GEOMETRIC QUANTIZATION II: PREQUANTIZATION AND THE HEISENBERG GROUP

1. Prospectus

- 1.1. **Representation.** In the first lecture we defined a Lie algebra structure on $C^{\infty}(M)$, where M is any symplectic manifold. The general aim is to define a representation of this Lie algebra on some Hilbert space \mathcal{H} associated to M. It's not always clear what the rules are, but here are some pointers:
 - (a) For each $f \in C^{\infty}(M)$, the corresponding operator on \mathcal{H} should be skew-Hermitian.
 - (b) Any constant function f should act by multiplication-by-if.
 - (c) We may only be able to represent some subalgebra of $C^{\infty}(M)$.
 - (d) H should not be 'too big'; in particular, it should be an irreducible representation.

There is some kind of tradeoff between the size of \mathcal{H} and the size of the subalgebra that we can represent. In the end, what we do will be judged by how well we can handle important examples.

1.2. **Hermiticity.** Given a Lie group G, it is usual to consider unitary representations of G. This corresponds to Lie-algebra representations in which Lie(G) acts by skew-Hermitian operators. For various reasons, physicists prefer to work with Hermitian operators. If X is Hermitian, iX is anti-Hermitian. So from this point of view, we want for each $f \in C^{\infty}(M)$, a Hermitian operator \hat{f} , such that

$$[\hat{f}, \hat{g}] = -i\widehat{[f, g]}.$$

On the right, [,] is the Poisson bracket. The passage between Hermitian and skew-Hermitian operators is the source of most factors of i throughout.

2. Prequantization

2.1. **Hilbert Space.** Suppose we have a manifold M with a measure μ . Then we can form the Hilbert space $L^2(M,\mu)$ of complex-valued L^2 functions on M.

We need a more general construction. Suppose given a complex line bundle \mathcal{L} on M with a Hermitian form $\eta \colon \overline{\mathcal{L}} \otimes_{\mathbb{C}} \mathcal{L} \to \mathbb{C}_{M}$. (Here \mathbb{C}_{M} is the trivial complex line bundle on M.) Then the space of sections $C^{\infty}(M,\mathcal{L})$ has a natural Hermitian pairing

$$(f,g) = \int_{M} \eta(f,g) \, \mu$$

and we again obtain a Hilbert space $L^2(M, \mathcal{L}, \mu)$. Here $\eta(f, g)$ is a function on M, so $\eta(f, g) \mu$ is a measure.

Remark 2.1. A slightly more canonical construction is to forget about the measure μ , and assume given a Hermitian pairing $\eta \colon \overline{\mathcal{L}} \otimes_{\mathbb{C}} \mathcal{L} \to \Delta_1(M)$, where now $\Delta_1(M)$ is the complex line bundle whose sections are smooth (complex) measures on M. Then $\eta(f,g)$ is a measure, and can be integrated, so we get a Hilbert space $L^2(M,\mathcal{L})$. In this context, I talked a bit about spaces of densities and forms; we ended up not needing this yet, so I will come back to this subject later in the notes.

If M is a symplectic manifold then there is already a canonical (up to scale) measure μ on M, corresponding to the volume form $\omega \wedge \cdots \wedge \omega$. We will use this canonical measure in what follows.

2.2. **Operators.** Recall that for each $f \in C^{\infty}(M)$ we have a 'globally Hamiltonian' vector field X_f . This vector field X_f acts on $L^2(M,\mu)$ by derivations. More generally, we must assume that our line bundle \mathcal{L} has a connection, which allows us differentiate sections of \mathcal{L} , and in particular gives us an operator ∇_{X_f} on $L^2(M,\mathcal{L},\mu)$. If we define

$$\hat{f}(s) = -i\nabla_{X_f} s + f s$$

then \hat{f} is a Hermitian operator, and if f is constant then \hat{f} is multiplication-by-f. However, to fulfill our mission, we must also require (1).

Theorem 2.3. (a) Equation (1) holds if and only if

$$\omega(\xi_1, \xi_2)s = \frac{i}{2}([\nabla_{\xi_1}, \nabla_{\xi_2}] - \nabla_{[\xi_1, \xi_2]})s$$

for all sections s of \mathcal{L} (i.e. ω is the curvature of ∇).

- (b) There exists a triple $(\mathcal{L}, \eta, \nabla)$ with curvature ω if and only if ω is integral.
- (c) If ω is integral, then the triples $(\mathcal{L}, \eta, \nabla)$ with curvature ω are parameterised by $H^1(M, \mathbb{R}/\mathbb{Z})$.

The condition in (b) that ω is integral means that its class in $H^2(M,\mathbb{R})$ comes from $H^2(M,2\pi\mathbb{Z})$, or, more geometrically, that the integral of ω over every closed, oriented 2-surface in M is an integer times 2π . Suppose that there exists some $(\mathcal{L}, \eta, \nabla)$ such that ∇ has curvature ω . Then η is determined uniquely by (\mathcal{L}, ∇) ; but given (\mathcal{L}, η) , the choices of ∇ are parameterized by $H^1(M, \mathbb{R})/H^1(M, \mathbb{Z})$.

The representation $f \mapsto \hat{f}$ of $C^{\infty}(M)$ on $\mathcal{H} = L^2(M, \mathcal{L}, \mu)$ is called a *prequantization*.

Example 2.1. Suppose that $M=T^*N$ is a cotangent bundle. Then ω is exact, so there exists a prequantization. If M is simply connected, then there exists at most one prequantization. In the simplest case, if M=V is a symplectic vector space, then there is a unique prequantization.

