
QUANTIZATION OF ELEMENTARY DYNAMICAL SYSTEMS II
(WILL DONOVAN)

1. Some Lie Theory

Let G = SL(n, C). Much of what we say generalizes to arbitrary semisimple (or
indeed reductive) Lie groups.

1.1. Borels and Flags. The Lie algebra g is the space of trace-free n×n complex
matrices (the Lie bracket is the usual commutator of matrices AB − BA). A flag
F is a sequence of vector spaces

F = (0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Rn)

with dim Fd = d. The stabilizer bF of F in g is a Borel subalgebra (by definition,
a Borel subalgebra is a maximal solvable Lie subalgebra of g). For example, with
respect to the standard basis e1, . . . , en, let Fd = span(e1, . . . , ed). Then bF is the
space of traceless upper-triangular matrices.

A theorem of Engels says that F 7→ bF is a G-equivariant bijection between the
set F of flags and the set B of Borel subalgebras.

1.2. The universal resolution. The ‘universal resolution’ g̃ of g is defined by

g̃ = {(f, b) : f ∈ b} ⊂ g× B.

We have obvious maps µ : g̃ → g and π : g̃ → B. The fibres of µ are interesting.
First, µ−1(0) = B.
Second, if f ∈ g is regular semisimple (i.e. diagonalizable, with distinct eigen-

values), then µ−1(f) has n! elements and a natural action of the symmetric group
Sn. That is, if e1, . . . , en are the eigenvectors of f , then each σ ∈ Sn defines a
flag Fd = span(eσ(1), . . . , eσ(d)). In other words, over the open set grs of regular
semisimple elements, µ is an principal Sn-bundle.

A third and most interesting case is when f is ‘regular nilpotent’: that is, it has
a single block in Jordan normal form. (For SLn(C), f is nilpotent if it is strictly
upper triangular in some basis. In general, the condition is that ad(f) : g → g is
a nilpotent map. The nilpotent elements can be classified by dim ker ad(f); the
‘regular’ nilpotent elements are the ones where this number is as small as possible.)

1.3. The nilpotent cone. Let N ⊂ g be the set of all nilpotent elements. N is
called the nilpotent cone; it is a cone, i.e. invariant under scaling. Let Ñ = µ−1(N ).

Proposition 1.4. (1) If f is regular nilpotent, then there is a unique Borel b
containing f . (2) The set Nr of regular nilpotent elements is a dense G-orbit in N .

Thus the n!-fold cover of grs ramifies to a 1-fold cover over Nr. The proof of (1)
is that f determines a flag Fd = ker fd. The fact that f is regular means that this
is actually a flag in the sense we have defined. For the proof of (2) see for example
Chriss/Ginzburg, Proposition 3.2.10.

Remark 1.1. There is a natural identification Ñ = T ∗B.

Example 1.1. For SL(2, C), g = C3, each non-zero semisimple orbit (automatically
regular) is a hyperbola x2 − yz = c, degenerating to a quadratic cone x2 − yz = 0.
The smooth part of the cone is the regular nilpotent orbit. The only other orbit is
{0}.

1



2 QUANTIZATION OF ELEMENTARY DYNAMICAL SYSTEMS II (WILL DONOVAN)

1.5. g vs g∗. We often make use of a G-equivariant isomorphism g = g∗. This
is the same as choosing a G-invariant bilinear form on g. For SL(n, C), or for a
semisimple group in general, such an isomorphism exists uniquely (up to scale) –
the Killing form. For a reductive group, the Killing form is degenerate, but one
can nonetheless define such an isomorphism. José says there is a classification of
Lie algebras admitting invariant bilinear forms. They can all be constructed from
one-dimensional Lie algebras and simple Lie algebras using a method called ‘double
extension.’

1.6. Homogeneous spaces and line bundles. One can show that B ∼= G/B
(where B is the subgroup of G corresponding to some standard Borel subalgebra
b). The claim is just that B is its own normalizer, and that all Borel subgroups are
conjugate.

This means that B has a natural principal B-bundle, G → B. (The fibres are
the cosets of B, with B acting on the right of each coset.) For each character
α : B → C×, we obtain a line bundle Lα = G⊗ α on B.

