
CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Wednesday week 1: Definitions and empirical
significance in Newtonian mechanics

1 Newton’s laws of motion

Newton’s laws of motion, as every high school physics student knows, are some-
thing like the following:

Newton’s first law (N1L). Force-free particles travel with uniform velocity.

Newton’s second law (N2L). F = ma: The total force acting on a body is
equal to the product of that bodys mass and its acceleration.

Newton’s third law (N3L). Action and reaction are equal in magnitude and
opposite in direction — i.e., if one body exerts a force F on a second body,
then the second exerts a force −F on the first.

But these laws are supposed to hold only relative to an inertial frame. (Cf.
Newtonian mechanics on a playground carousel.) What is an inertial frame?
Come to that, what is the mass of a body, and what is the force exerted by one
body on another? If we don’t have definitions of these notions, we don’t seem
(?) to know what we’re talking about when we assert Newton’s laws of motion.

2 Defining ‘inertial frame’

1. We could try to make Newton’s First Law ‘true by definition’ by stipulat-
ing that an inertial frame just is a frame with respect to which all force-free
particles travel with uniform velocity. But there are a few problems with
this:

(a) Q: If N1L is true by definition, does it still have any empirical con-
tent?

i. A: no, but it may be an empirically nontrivial claim that there are
any inertial frames as thus defined (provided the coordinate sys-
tem is required to be continuous, and provided we are empirically
given facts about the instantaneous spatial distance between two
bodies that the coordinate system is required to recover as coor-
dinate distance).

ii. Specifically: the claim becomes nontrivial as soon as we have two
or more particles.

(b) The definition only has a determinate meaning insofar as ‘force-free
particle’ has been given a determinate meaning.
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i. But using the First Law to define ‘inertial frame’ precludes using
it to define ‘force-free body’.

ii. This would be a bad idea anyway . . .

A. Eddington’s sarcastic comment: ‘Every body continues in
its state of rest or uniform motion in a straight line, except
insofar as it doesn’t.’

iii. One move is to appeal to the fact that all known forces fall off
with spatial distance, and say that a body is approximately force-
free if it is ‘sufficiently far away’ from all other bodies.

iv. But this is unsatisfactory: such approximateness is not tolerable
in the foundations of a theory (as opposed to: in its practical
applications).

(c) A worse problem is that however one defines ‘force-free particle’,
if the definition succeeds in coinciding extensionally with existing
usage, there are no force-free particles.

i. The consequence of this is that on the suggested definition of
‘inertial frame’, every frame would vacuously count as inertial.

(d) It is tempting at this point to revise the definition so that it explic-
itly invokes counterfactuals: ‘an inertial frame is a frame such that,
if there were any force-free bodies, they would travel with uniform
velocity relative to the frame in question’.

i. But this revision violates the (very plausible?) requirement that
the truth of counterfactuals should be grounded in truths about
what the world is actually like – counterfactuals should not be
‘bare truths’. (Consider, for example, what might make true
the counterfactual conditional ‘If you ask her whether or not she
stole the sweets, she will lie.’)

2. In view of these problems, a better approach is to recognise that Newton’s
first law is actually a special case of Newton’s second law, and to see
whether the strategy of using Newton’s second law to define ‘inertial frame’
is any better-fated than the above.

(a) If we do this, we no longer have the above problem: there certainly
are particles being acted on by forces.

(b) But we still have to supply the complementary definitions of ‘force’
and ‘mass’, in order for the whole to have empirical content.

i. Plausibly, force may be definable via the particular force laws
(Newton’s law of gravitational repulsion, Coulomb’s law of elec-
trostatic repulsion, etc.) . . . [Exercise: Is it, or does this too lead
to problems?]
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3 Defining mass

(More detail in: Ch. 1 of Jammer, Concepts of mass in contemporary physics and
philosophy, Princeton University Press (2000))

1. Newton wrote that mass is ‘quantity of matter’. But this is just metaphor.

2. Weyl’s approach: Use the principle of conservation of momentum to define
mass

(a) Suppose that two particles A and B with velocities uA, uB respec-
tively collide inelastically and coalesce to form a compound particle of

zero velocity. Then define their ‘mass-ratio’ mA/B as: mA/B := |uB |
|uA| .

(b) Empirically, we find that thus-defined mass-ratios obey the following
transitivity condition: for all particles A,B,C, we have mA/BmB/CmC/A =
1.

(c) As a consequence of the preceding, it is possible to assign numbers
to particles in such a way that the mass-ratio between any given pair
of particles is just the ratio of the corresponding pair of numbers.

(d) Relative to an arbitrary choice of one particular particle to have
‘unit mass’, this system of mass ratios uniquely fixes the assignment
of masses to particles.

