
GEOMETRIC QUANTIZATION IV: POLARIZATIONS AND
QUANTIZATION

1. Polarizations

We have seen that for a vector space (V, ω), quantizations correspond to choices of
Lagrangians L ⊂ V . For a manifold (M,ω), the analogous object is a polarization: a
subbundle P ⊂ TM whose fibres are Lagrangian subspaces, and which is involutive
– i.e. there exists a foliation by integral surfaces

M =
⊔

α∈M/P

Mα.

(In other words, m ∈ Mα =⇒ TmMα = Pm.) We also assume that the set M/P
of integral surfaces is a Hausdorff manifold.

1.1. Examples. (1) If M = V is a symplectic vector space, then TmV = V , and
the choice of a Lagrangian L ⊂ V defines a polarization with Pm = L.

(2) If M = T ∗N , then there is a ‘vertical’ polarization such that the integral
surfaces Mα are just the fibres of T ∗N → N .

Remark 1.1. This is the definition of a ‘real’ polarization. More generally, one can
consider complex Lagrangian subbundles of the complex symplectic bundle (TM)C.
For example, if M is a Kähler manifold, then a complex polarization is given, at each
m ∈ M , by the span of the tangent vectors ∂/∂z̄. In general, a complex polarization
is almost the same thing as a Kähler structure on a Hamiltonian reduction of M (see
Woodhouse, ch. 3, for a precise statement). The real case is well suited to cotangent
bundles, and obviously the complex case is well suited for Kähler manifolds (José
says there are some pseudo-physical applications, but maybe a more important
example is when one interprets Borel-Weil in terms of quantization – a future talk).

2. Half-forms

In the case of (V, ω), quantization used the space δ1/2(V/L) of half-densities
on V/L. In the general picture, it is preferable to use half-forms. Here are the
definitions.

2.1. General nonsense about principal bundles. Given a group G, a G-torsor
(over a point) is just a set S with a simply transitive action of G. A principal
G-bundle over a manifold M (or again ‘a G-torsor over M ’) is a locally trivial
bundle of G-torsors. Given a G-torsor S over a point, and a representation (α, W )
of G, then one can form S ⊗G α := {(s, w)}/(sg, w) ∼ (s, gw), a vector space non-
canonicaly isomorphic to W . If S is a torsor over M , then S⊗G α is a vector bundle
over M (the ‘associated vector bundle’).

The main example is as follows. If X → M is a vector bundle of rank n, the
frame bundle Fr(X) is defined so that a section of X is an isomorphism of vector
bundles Rn × M → X. In other words, the fibre Fr(X)m is the set of ordered
bases for Xm. This is a principal GLn(R) bundle. (In the lecture I gave a more
complicated explanation, ah well.)

In particular, take X = TM , and α = det: GLn(R) → C. Sections of the
associated bundle ∆1(M) := TM ⊗ det (a complex line-bundle) are volume forms
on M .
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Remark 2.1. Of course, α is real-valued, so ∆1(M) is the complexification of a real
line-bundle (real volume forms on M).

2.2. Half-forms. We want a line-bundle ∆1/2(M) with an isomorphism ∆1/2(M)⊗
∆1/2(M) = ∆1(M).

First let G̃Ln(C) be the double-cover of GLn(C) on which the function
√

det
is well-defined. Let G̃Ln(R) be the preimage of GLn(R) in G̃Ln(C). A metalinear
structure on Fr(TM) is a G̃Ln(R)-torsor F̃r(TM) over M with a compatible double-
covering map F̃r(TM) → Fr(TM). Given a metalinear structure (which may or may
not exist), we can define ∆1/2(M) = F̃r(TM)⊗

√
det.

Remark 2.2. G̃Ln(R) → GLn(R) is topologically a trivial double cover. But not
group-theoretically, i.e. there is no group-homomorphic section. In the books they
use complex frames and so on, so their ‘frame bundle’ is a principal GLn(C) bundle.
This would be important if we were considering complex polarizations, but I think
what I have said here is nonetheless correct.

Remark 2.3. The existence of the metalinear structure, which is equivalent to the
existence of an appropriate line bundle ∆1/2(M), depends on the vanishing of a
certain class in H2(M,µ2). In the language used last time, this is equivalent to
the triviality of a certain µ2-gerbe on M . Paul says that this is the same as the
obstruction to the existence of a spin structure, and that one can define a spin
structure just to be a metalinear structure on Fr(TM), without having to introduce
a metric.

