GEOMETRIC QUANTIZATION I: SYMPLECTIC GEOMETRY AND MECHANICS

A useful reference is Simms and Woodhouse, *Lectures on Geometric Quantization*, available online.

1. Symplectic Geometry.

1.1. Linear Algebra. A *pre-symplectic* form ω on a (real) vector space V is a skew bilinear form $\omega: V \otimes V \to \mathbb{R}$. For any $W \subset V$ write $W^{\perp} = \{v \in V \mid \omega(v, w) = 0 \forall w \in W\}$. (V, ω) is symplectic if ω is non-degenerate: ker $\omega := V^{\perp} = 0$.

Theorem 1.2. If (V, ω) is symplectic, there is a "canonical" basis

$$P_1,\ldots,P_n,Q_1,\ldots,Q_n$$

such that $\omega(P_i, P_j) = 0 = \omega(Q_i, Q_j)$ and $\omega(P_i, Q_j) = \delta_{ij}$.

 P_i and Q_i are said to be *conjugate*. The theorem shows that all symplectic vector spaces of the same (always even) dimension are isomorphic.

1.3. Geometry. A symplectic manifold is one with a non-degenerate 2-form ω ; this makes each tangent space $T_m M$ into a symplectic vector space with form ω_m . We should also assume that ω is closed: $d\omega = 0$.

We can also consider *pre-symplectic* manifolds, i.e. ones with a closed 2-form ω , which may be degenerate. In this case we also assume that dim ker ω_m is constant; this means that the various ker ω_m fit tog ether into a *sub-bundle* ker ω of TM.

Example 1.1. If V is a symplectic vector space, then each $T_m V = V$. Thus the symplectic form on V (as a vector space) determines a symplectic form on V (as a manifold). This is locally the only example:

Theorem 1.4. Every symplectic manifold M is locally isomorphic to a symplectic vector space V. (In particular, for any $m \in M$ there are local 'canonical' coordinates P_1, \ldots, Q_n corresponding to a canonical basis for V).

Example 1.2. If M is any manifold, then T^*M is a symplectic manifold. In fact, there is a unique one-form θ on T^*M such that for any section $\alpha \colon M \to T^*M$ one has $\alpha^*(\theta) = \alpha$. Then $\omega := d\theta$.

In general, if $\omega = d\theta$ then θ is called a *symplectic potential*. One always exists locally (because ω is closed) but not always globally.

Example 1.3. If M is a complex manifold with a Hermitian metric η then define $\omega_m(\xi_1, \xi_2) = \operatorname{Re} \eta_m(i\xi_1, \xi_2)$ for all $\xi_1, \xi_2 \in T_m M$. Then ω is a non-degenerate 2-form; if it is symplectic (i.e. closed) then M is Kähler. For example: $M = \mathbb{P}^n(\mathbb{C})$ with η the unique $U_{n+1}(\mathbb{C})$ -invariant metric. Note this is compact (unlike a cotangent bundle) and there is no symplectic potential.

1.5. Hamiltonian Reduction. Other examples are found using Hamiltonian reduction. Suppose first that W is a pre-symplectic vector space; then $W/\ker \omega$ is symplectic. In particular, if V is symplectic, and $W^{\perp} \subset W \subset V$ (i.e. W is 'coisotropic') then W is pre-symplectic and W/W^{\perp} is symplectic. This construction globalises in the following way:

Suppose (N, ω) is pre-symplectic. Then ker ω is (by assumption) a subbundle of TN. The fact that ω is closed means that ker ω is *integrable*. This means there

exists a 'foliation', i.e. a family N_{α} of submanifolds of N, such that $N = \bigsqcup_{\alpha \in I} N_{\alpha}$, and if $m \in N_{\alpha}$ then $T_m N_{\alpha} = \ker \omega_m$. In good cases, the set of 'leaves' $N / \ker \omega := I$ is a manifold, and then it is symplectic. Indeed, $T_{\alpha}(N / \ker \omega) = (T_m N) / \ker \omega_m$.

In particular, if (M, ω) is symplectic, we can choose some $N \subset M$ that is *coisotropic*: this means that $T_n N$ is a coisotropic subspace of $T_n M$, for any $n \in N$. In good cases, $(N, \omega|_N)$ will then be presymplectic, and $N/\ker \omega|_N$ will be symplectic.

Example 1.4. $V = \mathbb{R}^n$, so $M := TV \cong \mathbb{R}^{2n}$ is symplectic. Let $N \subset M$ be the unit sphere. Then the Hamiltonian reduction $N/\ker \omega|_N$ is naturally $\mathbb{P}^{n-1}(\mathbb{C})$. In this case the leaves of the foliation are circles on the sphere.

1.6. **Poisson Brackets.** The fact that M is symplectic endows $C^{\infty}(M)$ with the structure of a Lie algebra, under the *Poisson bracket*, defined as follows.

