GEOMETRIC QUANTIZATION IV: POLARIZATIONS AND
QUANTIZATION

1. POLARIZATIONS

We have seen that for a vector space (V,w), quantizations correspond to choices of
Lagrangians L C V. For a manifold (M, w), the analogous object is a polarization: a
subbundle P C T'M whose fibres are Lagrangian subspaces, and which is involutive
— i.e. there exists a foliation by integral surfaces

M = |_| M,,.

(In other words, m € M, = T,,M, = P,,.) We also assume that the set M /P
of integral surfaces is a Hausdorff manifold.

1.1. Examples. (1) If M = V is a symplectic vector space, then T,,V = V, and
the choice of a Lagrangian L C V defines a polarization with P, = L.

(2) If M = T*N, then there is a ‘vertical’ polarization such that the integral
surfaces M, are just the fibres of T*N — N.

Remark 1.1. This is the definition of a ‘real’ polarization. More generally, one can
consider complex Lagrangian subbundles of the complex symplectic bundle (7'M )®.
For example, if M is a Kéahler manifold, then a complex polarization is given, at each
m € M, by the span of the tangent vectors 9/9z. In general, a complex polarization
is almost the same thing as a Kéhler structure on a Hamiltonian reduction of M (see
Woodhouse, ch. 3, for a precise statement). The real case is well suited to cotangent
bundles, and obviously the complex case is well suited for Kéhler manifolds (José
says there are some pseudo-physical applications, but maybe a more important
example is when one interprets Borel-Weil in terms of quantization — a future talk).

2. HALF-FORMS

In the case of (V,w), quantization used the space d;/2(V/L) of half-densities
on V/L. In the general picture, it is preferable to use half-forms. Here are the
definitions.

2.1. General nonsense about principal bundles. Given a group G, a G-torsor
(over a point) is just a set S with a simply transitive action of G. A principal
G-bundle over a manifold M (or again ‘a G-torsor over M’) is a locally trivial
bundle of G-torsors. Given a G-torsor S over a point, and a representation (o, W)
of G, then one can form S ®@¢ a := {(s,w)}/(sg,w) ~ (s, gw), a vector space non-
canonicaly isomorphic to W. If S is a torsor over M, then S®¢ « is a vector bundle
over M (the ‘associated vector bundle’).

The main example is as follows. If X — M is a vector bundle of rank n, the
frame bundle Fr(X) is defined so that a section of X is an isomorphism of vector
bundles R” x M — X. In other words, the fibre Fr(X),, is the set of ordered
bases for X,,,. This is a principal GL,(R) bundle. (In the lecture I gave a more
complicated explanation, ah well.)

In particular, take X = TM, and o = det: GL,(R) — C. Sections of the
associated bundle A;(M) := TM ® det (a complex line-bundle) are volume forms
on M.
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Remark 2.1. Of course, « is real-valued, so A;(M) is the complexification of a real
line-bundle (real volume forms on M).

2.2. Half-forms. We want a line-bundle A; /5(M) with an isomorphism A /5(M)®
Ayya(M) = Ay (M).

First let GL,(C) be the double-cover of GL,(C) on which the function v/det
is well-defined. Let GLy,(R) be the preimage of GL,(R) in GL,(C). A metalinear
structure on Fr(TM) is a GL,, (R)-torsor Fr(TM) over M with a compatible double-

covering map Fr(TM) — Fr(TM). Given a metalinear structure (which may or may
not exist), we can define Ay (M) = Fr(TM) ® v/det.

Remark 2.2. GL,(R) — GL,(R) is topologically a trivial double cover. But not
group-theoretically, i.e. there is no group-homomorphic section. In the books they
use complex frames and so on, so their ‘frame bundle’ is a principal GL,,(C) bundle.
This would be important if we were considering complex polarizations, but I think
what I have said here is nonetheless correct.

Remark 2.3. The existence of the metalinear structure, which is equivalent to the
existence of an appropriate line bundle A;/5(M), depends on the vanishing of a
certain class in H?(M, uz). In the language used last time, this is equivalent to
the triviality of a certain uo-gerbe on M. Paul says that this is the same as the
obstruction to the existence of a spin structure, and that one can define a spin
structure just to be a metalinear structure on Fr(T'M ), without having to introduce
a metric.

