
GEOMETRIC QUANTIZATION III: METAPLECTIC GROUP

1. The Heisenberg Group, Continued

1.1. Construction of Representations. The unique-up-to-isomorphism irreduc-
ible representation of the Heisenberg group is constructed in the following way.
First one chooses a Lagrangian subspace L ⊂ V : this means that L⊥ = L. Then
L ⊕ U(1) ⊂ H(V ) is a maximal abelian subgroup, and it has a one-dimensional
representation, the projection ψ : L⊕U(1) → U(1). Finally, (HL, ρL) is the induced
representation IndH(V )

L⊕U(1)ψ.
More concretely, this amounts to the following. The space δ1/2(V/L) of half-

densities is a one-dimensional complex vector space with an isomorphism

δ1/2(V/L)⊗ δ1/2(V/L) = δ1(V/L),

where δ1(V/L) is the space of translation-invariant measures on V/L.1 The Hilbert
space HL is the completion of the space of smooth functions φ : V → δ1/2(V/L)
satisfying the condition

φ(x+ a) = φ(x)eiω(x,a)/2

for all x ∈ V, a ∈ L, and finite with respect to the norm

‖φ‖2 :=
∫

V/L

φ̄φ.

(Here note that φ̄φ : V → δ1(V/L) is constant along L, so it defines a function
V/L→ δ1(V/L), i.e. a measure on V/L.) The action of (v, t) ∈ H(V ) is given by

ρL(v, t)φ(x) = φ(x− v)eiω(v,x)/2t.

1.2. Change of Lagrangian. The main thing to take away is that although the
isomorphism class of (HL, ρL) is independent of L, there is no canonical isomor-
phism HL → HL′ for different Lagrangians L,L′. (Of course such isomorphisms
exist, and, because the representations are irreducible, they are unique up to phase.)

The dependence on the choice of Lagrangian is neatly summarised by consider-
ing the action of the symplectic group Sp(V ) = Aut(V, ω). Sp(V ) acts on H(V )
by group automorphisms g · (v, t) = (gv, t). It’s then natural to ask whether
the representation (HL, ρL) extends to a representation of the semi-direct prod-
uct Sp(V ) nH(V ).

The answer is no. However, there is a natural representation of Mp(V ) nH(V )
on HL, where Mp(V ) is the unique non-trivial double cover of Sp(V ).

More precisely: Let Λ be the manifold of all Lagrangian subspaces of V . Sp(V )
acts transitively on Λ, and each g ∈ Sp(V ) naturally determines an isomorphism
HL → HgL of Hilbert spaces. As mentioned above, there exists an isomorphism
of representations HgL → HL. The composition of these two maps defines an
operator ρL(g) on HL. The question is whether one can choose these operators in
such a way that ρL(g)ρL(g′) = ρL(gg′). It is automatic that this will work, if not
for g, g′ ∈ Sp(V ), then for a covering group of Sp(V ). The claim is that the correct
covering group is Mp(V ).

1I always consider complex-valued (so, not necessarily positive) measures. Thus δ1(V/L) is a
one-dimensional complex vector space. A smooth function V/L → δ1(V/L) is the same thing as
a smooth measure on V/L.
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1.3. Weyl Quantization. So far we found a representation of the Lie subalgebra
of C∞(V ) generated by linear functions on V . Can one use this construction to
represent other functions as well?

There is a very natural way to try, but it does not satisfy our original (somewhat
arbitrary) criterion for quantization. For a sufficiently nice (e.g. Schwartz) function
f on V , define the Weyl transform W (f) to be the operator on HL defined by

W (f)φ(x) =
∫

v∈V

f(v)ρL(v, 0)φ(x) dv.

It turns out that W defines an isomorphism of vector spaces from L2(V, dv) to the
algebra of ‘Hilbert-Schmidt’ operators on HL (i.e. those represented by L2-integral
kernels). We can pull back the multiplication of operators to define a product ?
on L2(V, dv) making W into an isomorphism of algebras. This ? is the ‘star’ or
‘Moyal’ product.

So we have associated operators W (f) on HL to a large class of functions f on V .
But for this to count as quantization, we must have [W (f1),W (f2)] = iW ([f1, f2]),
or, in terms of ?,

f1 ? f2 − f2 ? f1 = i[f1, f2] (Poisson bracket).

This does not hold. However, something else, possibly just as good, is true.
Instead of a single symplectic form ω, introduce a real parameter ~ ∈ R and

for each ~ a symplectic form ω~ = ~ω. Let ?~ be the corresponding star product
on L2(V, dv). As ~ → 0, ?~ becomes the standard, commutative, multiplication of
functions on V – this is ‘the classical limit’. Moreover,

f1 ?~ f2 − f2 ?~ f1 = i~[f1, f2] + o(~2).

So we do have a quantization to first order in ~. It is not immediately clear whether
the higher-order terms are problematic – maybe our initial criterion for ‘quantiza-
tion’ was too naive.

