
TQFT 2: FROBENIUS ALGEBRAS AND FINITE GAUGE
THEORY

TERUJI THOMAS

I will largely follow the lecture notes by Freed.

1. 0+1 Dimensions

Recall the main idea of a TQFT. We have two symmetric monoidal categories.
First, the category Cobn+1 of (n+1)-cobordisms, whose objects are oriented, closed
n-dimensional manifolds. Second, the category of vector spaces over some field k.
An (n + 1)-dimensional TQFT is a symmetric monoidal functor Z between them
(i.e. Z takes disjoint unions to tensor products).

The picture can be dressed up in many ways; to begin with, we could consider
Riemannian manifolds, or we could consider graded vector spaces.

As Will explained, a (0 + 1)-dimensional TQFT is completely determined by
the vector space V := Z(+), where + is the ‘positively oriented’ point. Roughly
speaking, V is supposed to be the Hilbert space of quantum mechanics, representing
the set of physically possible states at a given time. If I is an interval (a cobordism
+ → +), we should think of it as an interval of time; the linear map Z(I) : V → V
is supposed to describe the evolution of the physical state. We have seen that for
a TQFT we must have Z(I) = id. If we considered I as a Riemannian manifold,
then it would have an associated length t, and Z(I) would be of the form eitH for
some ‘Hamiltonian’ H : V → V . Thus the ‘topological’ case can be thought of as
the case when H = 0, making the time evolution independent of the metric on I.

2. 1 + 1 Dimensions

For n = 1 every object in Cob2 is a disjoint union of circles S1. Note also that
S1 has a unique orientation (up to diffeomorphism). So the first piece of data for
a 2-dimensional TQFT is

(a) A vector space V := Z(S1).
For any other object M , Z(M) is determined to be a tensor-power of V .

Next, we must have for every cobordism B from M to M ′ a linear map Z(B)
from Z(M) to Z(M ′). In general, any oriented 2-manifold B with boundary can
be cut up into cylinders C, disks D and pairs of pants P . As usual, Z(C) = id.
Considering a disk D as a cobordism ∅ → S1 or dually S1 → ∅, and P as a
cobordism S1 t S1 → S1 or dually S1 → S1 t S1, we see that the additional data
will be

(b) A map u = Z(D) : k → V and dually u∗ : V → k.
(c) A map m = Z(P ) : V ⊗ V → V and dually m∗ : V → V ⊗ V .

In general Z(B) will be determined as a composition of such maps. The fact that
this composition is independent of how B is cut up gives certain relations between
the data. For one thing, u∗ ◦m : V ⊗ V → k will be a non-degenerate, symmetric
inner product. This identifies V with V ∗, and with respect to this identification, u∗

and m∗ are literally the duals of u and m. Altogether, the relations say that that V
is a commutative Frobenius algebra: it is a vector space with a unital, commutative,
associative multiplication, and a ‘trace’ u∗ : V → k such that u∗ ◦m : V ⊗V → k is
a nondegenerate inner product.
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Theorem 2.1. There is an equivalence of categories between (1 + 1)-dimensional
TQFTs and commutative Frobenius algebras.

The proof is not much more than what we have said.

2.2. An example of a Frobenius algebra. Semi-simple commutative Frobenius
algebras V over C are all of the form V = Cn. In other words, there is an orthogonal
basis e1, . . . , en for V such that eiej = δij . The trace u∗ must be given by the dot-
product with some vector (d1, . . . , dn). These numbers d1, . . . , dn determine V up
to isomorphism.

Here is an example from group theory. Let G be a finite group. The group
algebra C[G] is a Frobenius algebra, but not commutative (unless G is). However,
the center V = C[G]G (which is also just the subalgebra fixed by G-conjugation)
is a commutative Frobenius algebra. If we think of C[G] as the space of functions
G → C, then the trace u∗ is evaluation at the identity element (normalised by
1/#G). Multiplication is given by the usual convolution formula

(f1 ∗ f2)(g) =
∑

g1g2=g

f1(g1)f2(g2).

The inner product is thus

u∗(f1 ∗ f2) =
1

#G

∑
g∈G

f1(g)f2(g−1).

Now, V can also be understood as the space of class functions, i.e. functions on the
conjugacy classes of G. For each irreducible representation ρ of G, the character
Tr ρ is a class function. These characters form a basis for V of the type described
above.

