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1. The rough idea: non-commutative geometry

As usual, in “the classical picture” there’s some space S of ‘states’, and a com-
mutative algebra of ‘observables’, functions on S. The idea of algebraic geometry
is that, at least in good cases, one can study S purely in terms of the observables.

As usual, in “the quantum picture” there’s some Hilbert spaces H of ‘states’, and
a non-commutative algebra of ‘observables’, operators on H. The idea of algebraic
quantum field theory is that on should focus on the observables, and forget about
H. Can we define states in terms of observables? What kind of geometric structure
do they have?

The theory of C∗-algebras gives a framework for understanding both the classical
and quantum pictures.

2. Classical

We’ll take S to be a compact, Hausdorff space. (The compactness assumption
just makes things neater – it’s not fundamental.) Elements of S are ‘pure states.’
In general, we define a state to be a probability measure µ on S. The usual ex-
planation: “When we do an experiment, we can’t specify the initial state precisely,
only probabilistically.” A pure state is a special kind of state: s ∈ S corresponds
to the delta-measure δs.

Let C(S) be the space of continuous C-valued functions on S. A probability
measure µ is a special kind of functional Eµ : C(S) → C

Eµ(f) =
∫

S

f dµ.

(E stands for ‘expectation’; Eµ(f) is the expected value of f in the sense of prob-
ability theory).

The space of probability measures is convex and the extreme points are just the
pure states. (Very roughly: A probability measure is a convex continuous sum of
delta-measures.)

3. C∗-algebras

A [unital] C∗-algebra is
(a) A unital, associative C-algebra A with
(b) A complete norm ‖ · ‖ with ‖1‖ = 1, ‖ab‖ ≤ ‖a‖‖b‖;
(c) An involution ∗ (an anti-linear anti-automorphism with ∗∗ = id); satisfying
(d) the C∗-condition: ‖aa∗‖ = ‖a‖2.

Some consequences: ∗ is automatically an isometry; any algebra homomorphism
between C∗ algebras, preserving ∗, is automatically continuous. The assumption
that A is unital is again for simplification. It corresponds to the assumption that
S is compact.

Example 3.1. A = C with the usual norm and complex conjugation.

Example 3.2. A = C(S). The norm is ‖f‖ = supx∈S |f(x)|, and ∗ is complex
conjugation.
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Theorem 3.1 (Gelfand). The association S → C(S) is an equivalence between
compact Hausdorff spaces and commutative C∗-algebras. The inverse associates to
each algebra A the set of maximal ideals in A (with the weak-∗ topology).

Example 3.3. H a Hilbert space; A = B(H), the bounded operators onH. The invo-
lution is Hermitian conjugation; the norm is the operator norm ‖f‖ := sup |f(x)|/|x|
(the condition that f is bounded just means that this sup exists).

Example 3.4. A ∗-closed subalgebra A ⊂ B(H) will be a C∗-algebra just in case it
is closed in the uniform topology (i.e. the restriction of the norm to A is complete).
Such C∗-algebras are called ‘concrete’ (much like a ‘concrete group’ is a subgroup
of a permutation group).

A representation of A is a homomorphism A → B(H) for some Hilbert space H.

Theorem 3.2 (Gelfand-Naimark). Every A admits a faithful representation (so
can be realised as a concrete C∗-algebra).

Remark 3.1. B(H) is in fact a “W ∗” or “von Neumann” algebra – it means that
it is the dual of a Banach space (here, the space of trace-class operators with the
trace norm). A concrete C∗-algebra is a W ∗-algebra just in case it is weak-∗ closed.
Any concrete C∗-algebra has an associated W ∗-algebra – its weak-∗ closure. As
far as I understand, W ∗-algebras have a nice classification and are generally a bit
easier to handle.

4. States

For any C∗-algebra A, we have a positive cone A+ = {aa∗ : a ∈ A}. For
example, if A = C, then A+ = R+ the nonnegative real numbers.

Definition 4.1. A state is a linear map E : A → C that is positive (E(A+) ≥ 0)
and normalised (‖E‖ = 1, where ‖E‖ = sup |E(x)|/|x|).

Example 4.1. A = C(S). States are just probability measures on S.

Example 4.2. A = B(H) (or, more generally, H is a representation of A). Given
v ∈ H, define Ev(a) = (v, av). This is a state as long as v is normalised so that
(v, v) = 1. These are called ‘vector states’ (relative to H). These are the most
traditional kinds of states in quantum mechanics.