There is a natural way to differential sections of Ay /,(M) along vector fields, as
follows. If ¢ € T'(T'M) is a vector field on M, there is a natural way to push-forward
tangent vectors, hence frames, along £. This means that £ lifts to a vector field &’
on Fr(TM). Then again, Fr(TM) — Fr(TM) is a double cover, so ¢’ lifts naturally
to & on ]F~‘1r(TM ). Now, on the other hand, we can reinterpret the definition of
Aq2(M) to see that a section f of it is the same as a function f on ]F~‘1r(TM) such
that f(bg) = f(b)\/det g for each b € Fr(TM) and g € GL,,(R). Thus we can define
the derivative L¢ of f along £ by

Lef =¢EF
as functions on Fr(TM).
2.3. P-half-forms. Instead of considering the tangent bundle 7'M, we use the
quotient TM/P for some polarization P. A metalinear structure Fr(TM/P) —
Fr(TM/P) gives us a line-bundle A, /,o(TM/P) = Fr(TM/P) ® det of ‘P-half-

forms’. The considerations above show that we can differentiate sections of this
Ay 2(T'M/P) along vector fields £ that preserve P, i.e. such that [{,I'(P)] C I'(P).

3. QUANTIZATION

We start with a symplectic manifold (M,w). The quantization procedure involves
various choices, each of which may be problematic. First we must find a line bundle
L with a Hermitian structure n and a connection V with curvature w. Next we
must find a polarization P and a metalinear structure Fr(T'M/P) — Fr(TM/P).

3.1. Construction of the Hilbert space. The Hilbert space will be constructed
out of sections of A := L ® A;/o(TM/P). Using the connection on L, the Lie
derivative on Ay /o(T'M/P), and the Leibniz rule, we can differentiate sections of
A along vector fields ¢ that perserve P. In particular, this is possible when £ is a
section of P. Let Hy be the space of sections of A that are constant along P.
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Remark 3.1. It seems that Hy could be zero, depending on the topology of the
integral surfaces of P. Mathematically, surely one would expect to allow for higher
cohomology here?

The Hermitian form on £ and the construction of Ay /o(TM/P) lead naturally
to a Hermitian pairing

Ho @ Hy — T(M/P,A(M/P) L C.

Let H be the Hilbert space defined by completing the finite-norm elements of Hj.

3.2. Representation of Operators. If f € C*°(M) is a function such that the
vector field Xy preserves P, then we can define an operator f on H by

fs = fs—iVx,s.

The condition that X; preserves P seems to mean that f is at most linear along
P. Thus we don’t get representations of all of C°° (M), but still quite a large subal-
gebra (compare to the Heisenberg case, where we only explicitly quantized functions
linear on V). However, this isn’t really good enough. It standard physical appli-
cations, with M = T* N, we should at least be able to represent the Hamiltonian,
which is at least quadratic along the vertical polarization.

3.3. Metaplectic and Metalinear. Understanding how to quantize more general
functions f seems to be a tricky question without good answers, in general. The
first idea is that, since Xy changes the polarization, we must understand how the
quantization depends on P.

The only thing I will explain here is how a metaplectic structure can be used to
relate metalinear structures on different polarizations.

Let R2™ be the standard symplectic vector space with ‘canonical’ symplectic
basis {P1,..., Pn,Q1,...,Qn}. The symplectic frame bundle Frg(T'M) is such that
a section is an isomorphism of symplectic bundles R?" x M — TM. It is a principal
Sp(R?")-bundle on M. A metaplectic structure on M is a principal Mp(R?")-bundle
frs(TM) with a compatible map ﬁrS(TM) — Fr(TM).

I will explain how a metaplectic structure on M determines a metalinear struc-
ture Fr(TM/P) — Fr(TM/P) for any polarization P. Let G C Sp(R?") be the
subgroup preserving the Lagrangian R" = (Pj,...,P,) C R?". Then G has a
double cover fitting into the diagram

GL(R") ¢—— G — Mp(R*") .

L]

GL(R") «+—— G — Sp(R?")

Let Frg(TM) be the principal G-bundle such that a section is an isomorphism of
symplectic bundles R?" x M — T'M restricting to R® — P. Define

Frg(TM) gy, (rary Fro(TM).

This is a principal G-bundle. Now push out to get a principal @i(R")—bundle, ie.
define B _ .
Fr(TM/P) = Frg(TM) ®5 GL(R™).

(Thus, fibrewise, Fr(TM/P),, is Frg(TM),, x@i(]R{") modulo the relation (bg, h) ~
(b,m(g)h) for all g € G.) Because Frg(TM) ®g GL(R™) is nothing but Fr(T'M/P),
there is a projection Fr(T'M/P) — Fr(TM/P), and we have defined a metalinear
structure.

This is a global version of the story we had last time, with Mp(V') acting on A.