According to the theorem, taking V = C[G]G determines a TQFT. However,
this defines the TQFT in terms of ‘generators and relations’: to find Z(B) for an
arbitrary cobordism B, we must choose a way to cut up B into pairs of pants. It
would be nicer to have a more canonical, geometric explanation of how this V arises
from a TQFT. That is the subject of the rest of this talk.

Remark 2.1. The inner product here is slightly different from the Hermitian inner
product usually used in representation theory. To connect the two, it is useful
to note that the representations of G are unitary and that therefore Tr ρ(g−1) =
Tr ρ(g).

Remark 2.2. As far as I understand, this is how representation theory was originally
invented, by trying to understand the structure of C[G]G as a Frobenius algebra.
Characters came before representations.

3. The Path Integral Formalism

Physicists typically think about QFTs in terms of path integrals. The picture
(adapted to TQFTs) is basically as follows.

3.1. Classical dynamics. Suppose we have the following data:
(a) For each object M ∈ Cobn+1, a ‘configuration space’ XM .
(b) Similarly, for each cobordism B : M → M ′, a ‘path space’ XB .
(c) ‘Boundary’ maps π1 : XB → XM and π2 : XB → XM ′ .

For a simple example, we can just take XM = M ; if B is a bordism M → M ′, then
take XB to be the space of paths γ : [0, 1] → B with γ(0) ∈ M and γ(1) ∈ M ′. The
boundary maps send γ to γ(0) and γ(1).

(d) An ‘action’ function S : XB → R for each B.
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To continue the simple example, suppose that B were actually a Riemannian mani-
fold. Then we could take S to be the length of γ. Physically, this example describes
the following situation. We think of a particle moving in space. The laws of physics
say that if it moves from a ∈ M to b ∈ M ′, then it does so along a geodesic, i.e. it
moves on a path that minimizes S.

More generally, while M represents physical space, XM is a space of configu-
rations. If we had two particles, we would take XM = M × M corresponding to
their two positions. If instead of particles we were to think about fields (like the
electromagnetic field), then XM would be the set of field configurations (roughly, a
space of functions on M). The ‘laws of physics’ are of the following form: for each
a ∈ XM and b ∈ XM ′ , there is a unique physically possible path γ ∈ XB from a to
b: it is the one that minimizes S(γ).

3.2. Quantum Dynamics. The quantum picture uses the same data in a different
way. Given a, b, the ‘laws of physics’ determine a probability that the system evolves
from a to b. More precisely, they determine a ‘transition amplitude’ 〈a, b〉B ∈ C
whose modulus-squared is a probability. Instead of there being one privileged path
from a to b, every such path contributes exp(iS(γ)) to the amplitude; in other
words, 〈a, b〉B is given by a sum or integral

〈a, b〉B =
∫

γ

eiS(γ) Dγ

over all γ ∈ XB with boundary values a, b. Here Dγ is an appropriate measure. In
this lecture XB will be a finite set, and the integral a finite sum. In more serious
situations, XB is huge and there is no simple way to make sense of the integral.

A different way of getting at the same idea is to define Z(M) = L2(XM ) (just
a finite-dimensional vector space, if XM is a finite set). This has a basis of delta-
functions δa corresponding to points a ∈ XM . The various transition amplitudes
〈a, b〉M are the matrix coefficients of some linear map Z(B) : Z(M) → Z(M ′).

This looks just like a TQFT. The only problem is that to get functoriality we
have to say something about gluing together path spaces. I’ll leave this story to
one side.

4. Finite Gauge Theory

Finally, I briefly explain how the Frobenius algebra C[G]G arises from a natural
TQFT. The short answer is that XM is the set of isomorphism classes of G-bundles
over M . Similarly, XB is the set of isomorphism classes of G-bundles over B. A G-
bundle over B can be restricted to a G-bundles on M and M ′, whence the boundary
maps. Finally, the action is S = 0.

To see how this gives us the group algebra, one can show that, in general, for
M connected, the set of G-bundles is Hom(π1(M), G)/G (where G acts on itself
by conjugation). For M = S1, this is just the set of conjugacy classes. Therefore
Z(S1) = L2(XS1) is the space of class functions, as promised.

It is a nice exercise to use the path integral formalism to rederive the product
on Z(S1). Since S = 0, we have exp(iS(γ)) = 1, and the path integral just counts
the number of G-bundles with the specified restriction to the boundary.

Remark 4.1. In more general ‘gauge theory’ G would be a compact group and XM

the set (really stack) of G-bundles-with-connection over M . (When G is finite, any
G-bundle has a unique connection.) The path integral is hard to define, but the
basic dynamical data in 3.1 make perfect sense.


