
CHERN-SIMONS THEORY

This material is based on Witten’s ‘QFT and the Jones Polynomial’, as well as
the notes by Himpel on ‘Lie Groups and Chern-Simons Theory.’ A number of works
by Freed are also of interest.

1. Jones Polynomial

A knot is an embedding of a circle in (most classically) S3. A link is an embedding
of several circles, i.e. a union of disjoint knots. The Jones polynomial VL is an
element of Z(q1/2) – i.e. a Laurent polynomial in a variable q1/2 associated to each
link L, and invariant under continuous deformations. The q here is ‘the’ q that
appears everywhere in mathematics. The basic definition of the Jones polynomial
is by a sort of induction: VL = 1 if L is the unknot (e.g. a geodesic circle in S3);
and then there is a ‘skein relation’ that explains how VL changes when you move
strands through each other: Suppose that links L+, L−, L0 are the same outside
some small ball, where they look as follows (picture from Wikipedia):

Then the skein relation is that (q1/2−q1/2)VL0 = q−1VL+−qVL− . A curious feature
of this definition is that it is ‘two dimensional’: the pictures only make sense if we
consider a projection of the links into the plane, and so one has to show that VL

is ultimately independent of the projection. Witten frames his paper as giving a
genuinely three-dimensional definition of VL (and of some big generalisations) using
a 2 + 1 dimensional TQFT.

2. Lagrangian Field Theory

Let’s recall the basic picture of Lagrangian field theory – in a bit more generality
than we’ve had before. For every (n + 1)-manifold X with boundary, we have MX

a ‘space of fields’; for every closed n-manifold ∂X we similarly have M∂X , and a
‘restriction’ map π : MX → M∂X . We assume also that M∂X has over it a Hermitian
line-bundle L∂X , and that on MX we are given a section S of the pulled-back line
bundle π∗L∂X

. This S is the (exponentiated) action.
All this data should satisfy some properties, which we will skip. The main point

of these properties is that we should be able to get a TQFT as follows.
The Hilbert space Z(∂X) is the space of L2-sections of L∂X ,

Z(∂X) = L2(M∂X , L∂X).

Thinking, for simplicity, of X as a cobordism ∅ → ∂X, the value Z(X) should be
an element of Z(∂X), defined (at least heuristically) by a ‘path integral’

Z(X) = π∗S.

(That is, to get Z(X), we are supposed to integrate S along the fibres of π. Re-
member S is a section of π∗L∂X , so we would expect π∗S to be a section of L∂X ,
hence an element of Z(∂X).) The basic problem with this definition is that it is
generally hard to make sense of the path integral π∗.
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Example 2.1. Remember we saw an example of Freed in 1 + 1 dimensions: fix a
finite group G, and let MX be the groupoid of G-bundles over X. Take the action
S = 1, and L∂X the trivial bundle. In this case the path integral is well defined
as a sum over finite sets (more carefully, as the sum over a finite groupoid). The
Frobenius algebra corresponding to this TQFT was the algebra of class functions
on G.

3. Chern-Weil-Simons

Largely recollections from Yoshi’s talk.

3.1. Characteristic classes. We take G to be a Lie group (most importantly
SU(2)) and let X be an (n+1)-manifold (most importantly n = 2) with boundary.
There is a space BG, the moduli space of G-bundles. What this means is that
giving a map f : X → BG is the same as giving a G-bundle on X. (This defines
BG as a stack, but one could consider it in other categories, e.g. as a homotopy
type.) If α ∈ H∗(BG) is a cohomology class, then f∗α ∈ H∗(X) is an invariant of
P , called a ‘characteristic class’.

Example 3.1. If G = U(1), so that a G bundle is a Hermitial line bundle. then we
can take BG ∼= CP∞, H∗(BG, Z) = Z[x2] (i.e. polynomials in a variable of degree
2). The characteristic class f∗(x2) ∈ H2(X, Z) is the first Chern class of the line
bundle.

Example 3.2. If G = SU(2) then, analogously, BG ∼= HP∞ (infinite quaternionic
projective space), H∗(BG, Z) = Z[x4]. This lecture is in fact basically all about
the characteristic class f∗(x4).

3.2. Chern-Weil. Chern-Weil theory gives a deRham model of characteristic class-
es. You take a connection A on P , with curvature form FA: this is a 2-form on
X with values in P ×G g. Then, given f ∈ (Symmg∗)G, we get a 2m-form f(FA)
on X (with values in R). The basic theorem is that f(FA) is closed and that its
cohomology class depends only on P , not on A.

Example 3.3. If G = U(1), we can take s : g ∼= R, so m = 1. Thus we get a 2-form
on X representing the first Chern class. If G = SU(2) we can take f to be the
killing form, so m = 2. Then we get a four-form on X.

3.3. Chern-Simons. We can sharpen the previous discussion as follows. If A,A′

are two connections on P , then f(FA)− f(FA′) must be an exact 2m-form, and it
turns out there is a canonical (2m − 1) form c(A,A′) with this coboundary. This
and variations on it are called Chern-Simons forms.

Now we assume that every G bundle on X is trivial – e.g. this is true when
dim X = 3 and G = SU(2). We fix a trivialisation s of P , and take A′ to be
the connection such that s is flat. Then we can define ck(A) = kc(A,A′). (In
this definition k ∈ Z is just a convenient additional parameter, so we will get
slightly different theories for different values of k. See remarks at the end for some
explanation.)