Example 4.3. A bit more generally, if ρ is a trace-class operator on H, then set
Eρ(a) = tr(ρa). I think this is a state as long as (i) ρ is positive; and (ii) ‖ρ‖tr = 1.
Here the “trace norm” is ‖ρ‖tr = tr

√
aa∗ (in particular, if ρ is positive hence self-

adjoint, it’s just the trace). We call Eρ a “normal state” (again relative to H). A
vector state Ev is a normal state: Ev = Eρ where ρ(x) = (v, x)v. Roughly speaking,
a general state-defining ρ is an infinite convex sum of vector states – something like
a probability distribution over vector states. This is what is physicists call a ‘density
matrix’.

Theorem 4.1 (Gelfand-Naimark-Segal). Every state E is a vector state with re-
spect to some representation HE.

Proof. Given E, define an Hermitian inner product on A by (a, b) = E(a∗b). Let
I ⊂ A be the set of norm-0 elements. It turns out to be a left ideal. Let HE be the
completion of A/I. Let Ω ∈ HE be the image of 1 ∈ A. Then it is easy to check
that EΩ = E. �

So it’s not quite true that the states are naturally all vectors in a Hilbert space
– they are vectors in different Hilbert spaces.

Example 4.4. A = C(S). If µ is a probability measure, then HE = L2(S, µ).
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5. Pure states and Folia

Theorem 5.1. The set of states of A is convex and compact (in the weak-∗ topol-
ogy).

(This follows pretty easily from the Banach-Alaoglu theorem.)

Definition 5.1. A pure state is an extreme point in the set of states.

Theorem 5.2. HE is an irreducible representation if and only if E is pure.

A bit more precisely: if E′′ = pE+(1−p)E′ then HE ,HE′ are naturally quotient
(hence sub) representations of HE′′ . This shows that, certainly, impure states can’t
give irreducible representations.

Example 5.1. A = C(S). Irreducible reps are 1-dimensional, and correspond ex-
actly to maximal ideals, i.e. elements of S, i.e. pure states.

Given a representation H, the folium of H is the set of normal states in H. In
particular, each state E determines a folium, the folium of HE . I think this is an
equivalence relation on states, but I’m not sure [hmm, now it seems pretty unlikely].

Theorem 5.3. The folium of a faithful representation is dense in the space of
states.

Example 5.2. A = C(S). As far as I can make out, each pure state is its own
folium. I think that folia correspond to closed subsets of A – the folium of a
probability measure is the support of the measure. If that’s right, then the only
dense folium consists of measures with support equal to S, so that HE = L2(S),
which is certainly a faithful representation of C(S).

5.4. Summary. In the classical picture, to a commutative C∗-algebra we associate
a set of states. The extreme ones are pure states, and form a compact Hausdorff
space; they correspond to maximal ideals. A state in general is a probability mea-
sure on the pure states. We’ve generalised this to a non-commutative C∗-algebra:
we still get a compact, convex space of states, and the extreme ones parameterise
irreducible representations. The states are also divided into folia, corresponding to
the ‘support’ of a measure.

6. Example

Here’s a non-commutative example. Let H = C2, so A = B(H) is the algebra of
2 × 2 matrices. The invoution is just the conjugate-transpose. The map (a, b) 7→
tr(ab) identifies A with its linear dual. So given a ∈ A, we get a functional Ea(b) =
tr(ab), and all functionals are of this form. Question: for which a is Ea a state?

First, it turns out that A+ is self-dual (i.e. Ea is positive if and only if a ∈ A+).
The norm of Ea is just the trace-norm of a (recall that in general B(H) is dual to
the trace-class operators with the trace norm); for a ∈ A+, this is just the trace.
So Ea is a state if and only if a is of the form a = bb∗ with tr(a) = 1. A bit of
calculation shows that this is equivalent to a being of the form(

z x + iy
x− iy 1− z

)
with z ≥ 0 and (z − 1

2 )2 + x2 + y2 ≤ 1
4 . So the states form a ball of radius 1/2

around a = diag(1/2, 1/2). The pure states form a sphere S2.
If E is a pure state, then HE is equivalent to the standard representation. If

E is impure, then HE is equivalent to the representation of A acting on itself by
left-multiplication.

Remark 6.1. Note that proper left ideals in A correspond to lines in C2 (a line L
gives the ideal IL of matrices annihilating L). These lines form P1 ∼= S2. And A/IL

is an irreducible representation. This is surely essentially the same parametrisation
of irreps by S2, but I didn’t work out the details.


