
GEOMETRIC QUANTIZATION I: SYMPLECTIC GEOMETRY
AND MECHANICS

A useful reference is Simms and Woodhouse, Lectures on Geometric Quantiza-
tion, available online.

1. Symplectic Geometry.

1.1. Linear Algebra. A pre-symplectic form ω on a (real) vector space V is a
skew bilinear form ω : V ⊗V → R. For any W ⊂ V write W⊥ = {v ∈ V |ω(v, w) =
0∀w ∈ W}. (V, ω) is symplectic if ω is non-degenerate: kerω := V ⊥ = 0.

Theorem 1.2. If (V, ω) is symplectic, there is a “canonical” basis

P1, . . . , Pn, Q1, . . . , Qn

such that ω(Pi, Pj) = 0 = ω(Qi, Qj) and ω(Pi, Qj) = δij.

Pi and Qi are said to be conjugate. The theorem shows that all symplectic vector
spaces of the same (always even) dimension are isomorphic.

1.3. Geometry. A symplectic manifold is one with a non-degenerate 2-form ω;
this makes each tangent space TmM into a symplectic vector space with form ωm.
We should also assume that ω is closed : dω = 0.

We can also consider pre-symplectic manifolds, i.e. ones with a closed 2-form ω,
which may be degenerate. In this case we also assume that dim kerωm is constant;
this means that the various kerωm fit tog ether into a sub-bundle ker ω of TM .

Example 1.1. If V is a symplectic vector space, then each TmV = V . Thus the
symplectic form on V (as a vector space) determines a symplectic form on V (as a
manifold). This is locally the only example:

Theorem 1.4. Every symplectic manifold M is locally isomorphic to a symplectic
vector space V . (In particular, for any m ∈ M there are local ‘canonical’ coordinates
P1, . . . Qn corresponding to a canonical basis for V ).

Example 1.2. If M is any manifold, then T ∗M is a symplectic manifold. In fact,
there is a unique one-form θ on T ∗M such that for any section α : M → T ∗M one
has α∗(θ) = α. Then ω := dθ.

In general, if ω = dθ then θ is called a symplectic potential. One always exists
locally (because ω is closed) but not always globally.

Example 1.3. If M is a complex manifold with a Hermitian metric η then define
ωm(ξ1, ξ2) = Re ηm(iξ1, ξ2) for all ξ1, ξ2 ∈ TmM . Then ω is a non-degenerate
2-form; if it is symplectic (i.e. closed) then M is Kähler. For example: M =
Pn(C) with η the unique Un+1(C)-invariant metric. Note this is compact (unlike a
cotangent bundle) and there is no symplectic potential.

1.5. Hamiltonian Reduction. Other examples are found using Hamiltonian re-
duction. Suppose first that W is a pre-symplectic vector space; then W/ ker ω
is symplectic. In particular, if V is symplectic, and W⊥ ⊂ W ⊂ V (i.e. W is
‘coisotropic’) then W is pre-symplectic and W/W⊥ is symplectic. This construc-
tion globalises in the following way:

Suppose (N,ω) is pre-symplectic. Then kerω is (by assumption) a subbundle
of TN . The fact that ω is closed means that kerω is integrable. This means there
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exists a ‘foliation’, i.e. a family Nα of submanifolds of N , such that N = tα∈INα,
and if m ∈ Nα then TmNα = kerωm. In good cases, the set of ‘leaves’ N/ ker ω := I
is a manifold, and then it is symplectic. Indeed, Tα(N/ ker ω) = (TmN)/ ker ωm.

In particular, if (M,ω) is symplectic, we can choose some N ⊂ M that is
coisotropic: this means that TnN is a coisotropic subspace of TnM , for any n ∈ N .
In good cases, (N,ω|N ) will then be presymplectic, and N/ ker ω|N will be sym-
plectic.

Example 1.4. V = Rn, so M := TV ∼= R2n is symplectic. Let N ⊂ M be the unit
sphere. Then the Hamiltonian reduction N/ ker ω|N is naturally Pn−1(C). In this
case the leaves of the foliation are circles on the sphere.

1.6. Poisson Brackets. The fact that M is symplectic endows C∞(M) with the
structure of a Lie algebra, under the Poisson bracket, defined as follows.

Given f ∈ C∞(M), there exists a unique vector field Xf on M such that
ω(Xf ,−) = df . Such a vector field is called globally Hamiltonian. For f, g ∈
C∞(M), define [f, g] = 2ω(Xf , Xg). This makes C∞(M) into a Lie algebra (the
Jacobi identity is equivalent to the fact that ω is closed). This gives a short exact
sequence of Lie algebras:

0 → R → C∞(M) → {(Glob. Ham. VFs)} → 0.