2.4. Construction. I sketch how to construct the unique $(\mathcal{L}, \eta, \nabla)$ when M is simply connected.

First define \mathcal{L}_0 to be the set of triples (m, z, γ) where $m \in M$, $z \in \mathbb{C}$, and γ is a path from some basepoint m_0 to m. Introduce an equivalence relation on \mathcal{L}_0 such that $(m, z, \gamma) \sim (m', z', \gamma')$ if and only if m = m' and

$$\frac{z}{z'} = \exp(i \int_S \omega)$$

for any oriented 2-surface whose boundary is the concatenation of paths $\gamma^{-1} * \gamma'$. Such a surface exists for any γ, γ' , because we assumed M simply connected; the right-hand side $\exp(i \int_S \omega)$ is independent of S by the integrality of ω . It is thus easy to see that $\mathcal{L} = \mathcal{L}_0/\sim$ is a line-bundle on M. We write \mathcal{L}_m for the fibre at m, and continue to label elements of \mathcal{L}_m by equivalence classes of pairs (z, γ) .

The Hermitian structure on \mathcal{L} is given by $\eta(z, \gamma; z', \gamma) = \bar{z}z'$ where, note, the paths γ are the same. The connection ∇ is defined by parallel transport as follows. Suppose given a path α from m to m'. Given $(z, \gamma) \in \mathcal{L}_m$ there should be a unique way to lift $\alpha \colon [0, 1] \to M$ to $\tilde{\alpha} \colon [0, 1] \to \mathcal{L}$ so that $\nabla_{\alpha'(t)}\tilde{\alpha}(t) = 0$ (i.e. the section $\tilde{\alpha}$ of \mathcal{L} over α is constant). The association $(z, \gamma) = \tilde{\alpha}(0) \mapsto \tilde{\alpha}(1)$ is 'parallel transport' from m to m', and these parallel transport maps determine ∇ . The definition is that parallel transport is given by $(z, \gamma) \mapsto (z, \alpha * \gamma)$.

3. Example

The problem with prequantization is that the Hilbert space is 'too big.' The fundamental example is as follows. Suppose that $S = \mathbb{R}$ (with coordinate q) and $M = T^*S = \mathbb{R} \oplus \mathbb{R}$ (with coordinates (q, p)). Quantum mechanics gives the following prescription: let $\mathcal{H} = L^2(S, dq)$, and define $\hat{q}s(q) = qs(q)$ and $\hat{p}s(q) = -i\partial_q s(q)$, for every $s \in L^2(S, dq)$. These operators satisfy the expected 'canonical' commutation relation (cf. (1))

$$[\hat{p}, \hat{q}] = -i.$$

There are two lessons to be learnt:

- (a) We get a representation of the coordinate functions p and q (and some others), but not all of $C^{\infty}(M)$.
- (b) The Hilbert space consists of functions on S, not anything like functions on M (as we would have expected from prequantisation). However, it is an irreducible representation of the Lie algebra generated by p and q.

To preview the general case, the specified quantization depends on the additional datum of the projection $T^*S \to S$, which is called a *polarization*. If $M = T^*N$ is a cotangent bundle, we can always use the projection $M \to N$, but in general there may be many possible reasonable choices of polarization.

4. The Heisenberg Group

We can abstract the above example in the following way. We take V to be a symplectic vector space. For each $v \in V$ we have the linear function $f_v := \omega(v, -) \in C^{\infty}(V)$. The Poisson bracket is

$$[f_v, f_w] = \omega(v, w).$$

Thus these linear functions generate a Lie algebra $\mathfrak{h}(V)$ (the Heisenberg Lie algebra): $\mathfrak{h}(V) = V \times \mathbb{R}$ as a set, \mathbb{R} is central, and $[v, w] = (0, \omega(v, w))$ for $v, w \in V$.

A quantization of V should yield (at least) a representation of $\mathfrak{h}(V)$, in which constants $a \in \mathbb{R}$ act by ia. There are reasons to require this to be an *irreducible* representation. (The rough reason is that $\mathfrak{h}(V)$ acts transitively on V, so ought to act 'transitively', i.e. irreducibly, on \mathcal{H} .)

The Heisenberg Lie group associated to $\mathfrak{h}(V)$ is $H(V) = V \times U(1)$ as a set; multiplication is defined so that the circle U(1) is central, and the product of $(v,0),(w,0) \in V$ is

$$vw = (v + w, \exp(\frac{i}{2}\omega(v, w))).$$

So, to rephrase: a quantization of V is an irreducible unitary representation of H(V) in which U(1) acts by scalar multiplication.

Remark 4.1. Of course there are many different Lie groups with the same Lie algebra $\mathfrak{h}(V)$. We choose this one because the representations of $\mathfrak{h}(V)$ we are interested in correspond to representations of our H(V).

Theorem 4.1 (Stone-von Neuman). There exists a unique irreducible representation of H(V) such that U(1) acts by scalar multiplication.

'Unique' as usual means unique-up-to-isomorphism. However, the usual construction of the representation depends on a choice of a $Lagrangian\ subspace$ of V – this is essentially the choice of a polarization mentioned before.

José says that in the infinite dimensional case, the choice of the Lagrangian is a serious matter, resulting in 'different physics' (I think this means: inequivalent representations). But even in our finite-dimensional case, where the representations are isomorphic, there is some subtle structure to the choices, related to the metaplectic group.