
QUANTIZATION OF ELEMENTARY DYNAMICAL SYSTEMS I
(WILL DONOVAN)

1. Group actions and irreducibility

We’ve discussed the general problem of associating to a symplectic manifold
(M,ω) a Hilbert space H with an irreducible representation of C∞(M) (or, at
least, a subalgebra). Now we consider the situation in which M carries an action of
a Lie group G. Under some conditions (namely, when the action is ‘Hamiltonian’)
we will get a representation of G on H, and, at least naively, if G acts transitively
on M , then the G-representation should be irreducible.

Remark 1.1. The ‘states’ in quantum theory are rays in H, so what one really
expects to get is a projective representation of G. An equivalent way to say this is
that we may get a representation not of G but of some central extension (e.g. a
covering group). This is what happened in the Heisenberg case, in two ways: (1)
When G = V acted on V by translations, we got a representation not of G but
of the Heisenberg group, a central extension of V ; (2) when G = Sp(V ), we got a
representation not of G but of Mp(V ), a covering group.

Remark 1.2. There was some discussion, not yet conclusive, about the physical
meaning of irreducibility (either under C∞(M) or under G). Here are some com-
ments that more or less came out of that discussion.

If we think about C∞(M) as a Lie algebra acting on M , then the question of
C∞(M)-irreducibility is formally the same kind of question as that of G-irreducibility.
If M is connected, then C∞(M) acts transitively (in the sense of Lie algebras). If
M is not connected, then H probably won’t be C∞(M)-irreducible. This kind of
reducibility is probably what is called ‘superselection’.

Normally for G to act ‘by symmetries’ means that it not only acts on (M,ω),
but that it also preserves the Hamiltonian H. Now, (a) if G preserves H, then
the decomposition of H into eigenspaces of the operator Ĥ is also a decomposition
of H into G-representations, so H can’t be G-irreducible, unless Ĥ is a scalar.
But (b) if G acts transitively and preserves H, then H must be constant, so Ĥ is
indeed a scalar. Note that (a) and (b) have nothing to do with the fact that H
is the Hamiltonian – they work for any observable. Remember, also, from lecture
1, that it’s not bad for the Hamiltonian to be constant – this is what happens in
the formalism when we think of M as a space of trajectories rather than a space of
states.

Example 1.1. A single particle moves in three dimensions. Then M = T ∗R3 consists
of pairs (position,momentum) of vectors. G = SO(3, R) n R3 acts on M (that is:
SO(3, R) acts by rotations, and R3 acts by translations). This action preserves the
free Hamiltonian H (the length-squared of the momentum). But G doesn’t act
transitively. Rather, the orbits are parameterised by non-negative numbers h ∈ R3

(the values of H). These orbits are presymplectic manifolds – the integral curves
of kerω are the (free) trajectories. The symplectic reduction of such an orbit (at
least with h 6= 0) is a four-dimensional symplectic space, whose coordinates can
be understood as choices of momentum and angular momentum (subject to the
constraint H = h).

General (almost correct) idea of what we are doing: if G does not act transitively,
consider one G-orbit at a time. These orbits are presymplectic spaces, and their
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reductions are certain nice symplectic manifolds with transitive G-actions: they are
the ‘coadjoint orbits’. The quantization of each coadjoint orbit, is an irreducible
representation of G. The quantization of M is glued together (somehow) from these
irreducible representations.

2. Coadjoint orbits

After this motivational story, we turn to some maths.

2.1. Symplectic structure. Given a Lie group G, the Lie algebra g = T1G is
a vector space with an action of G – the adjoint action. It is defined as follows:
g : h 7→ ghg−1 defines an action of G on itself, preserving the identity; it therefore
gives an action of G on the tangent space g.

We also get an action (‘coadjoint’) of G on the dual vector space g∗.

Theorem 2.2. (Kostant-Kirillov-. . . ) The ‘coadjoint orbits’ (the orbits of G in
g∗) are naturally symplectic manifolds.

Note that this has the otherwise mysterious consequence that the coadjoint orbits
are even-dimensional.

The idea of the proof is as follows. Given f ∈ g∗ we can define a skew form ωf

on g: ωf (x, y) = f([x, y]). Thus we get a symplectic form on the quotient g/ ker ωf .
The claim is that we can identify g/ ker ωf with the tangent space TfOf to the
orbit Of at f . We have then defined a symplectic form on TfOf , and as f varies
we get a symplectic form on Of .

One way to do it: since G acts on Of , each x ∈ g defines an ‘infinitesimal
transformation’ of f , i.e. a tangent vector at f . The claim is that, as x varies,
these span TfOf , so that TfOf is a quotient of g. And in fact it is g/ ker ωf .

Equivalent (?) story: since Of ⊂ g∗, the cotangent space T ∗fOf is naturally a
quotient of g; in fact it is just g/ ker ωf . We therefore have a symplectic form on
T ∗fOf , but this is the same thing as a symplectic form on TfOf .

2.3. Examples. (1) For G = SO(3, R), we can realize g∗ as the set of skew-
symmetric 3× 3 matrices, with G acting by conjugation. Another way to describe
g: it is a three-dimensional vector space generated by vectors i, j, k corresponding
to infinitesimal rotations around the three axes. In this description, the coadjoint
action is just the standard action of SO(3, R) on R3, and the orbits are spheres
(including the origin as a sphere of zero radius).

(2) For G = SL(2, C), g∗ is the set of traceless 2 × 2 matrices, with G acting
by conjugation; thus dim g∗ = 3. The orbits are as follows: for each real number
r 6= 0, the set of x ∈ g∗ with detx = r (these are the ‘semisimple’ orbits); the set
of x ∈ g∗ with rank 1; and {0}. The last two (‘nilpotent’) orbits form a quadratic
cone in g∗ ∼= C3, called ‘the nilpotent cone.’

(2) For G = SL(n, C), we can realize g∗ as the set of trace-free n × n matrices,
again with G acting by conjugation. The different orbits correspond to different
Jordan normal forms. So there is one for each nonincreasing list (x1, . . . , xn) of
eigenvalues with

∑
xi = 0 – these are the ‘semisimple’ orbits, consisting of the

diagonalizable matrices. The nilpotent orbits consist of nilpotent matrices. (Note
some matrices are neither nilpotent nor diagonalizable.)

There is a certain relationship between the nilpotent orbits and flag varieties.