4. Gauge Theory

G again is a Lie group. Gauge theory is an example of Lagrangian field theory in
which MX (similarly M∂X) is the moduli space of G-bundles-with-connection-on-X
(henceforth, just ‘connections’). Thus a point of MX is a G-bundle with connection
over X. These form a groupoid (i.e. different connections can be isomorphic or not).
Given a bundle P , the gauge group GX = C∞(X, G) acts on it, two connections
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(P,A) and (P,A′) on the same bundle P are isomorphic if and only if exists g ∈ GX

such that (P,A′) = g · (P,A) := (P, g∗A).
To give a function on MX is to give an appropriately smooth functor MX → C,

where C is the set of complex numbers; in other words, for each connection (P,A)
we get a number f(A), and this number is gauge-invariant: f(A) = f(g∗A). To give
a line bundle on MX is to give a functor MX → PicC, where PicC is the category
of one-dimensional complex lines; so for each (P,A) we should have a complex line
f(A) which transformas as a one-dimensional representation of GX .

4.1. Chern-Simons.

Theorem 4.2. (For dim X = 3, G = SU(2), but more general.) If X is closed,
then

∫
X

ck(A) ∈ R is gauge-independent modulo Z.

Thus, for X closed, we can define the action S(A) = exp(2πi
∫

X
ck(A)) ∈ U(1) ⊂

C and hope to define a path integral Z(X) = π∗S ∈ Z(∅) = C which is then a topo-
logical invariant of the three-manifold X. These invariants of closed 3-manifolds
are already interesting, but, more importantly for our purposes, what happens if
X has a boundary? We still define S(A) = exp(2πi

∫
X

ck(A)) ∈ C. Now, this is no
longer a gauge-invariant function of A, but it is gauge-equivariant, which means we
can consider S as a section of a line bundle on MX . Now, what we have to argue is
that this line bundle is the pullback of a line bundle L∂X on M∂X . And what this
amounts to is the statement (generalising the above theorem) that S(g∗A)/S(A)
depends only on the restriction of A ∈ AX and g ∈ GX to the boundary ∂X. (This
explanation is obviously rather sketchy.)

Remark 4.1. The above sketch defines a Lagrangian field theory. My understanding
is that Witten presents some consistency/plausibility checks to show that the cor-
responding TQFT (essentially: the path integral) can be defined, but the rigorous
construction of it was found by Reshitikhin-Turaev.

5. Jones Polynomial again

How is the Jones polynomial supposed to emerge from this picture? For that we
have to understand what the observables of a gauge theory are. An observable, in
general, is a function O on MX . The main thing one can calculate is its expectation
〈O〉, which is given (again heuristically) by the path integral

〈O〉 = π∗(O · S) ∈ Z(∂X)

(so if ∂X = ∅ then 〈O〉 is a number). Now suppose that γ is knot (i.e. an embedded
circle) in X. We can calculate the holonomy H(γ, A) ∈ G for any connection
A. But this is not gauge invariant. But now fix a representation ρ of G. Then
Oγ(A) = Tr ρ(H(γ, A)) is an observable (i.e. it is a function of A and it is gauge-
invariant). More generally, we get an observable Oγ for any link γ in X, as long as
each knot in the link is labelled by a representation of G.

I believe Witten’s basic theorem is as follows. Take G = SU(2), X = S3, ρ
always the standard representation of G. Define q = exp(−2πi/(2 + k)). Then
〈Oγ〉 = Vγ(q1/2) (the Jones polynomial). Here k can be considered as a variable,
so we reconstruct the whole Jones polynomial, not just one value.

By allowing different Lie groups and various representations, we get a whole lot
of link invariants generalising the Jones polynomial.

5.1. Remarks. Some tid-bits that I only vaguely understand.
The basic idea of the proof of Witten’s theorem is as follows. First, we explained

how to define Chern-Simons theory as a functor from the 2 + 1-dimensional cobor-
dism category. But we should really consider ‘enriched cobordisms’ in which an
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object is a closed manifold with marked points and a cobordism is a manifold with
boundary and an embeddded tangle. (A tangle is like a link, but it also can have
non-closed strands that have end-points on the boundary. I am still skipping over
further complications, e.g. we should consider ribbon tangles.) If you do this, then
the skein relation is exactly the sort of thing you would expect to get when you cut
and paste manifolds with tangles.

The use of tangles is very closely related to considering TQFTs with corners (i.e.
extending the TQFT to lower dimensions, as in the cobordism hypothesis). A lot
of interesting ideas by way of categorification were worked out by Freed.

The cobordism hypothesis, applied to 3-dimensional TQFTs, says roughly that a
TQFT is the same thing as a modular tensor category. As far as I understand, the
modular tensor category for Chern-Simons theory is the category of representations
of the quantum group Uq(sl2) (the same q as before).

The classical solutions to Chern-Simons theory are flat connections. In other
words, the QFT we constructed (for some fixed cobordism X) is supposed to be a
quantization of the moduli space of flat connection on X. Remember we have to
choose the symplectic form on this phase space to be integral; the various choices
of symplectic form are parameterised by the integer k.