3. Objections to Weyl’s approach: This does provide a definition of mass
that is independent of Newton’s second law, but:

(a) It is in-principle-impossible to completely screen off the influences of
all the particles except the intended partner. So these approaches
requires us to allow some approximation. But again: approximation
is not allowed in fundamental definition.

(b) Either the ‘definition’ is to be construed as requiring that the pairwise
interactions in question have been carried out, or it is talking about
what would happen if they were carried out. But in the first case not
many particles have masses (we haven’t carried out such a procedure
for many, if any), and in the second case both approaches are based
on apparently ungrounded counterfactuals (cf. the complaints above
about such counterfactuals).

(c) It doesn’t enable us to define the masses of very large or very small
objects, with which we could not carry out such procedures. (Carnap)

4 An holistic approach: Simultaneous implicit
definition

Lewis, ‘How to define theoretical terms’, in his Philosophical papers: Volume I,
Oxford University Press (1983); and references therein.
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1. In light of messes such as the above, many theorists conclude that we have
been asking for ‘definitions’ of theoretical terms in too narrow a sense of
‘definition’. An alternative account is that of simultaneous implicit (or
functional) definition.

2. Step 1: Implicit vs explicit definition

(a) An explicit definition of a term X gives necessary and sufficient con-
ditions for the term X to be applied. Such a definition has a logical
form similar to X := . . .; this sentence is held to be true as a matter
of definition of X.

(b) Example: a bachelor is an unmarried man. This is held true as a
matter of definition of ‘bachelor’; the term ‘bachelor’ is applicable
in a given context iff the term ‘unmarried man’ is applicable in that
same context.

(c) An implicit definition of X does not directly state the extension and
intension of the term. Instead, it is a statement (or collection of
statements) containing X but having some logical form other than
‘X is . . . ’, which is/are asserted to be true as a matter of the definition
of X.

i. Example: A person has a legal right to X iff the system of law
in her society requires others to provide her with X. This (or
something like it) might be an implicit definition of ‘legal right’.

3. Step 2: Simultaneous definition

(a) A suggestion: Can we take e.g. ‘inertial frame’ to be merely implicitly
defined by Newtonian theory?

(b) A perhaps-natural thought: If Newtonian mechanics is an implicit
definition of (say) ‘inertial frame’, surely we require some other, in-
dependent definition of ‘mass’, ‘force’ etc?

(c) Wrong! Newtonian mechanics could be a simultaneous implicit def-
inition of all its ‘theoretical terms’. (Inertial frames, masses, forces
etc are those entities/quantities, if any such there be, that collectively
make all of Newton’s laws true.)

(d) Other examples:

i. ‘Point’, ‘line’ etc as implicitly defined by the axioms of geometry?
(Hilbert)

ii. ‘Number’, ‘Zero’, ‘successor’ as implicitly defined by the Peano
axioms? (Contra Frege and Russell.)

4. Empirical content again

(a) On this proposal, Newtonian mechanics has empirical content iff the
claim that there exists any assignment of coordinates, mass-numbers
etc to particles that makes the whole of Newtonian mechanics true
itself has empirical content.
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(b) Question: Does Newtonian mechanics have empirical content, then,
on this proposal?

(c) Tentative answer: Newton’s laws of motion on their own do not, but
Newton’s laws of motion together with a complete set of force laws
plausibly do. (Exercise: check this!)

5. General philosophy of science implications of this account

(a) If Newton’s laws of motion have empirical content only in conjunction
with particular force laws, the laws of motion are not on their own
falsifiable. So (since Newtonian mechanics clearly counts as good
science!) a naive falsifiability criterion of demarcation of science is in
danger of branding paradigm cases of science as pseudo-science.

(b) It is not in general an objection to a given theory that individual
and/or explicit definitions of key theoretical terms have not been
provided. (Cf. Sen on justice.)

(c) The meaning of a theoretical term is determined holistically, by the
entire theory in which the term is embedded. This will have impli-
cations when we come to discuss theory change, e.g. the nature of
the disagreement between pre- and post-relativistic physics: if it is
impossible in principle for the two theories to mean the same thing as
one another by e.g. ‘mass’ or ‘force’, they cannot be making contra-
dictory claims about the behaviour of one and the same quantity, and
the sense (if any) in which the two theories contradict one another
must be relatively subtle.