Given $f \in C^{\infty}(M)$, there exists a unique vector field X_f on M such that $\omega(X_f, -) = df$. Such a vector field is called *globally Hamiltonian*. For $f, g \in C^{\infty}(M)$, define $[f,g] = 2\omega(X_f, X_g)$. This makes $C^{\infty}(M)$ into a Lie algebra (the Jacobi identity is equivalent to the fact that ω is closed). This gives a short exact sequence of Lie algebras:

$$0 \to \mathbb{R} \to C^{\infty}(M) \to \{(\text{Glob. Ham. VFs})\} \to 0.$$

The Lie bracket on globally Hamiltonian vector fields is the usual bracket of vector fields.

1.7. A Naive Idea About Quantization. The idea of quantization is to associate to a symplectic manifold M a Hilbert space H, and to each 'observable' $f \in C^{\infty}(M)$, and operator O_f on H, such that the Poisson bracket on $C^{\infty}(M)$ becomes the commutator of operators. Naively, we can take $H = L^2(M)$ and $O_f = X_f$, acting by derivations. But life is more complicated.

2. Mechanics

The kind of situation we want to describe is that of a particle moving in space S. How can one describe the trajectories? We sketch three methods.

2.1. Hamiltonian mechanics. General setup: M a symplectic manifold; $H \in C^{\infty}(M)$ 'the Hamiltonian.' Points of M label instantaneous states; time evolution is given by flow along the vector field X_H . In other words, $\gamma \colon \mathbb{R} \to M$ is a trajectory if it satisfies the differential equation $d\gamma/dt = X_H$ (maybe with a minus sign).

Example 2.1. S space. Suppose that S has a Riemannian metric η (e.g. $S = \mathbb{R}^3$ with the usual inner product). We can use η to identify each tangent space T_mS with the cotangent space T_m^*S , thus making M = TS into a symplectic manifold. $H(s,\xi) = \frac{1}{2}\eta(\xi,\xi)$ for $s \in S$ and $\xi \in T_sS$. The trajectories $\mathbb{R} \to TS$ project to geodesics on S. (Note that any curve $\gamma \colon \mathbb{R} \to S$ lifts naturally to a curve $(\gamma, \gamma') \colon \mathbb{R} \to TS$.)

2.2. **Presymplectic mechanics.** Now N is pre-symplectic. Thus we have a foliation of N with tangent spaces ker ω . The trajectories are leaves of this foliation, i.e. unparameterized integral surfaces for ker ω . (The simplest case is when ker ω_m is one-dimensional, so the leaves are cruves in N).

Example 2.2. With S as before, and H a function on TM, consider 'spacetime' $S \times \mathbb{R}$. Let $M = T^*(S \times \mathbb{R})$ and define $N \subset M$ to be those $(s, t; \alpha_s, \alpha_t) \in M$ such that $H(s, t) + \alpha_t = 0$. Then N is coisotropic and presymplectic, and the trajectories project to graphs of geodesics $\mathbb{R} \to S$.

This setup makes sense when H depends on time, and also in relativistic setting where there is no canonical decomposition of spacetime into space S and time \mathbb{R} .

Usually the situation is described in a slightly different way: one is given a 'relativistic Hamiltonian' $H_r \in C^{\infty}(M)$ (in the example, $H(s,t) + \alpha_t$), and the trajectories are again integral curves for X_{H_r} , but subject to the constraint $H_r = 0$.

2.3. Nice Thing I Forgot to Say. The Hamiltonian reduction $N/\ker \omega$ of the presymplectic manifold N is (by definition) the space of trajectories, which is therefore a symplectic manifold. In the example, we can, for each time $t \in \mathbb{R}$, identify $N/\ker \omega$ with the space T^*S of instantaneous states. In quantum theory, $N/\ker \omega$ is called the 'Heisenberg picture' (the 'states' are entire trajectories) whereas T^*S is called the 'Schrodinger picture' (the 'states' are instantaneous). As remarked before, the Schrodinger picture is not very natural in relativistic settings. In general, $N/\ker \omega$ might not even be isomorphic to a cotangent bundle.

2.4. Lagrangian Mechanics. Instead of characterising trajectories by differential equations, we use a 'variational principle' – like the one that says that geodesics minimize length. Lagrangian mechanics takes place in the tangent space TS. We are given a function $L \in C^{\infty}(TS)$. A trajectory $\gamma \colon \mathbb{R} \to S$ is one that extremizes the *action*

$$A(\gamma) = \int_{[0,1]} L(\gamma(t), \gamma'(t)) \, dt.$$

The relation to Hamiltonian mechanics is roughly as follows: one can use L to define a (non usually linear) map $T_m S \to T_m^* S$, called the *Legendre transfrom*. In good cases, the Legendre transform is a local diffeomorphism, making TS into a symplectic manifold. Flows are determined by an appropriate Hamiltonian.

Example 2.3. Take $L(s,\xi) = \frac{1}{2}\eta(\xi,\xi)$. Then the action is the length¹ of γ , and the trajectories are geodesics. More generally, if we had a Hamiltonian $H(s,\xi) = \frac{1}{2}\eta(\xi,\xi) + U(s)$, then the corresponding Lagrangian is $L(s,\xi) = \frac{1}{2}\eta(\xi,\xi) - U(s)$.

The Lagrangian formalism is ubiquitous in physics, but it's not yet clear to me how important it will be for our immediate aims.

¹Actually not quite the length, which would be the integral of the square-root of the Lagrangian; but it turns out not to matter.