INTRODUCTION TO C*-ALGEBRAS

TERUJI THOMAS

1. The rough idea: Non-commutative geometry

As usual, in "the classical picture" there's some space S of 'states', and a commutative algebra of 'observables', functions on S. The idea of algebraic geometry is that, at least in good cases, one can study S purely in terms of the observables.

As usual, in "the quantum picture" there's some Hilbert spaces \mathcal{H} of 'states', and a *non*-commutative algebra of 'observables', operators on \mathcal{H} . The idea of algebraic quantum field theory is that on should focus on the observables, and forget about \mathcal{H} . Can we define states in terms of observables? What kind of geometric structure do they have?

The theory of C^* -algebras gives a framework for understanding *both* the classical and quantum pictures.

2. Classical

We'll take S to be a compact, Hausdorff space. (The compactness assumption just makes things neater – it's not fundamental.) Elements of S are 'pure states.' In general, we define a state to be a probability measure μ on S. The usual explanation: "When we do an experiment, we can't specify the initial state precisely, only probabilistically." A pure state is a special kind of state: $s \in S$ corresponds to the delta-measure δ_s .

Let C(S) be the space of continuous \mathbb{C} -valued functions on S. A probability measure μ is a special kind of functional $E_{\mu}: C(S) \to \mathbb{C}$

$$E_{\mu}(f) = \int_{S} f \, d\mu.$$

(E stands for 'expectation'; $E_{\mu}(f)$ is the expected value of f in the sense of probability theory).

The space of probability measures is *convex* and the extreme points are just the pure states. (Very roughly: A probability measure is a convex continuous sum of delta-measures.)

3. C^* -Algebras

A [unital] C^* -algebra is

- (a) A unital, associative \mathbb{C} -algebra \mathcal{A} with
- (b) A complete norm $\|\cdot\|$ with $\|1\| = 1, \|ab\| \le \|a\| \|b\|$;
- (c) An involution * (an anti-linear anti-automorphism with ** = id); satisfying (d) the C^* -condition: $||aa^*|| = ||a||^2$.

Some consequences: * is automatically an isometry; any algebra homomorphism between C^* algebras, preserving *, is automatically continuous. The assumption that \mathcal{A} is unital is again for simplification. It corresponds to the assumption that S is compact.

Example 3.1. $\mathcal{A} = \mathbb{C}$ with the usual norm and complex conjugation.

Example 3.2. $\mathcal{A} = C(S)$. The norm is $||f|| = \sup_{x \in S} |f(x)|$, and * is complex conjugation.

Theorem 3.1 (Gelfand). The association $S \to C(S)$ is an equivalence between compact Hausdorff spaces and commutative C^* -algebras. The inverse associates to each algebra \mathcal{A} the set of maximal ideals in \mathcal{A} (with the weak-* topology).

Example 3.3. \mathcal{H} a Hilbert space; $\mathcal{A} = B(\mathcal{H})$, the bounded operators on \mathcal{H} . The involution is Hermitian conjugation; the norm is the operator norm $||f|| := \sup |f(x)|/|x|$ (the condition that f is bounded just means that this sup exists).

Example 3.4. A *-closed subalgebra $\mathcal{A} \subset B(\mathcal{H})$ will be a C^* -algebra just in case it is closed in the uniform topology (i.e. the restriction of the norm to \mathcal{A} is complete). Such C^* -algebras are called 'concrete' (much like a 'concrete group' is a subgroup of a permutation group).

A representation of \mathcal{A} is a homomorphism $\mathcal{A} \to B(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Theorem 3.2 (Gelfand-Naimark). Every \mathcal{A} admits a faithful representation (so can be realised as a concrete C^{*}-algebra).

Remark 3.1. $B(\mathcal{H})$ is in fact a " W^* " or "von Neumann" algebra – it means that it is the dual of a Banach space (here, the space of trace-class operators with the trace norm). A concrete C^* -algebra is a W^* -algebra just in case it is weak-* closed. Any concrete C^* -algebra has an associated W^* -algebra – its weak-* closure. As far as I understand, W^* -algebras have a nice classification and are generally a bit easier to handle.

4. States

For any C^* -algebra \mathcal{A} , we have a positive cone $\mathcal{A}^+ = \{aa^* : a \in \mathcal{A}\}$. For example, if $\mathcal{A} = \mathbb{C}$, then $\mathcal{A}^+ = \mathbb{R}^+$ the nonnegative real numbers.

Definition 4.1. A state is a linear map $E: \mathcal{A} \to \mathbb{C}$ that is positive $(E(\mathcal{A}^+) \ge 0)$ and normalised (||E|| = 1, where $||E|| = \sup |E(x)|/|x|)$.

Example 4.1. $\mathcal{A} = C(S)$. States are just probability measures on S.

Example 4.2. $\mathcal{A} = B(\mathcal{H})$ (or, more generally, \mathcal{H} is a representation of \mathcal{A}). Given $v \in \mathcal{H}$, define $E_v(a) = (v, av)$. This is a state as long as v is normalised so that (v, v) = 1. These are called 'vector states' (relative to \mathcal{H}). These are the most traditional kinds of states in quantum mechanics.