There is a natural way to differential sections of ∆1/2(M) along vector fields, as
follows. If ξ ∈ Γ(TM) is a vector field on M , there is a natural way to push-forward
tangent vectors, hence frames, along ξ. This means that ξ lifts to a vector field ξ′

on Fr(TM). Then again, F̃r(TM) → Fr(TM) is a double cover, so ξ′ lifts naturally
to ξ̃ on F̃r(TM). Now, on the other hand, we can reinterpret the definition of
∆1/2(M) to see that a section f of it is the same as a function f̃ on F̃r(TM) such
that f̃(bg) = f̃(b)

√
det g for each b ∈ F̃r(TM) and g ∈ G̃Ln(R). Thus we can define

the derivative Lξ of f along ξ by

L̃ξf = ξ̃f̃

as functions on F̃r(TM).

2.3. P -half-forms. Instead of considering the tangent bundle TM , we use the
quotient TM/P for some polarization P . A metalinear structure F̃r(TM/P ) →
Fr(TM/P ) gives us a line-bundle ∆1/2(TM/P ) = F̃r(TM/P ) ⊗ det of ‘P -half-
forms’. The considerations above show that we can differentiate sections of this
∆1/2(TM/P ) along vector fields ξ that preserve P , i.e. such that [ξ,Γ(P )] ⊂ Γ(P ).

3. Quantization

We start with a symplectic manifold (M,ω). The quantization procedure involves
various choices, each of which may be problematic. First we must find a line bundle
L with a Hermitian structure η and a connection ∇ with curvature ω. Next we
must find a polarization P and a metalinear structure F̃r(TM/P ) → Fr(TM/P ).

3.1. Construction of the Hilbert space. The Hilbert space will be constructed
out of sections of A := L ⊗ ∆1/2(TM/P ). Using the connection on L, the Lie
derivative on ∆1/2(TM/P ), and the Leibniz rule, we can differentiate sections of
A along vector fields ξ that perserve P . In particular, this is possible when ξ is a
section of P . Let H0 be the space of sections of A that are constant along P .
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Remark 3.1. It seems that H0 could be zero, depending on the topology of the
integral surfaces of P . Mathematically, surely one would expect to allow for higher
cohomology here?

The Hermitian form on L and the construction of ∆1/2(TM/P ) lead naturally
to a Hermitian pairing

H̄0 ⊗H0 → Γ(M/P, ∆1(M/P )
R
→ C.

Let H be the Hilbert space defined by completing the finite-norm elements of H0.

3.2. Representation of Operators. If f ∈ C∞(M) is a function such that the
vector field Xf preserves P , then we can define an operator f̂ on H by

f̂s = fs− i∇Xf
s.

The condition that Xf preserves P seems to mean that f is at most linear along
P . Thus we don’t get representations of all of C∞(M), but still quite a large subal-
gebra (compare to the Heisenberg case, where we only explicitly quantized functions
linear on V ). However, this isn’t really good enough. It standard physical appli-
cations, with M = T ∗N , we should at least be able to represent the Hamiltonian,
which is at least quadratic along the vertical polarization.

3.3. Metaplectic and Metalinear. Understanding how to quantize more general
functions f seems to be a tricky question without good answers, in general. The
first idea is that, since Xf changes the polarization, we must understand how the
quantization depends on P .

The only thing I will explain here is how a metaplectic structure can be used to
relate metalinear structures on different polarizations.

Let R2n be the standard symplectic vector space with ‘canonical’ symplectic
basis {P1, . . . , Pn, Q1, . . . , Qn}. The symplectic frame bundle Frs(TM) is such that
a section is an isomorphism of symplectic bundles R2n×M → TM . It is a principal
Sp(R2n)-bundle on M . A metaplectic structure on M is a principal Mp(R2n)-bundle
F̃rs(TM) with a compatible map F̃rs(TM) → Fr(TM).

I will explain how a metaplectic structure on M determines a metalinear struc-
ture F̃r(TM/P ) → Fr(TM/P ) for any polarization P . Let G ⊂ Sp(R2n) be the
subgroup preserving the Lagrangian Rn = 〈P1, . . . , Pn〉 ⊂ R2n. Then G has a
double cover fitting into the diagram

G̃L(Rn)

��

G̃π
oo //

��

Mp(R2n)

��

G̃L(Rn) Goo // Sp(R2n)

.

Let FrG(TM) be the principal G-bundle such that a section is an isomorphism of
symplectic bundles R2n ×M → TM restricting to Rn → P . Define

F̃rG(TM)×Frs(TM) F̃rs(TM).

This is a principal G̃-bundle. Now push out to get a principal G̃L(Rn)-bundle, i.e.
define

F̃r(TM/P ) = F̃rG(TM)⊗G̃ G̃L(Rn).

(Thus, fibrewise, F̃r(TM/P )m is F̃rG(TM)m×G̃L(Rn) modulo the relation (bg, h) ∼
(b, π(g)h) for all g ∈ G̃.) Because FrG(TM)⊗G GL(Rn) is nothing but Fr(TM/P ),
there is a projection F̃r(TM/P ) → Fr(TM/P ), and we have defined a metalinear
structure.

This is a global version of the story we had last time, with Mp(V ) acting on Λ̃.


