Quantum Theory Sheet 4 - MT21 (Questions on sections 7-9 of the lecture notes)

1. A particle of mass m and charge e moving in a plane perpendicular to a magnetic field B has Hamiltonian

$$
H=\frac{1}{2 m}\left(\left(P_{1}+\frac{1}{2} e B X_{2}\right)^{2}+\left(P_{2}-\frac{1}{2} e B X_{1}\right)^{2}\right)
$$

where we suppose that $e B \neq 0$ is constant. Show that the energy levels have the form

$$
E=E_{n}=\frac{|e B| \hbar}{m}\left(n+\frac{1}{2}\right),
$$

where n is a non-negative integer.
[Hint: Introduce new operators P and X, proportional to $P_{1}+\frac{1}{2} e B X_{2}$ and $P_{2}-\frac{1}{2} e B X_{1}$, and show that the given Hamiltonian takes the same form as the harmonic oscillator Hamiltonian for a suitable choice of angular frequency ω.]
2. The spin representation of angular momentum has $j=1 / 2$, with angular momentum matrices $J_{i}=S_{i}$ given by

$$
S_{1}=\frac{1}{2} \hbar\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad S_{2}=\frac{1}{2} \hbar\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad S_{3}=\frac{1}{2} \hbar\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Here $J_{3}=S_{3}$ has eigenvalues $\pm \frac{1}{2} \hbar$, with corresponding eigenstates $\psi_{+}=(1,0)^{T}, \psi_{-}=$ $(0,1)^{T}$, which are called spin up and spin down states. Introducing the unit vector $\mathbf{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ in spherical polar coordinates, we define the operator $S_{\mathbf{n}} \equiv \sum_{i=1}^{3} n_{i} S_{i}$, which is the component of spin angular momentum in the direction \mathbf{n}.
(a) Show that

$$
S_{\mathbf{n}}=\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta \mathrm{e}^{-\mathrm{i} \phi} \\
\sin \theta \mathrm{e}^{\mathrm{i} \phi} & -\cos \theta
\end{array}\right) .
$$

(b) Hence, or otherwise, show that $\left(S_{\mathbf{n}}\right)^{2}=\frac{\hbar^{2}}{4}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and deduce that $S_{\mathbf{n}}$ has eigenvalues $\pm \frac{\hbar}{2}$. Verify that the corresponding normalized eigenstates of $S_{\mathbf{n}}$ are

$$
\begin{aligned}
& \psi_{\mathbf{n},+}=\cos \frac{\theta}{2} \psi_{+}+\sin \frac{\theta}{2} \mathrm{e}^{\mathrm{i} \phi} \psi_{-}, \\
& \psi_{\mathbf{n},-}=\sin \frac{\theta}{2} \psi_{+}-\cos \frac{\theta}{2} \mathrm{e}^{\mathrm{i} \phi} \psi_{-}
\end{aligned}
$$

(c) The spin angular momentum of S_{3} is measured for a quantum system, obtaining the value $\frac{1}{2} \hbar$ (so that this is "spin up" along the z-axis). The spin angular momentum of $S_{\mathbf{n}}$ is now measured. Find the probabilities for obtaining the values $\frac{1}{2} \hbar$ and $-\frac{1}{2} \hbar$.
3. Recall that the orbital angular momentum operators L_{i} are in spherical polar coordinates given by

$$
L_{ \pm}= \pm \hbar \mathrm{e}^{ \pm i \phi}\left(\frac{\partial}{\partial \theta} \pm \mathrm{i} \cot \theta \frac{\partial}{\partial \phi}\right), \quad L_{3}=-\mathrm{i} \hbar \frac{\partial}{\partial \phi}
$$

where $L_{ \pm}=L_{1} \pm \mathrm{i} L_{2}$ are raising and lowering operators.
(a) Using the fact that $L_{+} Y_{\ell, \ell}(\theta, \phi)=0$, hence show that $Y_{\ell, \ell}(\theta, \phi)=a_{\ell}\left(\sin \theta \mathrm{e}^{\mathrm{i} \phi}\right)^{\ell}$, where a_{ℓ} is a normalization constant.
(b) By applying the lowering operator L_{-}appropriately, hence find $Y_{\ell, m}(\theta, \phi)$ for $(\ell, m)=(1,1),(1,0),(1,-1),(2,2),(2,1)$ and $(2,0)$, up to overall normalization constants that you may ignore.
4. In a two-dimensional model of the hydrogen atom, the stationary state Schrödinger equation takes the form

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi=E \psi
$$

where (r, ϕ) are polar coordinates.
(a) By separating the equation via $\psi(r, \phi)=R(r) \Phi(\phi)$, show that $\Phi(\phi)$ is a constant linear combination of $\mathrm{e}^{\mathrm{i} \ell \phi}$ and $\mathrm{e}^{-\mathrm{i} \ell \phi}$, where ℓ is a non-negative integer. [Hint: use the fact that $\Phi(\phi+2 \pi)=\Phi(\phi)$.]
(b) By further substituting $R(r)=f(r) \mathrm{e}^{-\kappa r}$, where $\kappa=\sqrt{-2 m E} / \hbar$, show that the radial equation becomes

$$
f^{\prime \prime}+\left(\frac{1}{r}-2 \kappa\right) f^{\prime}-\left(\frac{\ell^{2}}{r^{2}}+\frac{\kappa-\beta}{r}\right) f=0
$$

where β is a constant you should identify.
(c) By substituting a generalized power series expansion for f, of the form $f(r)=$ $\sum_{k=0}^{\infty} a_{k} r^{k+c}$, argue that $c=\ell$ for a non-singular wave function, and in this case hence deduce the recurrence relation

$$
a_{k}=\frac{2 \kappa(k+\ell)-\kappa-\beta}{(k+\ell)^{2}-\ell^{2}} a_{k-1} .
$$

(d) Hence or otherwise show that the energy levels are of the form $E_{n}=-\nu /(2 n+1)^{2}$, where ν is a positive constant and n is a non-negative integer. [Hint: appeal to normalizability to make the series terminate.] What is the degeneracy of each energy level?
5. (a) (i) Making use of any results you need from the lecture notes, show that the $(N, \ell, m)=(2,1,0)$ state of the hydrogen atom has wave function

$$
\psi(r, \theta, \phi)=B r \mathrm{e}^{-r / 2 a} \cos \theta
$$

where a is the Bohr radius and B is a normalization constant.
(ii) By normalizing $\psi=\psi(r, \theta, \phi)$, show that we may take $B=\sqrt{\frac{1}{32 \pi a^{5}}}$.
(iii) Compute $\mathbb{E}_{\psi}(r)$, the expected value of the distance of the electron from the nucleus in this excited state.
(b) Recall that the normalized ground state wave function for an electron in a hydrogenlike atom with Z protons and any number A neutrons in the nucleus is

$$
\psi=\sqrt{\frac{Z^{3}}{\pi a^{3}}} \mathrm{e}^{-Z r / a}
$$

where a is the Bohr radius and r is distance from the nucleus.
An electron is in the ground state of tritium $(Z=1, A=2)$. A nuclear reaction (β-decay) instantaneously changes the nucleus into a helium-3 ion ${ }^{3} \mathrm{He}^{+}(Z=2$, $A=1$). Show that the probability of measuring the electron to be in the ground state of ${ }^{3} \mathrm{He}^{+}$is $\frac{512}{729}$.
[In both parts you may use the integral $\int_{0}^{\infty} r^{n} \mathrm{e}^{-r / b} \mathrm{~d} r=b^{n+1} n$!, where $b>0$ and $n \in \mathbb{N}$.]