The Lie bracket on globally Hamiltonian vector fields is the usual bracket of vector
fields.

1.7. A Naive Idea About Quantization. The idea of quantization is to as-
sociate to a symplectic manifold M a Hilbert space H, and to each ‘observable’
f ∈ C∞(M), and operator Of on H, such that the Poisson bracket on C∞(M)
becomes the commutator of operators. Naively, we can take H = L2(M) and
Of = Xf , acting by derivations. But life is more complicated.

2. Mechanics

The kind of situation we want to describe is that of a particle moving in space
S. How can one describe the trajectories? We sketch three methods.

2.1. Hamiltonian mechanics. General setup: M a symplectic manifold; H ∈
C∞(M) ‘the Hamiltonian.’ Points of M label instantaneous states; time evolution
is given by flow along the vector field XH . In other words, γ : R → M is a trajectory
if it satisfies the differential equation dγ/dt = XH (maybe with a minus sign).

Example 2.1. S space. Suppose that S has a Riemannian metric η (e.g. S = R3

with the usual inner product). We can use η to identify each tangent space TmS
with the cotangent space T ∗mS, thus making M = TS into a symplectic manifold.
H(s, ξ) = 1

2η(ξ, ξ) for s ∈ S and ξ ∈ TsS. The trajectories R → TS project
to geodesics on S. (Note that any curve γ : R → S lifts naturally to a curve
(γ, γ′) : R → TS.)

2.2. Presymplectic mechanics. Now N is pre-symplectic. Thus we have a foli-
ation of N with tangent spaces kerω. The trajectories are leaves of this foliation,
i.e. unparameterized integral surfaces for ker ω. (The simplest case is when kerωm

is one-dimensional, so the leaves are cruves in N).

Example 2.2. With S as before, and H a function on TM , consider ‘spacetime’
S × R. Let M = T ∗(S × R) and define N ⊂ M to be those (s, t;αs, αt) ∈ M such
that H(s, t)+αt = 0. Then N is coisotropic and presymplectic, and the trajectories
project to graphs of geodesics R → S.
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This setup makes sense when H depends on time, and also in relativistic setting
where there is no canonical decomposition of spacetime into space S and time R.

Usually the situation is described in a slightly different way: one is given a
‘relativistic Hamiltonian’ Hr ∈ C∞(M) (in the example, H(s, t) + αt), and the
trajectories are again integral curves for XHr , but subject to the constraint Hr = 0.

2.3. Nice Thing I Forgot to Say. The Hamiltonian reduction N/ ker ω of the
presymplectic manifold N is (by definition) the space of trajectories, which is there-
fore a symplectic manifold. In the example, we can, for each time t ∈ R, identify
N/ ker ω with the space T ∗S of instantaneous states. In quantum theory, N/ ker ω
is called the ‘Heisenberg picture’ (the ‘states’ are entire trajectories) whereas T ∗S
is called the ‘Schrodinger picture’ (the ‘states’ are instantaneous). As remarked be-
fore, the Schrodinger picture is not very natural in relativistic settings. In general,
N/ ker ω might not even be isomorphic to a cotangent bundle.

2.4. Lagrangian Mechanics. Instead of characterising trajectories by differential
equations, we use a ‘variational principle’ – like the one that says that geodesics
minimize length. Lagrangian mechanics takes place in the tangent space TS. We
are given a function L ∈ C∞(TS). A trajectory γ : R → S is one that extremizes
the action

A(γ) =
∫

[0,1]

L(γ(t), γ′(t)) dt.

The relation to Hamiltonian mechanics is roughly as follows: one can use L to
define a (non usually linear) map TmS → T ∗mS, called the Legendre transfrom. In
good cases, the Legendre transform is a local diffeomorphism, making TS into a
symplectic manifold. Flows are determined by an appropriate Hamiltonian.

Example 2.3. Take L(s, ξ) = 1
2η(ξ, ξ). Then the action is the length1 of γ, and

the trajectories are geodesics. More generally, if we had a Hamiltonian H(s, ξ) =
1
2η(ξ, ξ) + U(s), then the corresponding Lagrangian is L(s, ξ) = 1

2η(ξ, ξ)− U(s).

The Lagrangian formalism is ubiquitous in physics, but it’s not yet clear to me
how important it will be for our immediate aims.

1Actually not quite the length, which would be the integral of the square-root of the Lagrangian;
but it turns out not to matter.