Considering SL(n, C) once again, the characters of B factor through

B → B/[B,B] ⊂ (C×)n

(projection to the diagonal) and are therefore given by sequences of integers a =
(a1, . . . , an); the corresponding character is αa(diag(λ1, . . . , λn)) =

∏
λai

i . If all the
ai are equal then αa = 1, so the space of characters is Zn/Z. A character αa is
dominant if a1 ≥ · · · ≥ an. This turns out to be equivalent to the condition that
the line bundle Lαa has non-zero holomorphic sections.

It is a well-known fact that finite-dimensional holomorphic representations of
SL(n, C) are labelled by ‘highest weights’, which are nothing but dominant charac-
ters in the above sense. More precisely, one has the following theorem.

Theorem 1.7 (Borel-Weil). If α is a dominant character, then the space Γ(B,Lα)
of holomorphic sections of Lα is a finite-dimensional irreducible holomorphic rep-
resentation of G (with ‘highest weight α’). All such representations arise in this
way.

(It should be clear that Lα is G-equivariant, meaning that G does act on on
Γ(B,Lα) in a geometrically natural way.)

Example 1.2. For SL(2, C), B = G/B = P1. A dominant character is given by an
integer α ≥ 0, and Lα = OP1(α) in the usual notation. Moreover, Γ(P1,OP1(α)) =
Symk(C2)∗ (concretely, the space of homogeneous polynomials of degree k in two
variables). This is the standard description of representations of SL(2, C).

2. Mystery

What does this have to do with geometric quantization? It looks like quantization
in the following sense: we took Nr, a transitive symplectic G-space. This is an
open submanifold of T ∗B (the projection Nr → B is the one that assigns to each
f ∈ Nr the unique Borel containing it). We found irreducible representations of
G by looking at sections of line bundles on the base B. This looks just like the
quantization story.

However, quantization should have given us unitary representations, and the
representations we found are not unitary! (SL(n, C) has no non-trivial unitary
finite-dimensional representations.)

It’s remains a mystery to me what is going on. Here are three comments.
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2.1. Look at non-holomorphic sections. The finite-dimensionality has to do
with the fact that we considered holomorphic sections of Lα. In the geometric
quantization prescription, we are supposed to (do something like) look at all L2

sections. This makes sense at least when α = 0. This is the picture: given a unitary
character of B, we can induce from B to G to get a unitary representation of G.
My vague memory is that the corresponding representations of G are irreducible
(or almost so) and that most of the irreducible unitary representations arise in this
way.

2.2. Compact groups. Instead of a complex group like SL(2, C), we can con-
sider compact groups like SU(2). Compactness implies that one can make any
finite-dimensional representation unitary. Now, the holomorphic representations of
SL(2, C) restrict to unitary representations of SU(2), and this is a bijection. So we
should be able to get the holomorphic representations of SL(2, C) by quantizing
coadjoint orbits in SU(2).

For SU(2), the coadjoint orbits are spheres (remember that SU(2) and SO(2, R)
have the same Lie algebra). These spheres are Kähler manifolds (think sphere=P1).
Using the Kähler polarization, the Hilbert space resulting from geometric quanti-
zation is the space of holomorphic sections of a line bundle. So the construction
of unitary representations of SU(2) looks exactly the same as the construction of
holomorphic representations of SL(2, C) before: holomorphic sections of a line bun-
dle on P1. But there is still a bit of a mystery in the sense that for SU(2) we have
quantized semisimple orbits, while for SL(2, C) we dealt with the regular nilpotent
orbit. It would be nice to understand the connection between these two stories
(some kind of deformation?).

2.3. Poincaré group. The unitary representations of SL(2, C) are physically im-
portant in that SL(2, C) is the universal cover of the Lorentz group. But one is really
interested in unitary representations of the Poincaré group, P = SL(2, C)n R4. By
quantizing coadjoint orbits in P , one recovers the one-particle Hilbert spaces used
in quantum field theory. The story here is explained in Woodhouse, and definitely
involves the quantization of SU(2) explained above. It would be good to sort all
this out.