Example 4.3. A bit more generally, if ρ is a trace-class operator on \mathcal{H} , then set $E_{\rho}(a) = \operatorname{tr}(\rho a)$. I think this is a state as long as (i) ρ is positive; and (ii) $\|\rho\|_{\operatorname{tr}} = 1$. Here the "trace norm" is $\|\rho\|_{\operatorname{tr}} = \operatorname{tr}\sqrt{aa^*}$ (in particular, if ρ is positive hence selfadjoint, it's just the trace). We call E_{ρ} a "normal state" (again relative to \mathcal{H}). A vector state E_v is a normal state: $E_v = E_{\rho}$ where $\rho(x) = (v, x)v$. Roughly speaking, a general state-defining ρ is an infinite convex sum of vector states – something like a probability distribution over vector states. This is what is physicists call a 'density matrix'.

Theorem 4.1 (Gelfand-Naimark-Segal). Every state E is a vector state with respect to some representation \mathcal{H}_E .

Proof. Given E, define an Hermitian inner product on \mathcal{A} by $(a, b) = E(a^*b)$. Let $I \subset \mathcal{A}$ be the set of norm-0 elements. It turns out to be a left ideal. Let \mathcal{H}_E be the completion of \mathcal{A}/I . Let $\Omega \in \mathcal{H}_E$ be the image of $1 \in \mathcal{A}$. Then it is easy to check that $E_{\Omega} = E$.

So it's not quite true that the states are naturally all vectors in a Hilbert space – they are vectors in *different* Hilbert spaces.

Example 4.4. $\mathcal{A} = C(S)$. If μ is a probability measure, then $\mathcal{H}_E = L^2(S, \mu)$.

5. Pure states and Folia

Theorem 5.1. The set of states of A is convex and compact (in the weak-* topology).

(This follows pretty easily from the Banach-Alaoglu theorem.)

Definition 5.1. A pure state is an extreme point in the set of states.

Theorem 5.2. \mathcal{H}_E is an irreducible representation if and only if E is pure.

A bit more precisely: if E'' = pE + (1-p)E' then $\mathcal{H}_E, \mathcal{H}_{E'}$ are naturally quotient (hence sub) representations of $\mathcal{H}_{E''}$. This shows that, certainly, impure states can't give irreducible representations.

Example 5.1. $\mathcal{A} = C(S)$. Irreducible reps are 1-dimensional, and correspond exactly to maximal ideals, i.e. elements of S, i.e. pure states.

Given a representation \mathcal{H} , the *folium* of \mathcal{H} is the set of normal states in \mathcal{H} . In particular, each state E determines a folium, the folium of \mathcal{H}_E . I *think* this is an equivalence relation on states, but I'm not sure [hmm, now it seems pretty unlikely].

Theorem 5.3. The folium of a faithful representation is dense in the space of states.

Example 5.2. $\mathcal{A} = C(S)$. As far as I can make out, each pure state is its own folium. I think that folia correspond to closed subsets of \mathcal{A} – the folium of a probability measure is the support of the measure. If that's right, then the only dense folium consists of measures with support equal to S, so that $\mathcal{H}_E = L^2(S)$, which is certainly a faithful representation of C(S).

5.4. **Summary.** In the classical picture, to a commutative C^* -algebra we associate a set of states. The extreme ones are *pure* states, and form a compact Hausdorff space; they correspond to maximal ideals. A state in general is a probability measure on the pure states. We've generalised this to a non-commutative C^* -algebra: we still get a compact, convex space of states, and the extreme ones parameterise irreducible representations. The states are also divided into folia, corresponding to the 'support' of a measure.

6. Example

Here's a non-commutative example. Let $\mathcal{H} = \mathbb{C}^2$, so $\mathcal{A} = B(\mathcal{H})$ is the algebra of 2×2 matrices. The involution is just the conjugate-transpose. The map $(a, b) \mapsto \operatorname{tr}(ab)$ identifies \mathcal{A} with its linear dual. So given $a \in \mathcal{A}$, we get a functional $E_a(b) = \operatorname{tr}(ab)$, and all functionals are of this form. Question: for which a is E_a a state?

First, it turns out that \mathcal{A}^+ is self-dual (i.e. E_a is positive if and only if $a \in \mathcal{A}^+$). The norm of E_a is just the trace-norm of a (recall that in general $\mathcal{B}(\mathcal{H})$ is dual to the trace-class operators with the trace norm); for $a \in \mathcal{A}^+$, this is just the trace. So E_a is a state if and only if a is of the form $a = bb^*$ with tr(a) = 1. A bit of calculation shows that this is equivalent to a being of the form

$$\begin{pmatrix} z & x+iy \\ x-iy & 1-z \end{pmatrix}$$

with $z \ge 0$ and $(z - \frac{1}{2})^2 + x^2 + y^2 \le \frac{1}{4}$. So the states form a ball of radius 1/2 around a = diag(1/2, 1/2). The pure states form a sphere S^2 .

If E is a pure state, then \mathcal{H}_E is equivalent to the standard representation. If E is impure, then \mathcal{H}_E is equivalent to the representation of \mathcal{A} acting on itself by left-multiplication.

Remark 6.1. Note that proper left ideals in \mathcal{A} correspond to lines in \mathcal{C}^2 (a line L gives the ideal I_L of matrices annihilating L). These lines form $\mathbb{P}^1 \cong S^2$. And \mathcal{A}/I_L is an irreducible representation. This is surely essentially the same parametrisation of irreps by S^2 , but I didn't work out the details.