) , Eψ(P 2) = m2ω2Eψ(X2) = mE .

(c) Deduce that ∆ψ(X)∆ψ(P ) = E/ω, and discuss how this relates to Heisenberg’s

uncertainty principle.
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