Remark 1.1. Iain points out that the star product generalises to arbitrary sym-
plectic manifolds, which mathematically, at least, suggests it is a good object to
consider. Also, ? is independent of the choice of Lagrangian L. (One can see this by
first making L2(H(V )) into an algebra, the group algebra of H(V ). Then L2(V, dv)
is just the largest quotient of L2(H(V )) on which U(1) acts by scalars.)

2. Half-forms and the metaplectic gerbe

The idea of a gerbe is not used in the references I have given, but it is a beautiful
and (in some sense) elementary thing, so let’s plunge in.

2.1. Gerbes. Recall that any group G can understood as a category BG with one
object whose automorphism group is G. A ‘connected G-groupoid’ is any category
equalvalent to BG. An analogous idea: aG-torsor is any set with a simply transitive
action of G. (In what follows, I am thinking of G as a discrete group, but there are
analogues for Lie groups.)

One can with reasonable clarity say that a covering space of a manifold M is a
locally trivial family of sets parameterized by M . Similarly, a vector bundle is a
locally trivial family of vector spaces. Similarly, a principal G-bundle is a locally
trivial family of G-torsors.

A G-gerbe is nothing but a locally trivial family of connected G-groupoids. Note
that covering spaces, vector bundles, principal bundles, etc., are families of sets,
and are classified by first cohomology groups H1(M,−). A gerbe on the other hand
is a family of categories, and we will see that G-gerbes are classified by H2(M,G).
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Let us flesh out the definition a bit more. Fix a cover M = {Ui} of M by open
sets. A G-gerbe (with fixed local trivialisations) should amount to the following
data. To each Ui we associate the trivial G-groupoid BG. On each intersection
Ui∩Uj we associate a gluing map, i.e. an equivalence of categories αij : BG→ BG.
On triple intersections we should have natural isomorphisms

βijk : αij ◦ αjk ◦ αki → id.

(For families of sets, we would here require an equality. But the general rule is
that instead of requiring an equality between functors, we must give a natural
isomorphism between them.)

A bit of thought shows that a natural isomorphism βijk is nothing but an element
of G. The association of βijk ∈ G to the triple intersection Ui ∩ Uj ∩ Uk defines a
class in H2(M,G), and these classes determine the gerbe up to isomorphism.

A principal G-bundle over a manifold M is again a manifold. In contrast, a
G-gerbe over M is not a manifold, but some kind of categorified manifold (a stack).
However, it has the right structure to do a lot of geometry, and one can often get
away with thinking of a gerbe as some kind of covering space.

2.2. Square-roots of line bundles. Suppose we have a complex line bundle B
over a manifold M . We would like to find a line bundle A and an isomorphism
A ⊗ A → B. In general, A does not exist. That is: it does not exist globally.
The situation is very similar to the familiar one in which the square-root of a given
function cannot be defined globally on M , but is defined on a double-cover. In our
case, A is defined not on M but on a µ2-gerbe M̃ over M , where µ2 = {±1}. For
each m ∈ M , the fibre, the connected µ2-groupoid M̃ |m, is the category of pairs
(Am, γm), where Am is a one-dimensional vector space and γm is an isomorphism
γm : Am ⊗Am → Bm.

Thus a point of M̃ is a triple (m,Am, γm). For each such triple, we have a line
Am, and these form a line bundle A on M̃ . By construction, A⊗A is the pullback
of B to M̃ .

Of course, it may happen that there is such an A on M itself. This happens
when M̃ is the trivial µ2-gerbe, meaning that there is a section M → M̃ . For
example, on P1, the canonical bundle O(−2) has a square-root O(−1).

2.3. Half forms. In discussing representations ofH(V ), we used the space δ1/2(V/L)
of half-densities to define the Hilbert space. In general, it works out better to use
a space ∆1/2(V/L) of half-forms. This is a one-dimensional complex vector space
with an isomorphism

∆1/2(V/L)⊗∆1/2(V/L) = ∆1(V/L)

where now ∆1(V/L) = ∧dim V/L HomR(V/L,C) is the space of (complex) translation-
invariant volume forms on V/L. The difficulty is that while δ1/2(V/L) can be de-
fined canonically in terms of L, ∆1/2(V/L) cannot. Rather, following the above
gerbey discussion, one has the following situation.

There is a line bundle B = ∆1 on Λ with fibre ∆1(V/L) over L. There is a µ2-
gerbe Λ̃ over Λ with a line-bundle A = ∆1/2 such that ∆1/2⊗∆1/2 is the pull-back
of ∆1. By definition, ‘the’ space ∆1/2(V/L) of half-forms is the fibre AΛ̃, for some
choice of L̃ ∈ Λ̃ over L ∈ Λ.

2.4. Metaplectic again. The symplectic group Sp(V ) acts on Λ and indeed on
the total space of the line-bundle ∆1. But it does not naturally act on Λ̃ or on ∆1/2.
Rather, the metaplectic group Mp(V ) acts. In fact, this gives a kind of construction
of Mp(V ). We’ll come back to this next time when we talk about half-forms on
manifolds.