5



CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Friday week 1: Galilean relativity and Galilean
covariance

1 Galilean relativity

In his classic treatise ‘Dialogue concerning the two chief world systems’, Galileo
pointed out that if one is confined to the inside of a ship’s cabin, one cannot tell
the difference (by means of experiments confined to the ship’s cabin) between the
case in which the ship is stationary and the case in which the ship is moving
with constant speed in a straight line:

Shut yourself up with some friend in the main cabin below decks on
some large ship, and have with you there some flies, butterflies, and
other small flying animals. Have a large bowl of water with some
fish in it; hang up a bottle that empties drop by drop into a wide
vessel beneath it. With the ship standing still, observe carefully how
the little animals fly with equal speed to all sides of the cabin. The
fish swim indifferently in all directions; the drops fall into the vessel
beneath; and, in throwing something to your friend, you need throw
it no more strongly in one direction than another, the distances being
equal; jumping with your feet together, you pass equal spaces in
every direction. When you have observed all these things carefully
(though doubtless when the ship is standing still everything must
happen in this way), have the ship proceed with any speed you like,
so long as the motion is uniform and not fluctuating this way and
that. You will discover not the least change in all the effects named,
nor could you tell from any of them whether the ship was moving or
standing still.

This phenomenon is called ‘Galilean relativity’.

2 Galilean covariance

The empirical phenomenon of Galilean relativity is explained if the laws of
motion governing the processes involved in Galileo’s experiments are Galilean
covariant.

1. The Galilean group. A Galilean transformation is any coordinate trans-
formation that can be expressed as the composition of a rigid spacetime
translation, a rigid rotation and a Galilean boost:
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Spatial translation ga(a ∈ R3): ga(t,x) = (t,x + a).
Time translation gb(b ∈ R): gb(t,x) = (t + b,x).
Spatial rotation gR(R ∈ SO(3)): gR(t,x) = (t,Rx).
Galilean boost gv(v ∈ R3): gv(t,x) = (t,x− vt).

2. Covariance. There are two (equivalent) ways of defining what it means
for a given set of laws to be ‘covariant’ under a given group of transfor-
mations:

(a) Space-of-solutions version:

i. Toy example of covariance

A. Equation of motion
dr

dt
= −kr. (1)

B. General solution

r(t) = Ae−kt, A ∈ R. (2)

C. For any such r and any time translation gb, we can form the
transformed structure gbr:

(gbr)(t) = r(t− b) (3)

= ae−k(t−b) (4)

= (ae+kb)e−kt. (5)

This is another solution of the same equation (1).

D. Because time translations always take solutions of (1) to so-
lutions, we say that the equation (1) is time translation co-
variant.

ii. Summary of the general method

A. Identify the set Θ of equations to be investigated.

B. Identify a set S of structures for Θ; i.e., identify the type of
object that is mathematically appropriate to be a candidate
solution to Θ.

C. Identify the group G of transformations whose effects on Θ
we will be interested in investigating.

D. For general g ∈ G, identify the action of g on S.

E. Ask whether this action of G preserves the subset D ⊂ S of
solutions to Θ.

iii. Toy example of non-covariance

A. Let the equation of motion (and hence Θ and S) be as before.

B. Let G be the group B1 of (one-dimensional) boosts gv : x 7→
x− vt.

C. Action of any such gv on S:

(gvr)(t) = r(t)− vt. (6)
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D. For the general solution r(t) = Ae−kt, the transformed struc-
ture is given by

(gvr)(t) = Ae−kt − vt, (7)

which is not identical to Be−kt for any B ∈ R, i.e. is not a
solution of (1).

E. So this toy theory is not covariant under the boosts (6).
(This conclusion should be intuitive . . . )

iv. Galilean covariance of Newtonian gravitation

A. Newtonian gravity for two particles is given (combining N2L
and the law of gravitation) by

r̈i =
Gm1m2

|r1 − r2|3
(ri − ri+1) , i = 1, 2. (8)

B. A structure for this pair of equations is a pair of functions
(r1 : R→ R3, r2 : R→ R3).

C. Let G be the group B3 of three-dimensional boosts {(gv :
r 7→ r− vt) : v ∈ R3}.

D. A general such boost gv acts on a structure (r1, r2) by

gvri(t) = ri(t)− vt. (9)

E. Now, suppose the original pair (r1, r2) satisfies the equations
(8) (Θ). Clearly (r1, r2) and (gvr1, gvr2) agree with one an-
other on the accelerations of both particles at all times; since
they also agree on the displacement of particle 2’s position
from that of particle 1 at all times, they give the same values
as one another for both the LHS and the RHS of (8) at all
times, and so if the untransformed structure satisfies that
equation then the transformed structure must satisfy it also.

F. So Newtonian gravity [for two particles] is Galilean (boost)
covariant. (Exercise (easy): rewrite the argument for arbi-
trary N.)

(b) Form-invariance of equations version

Here we consider the equations themselves directly, rather than their
solutions.

i. Toy example of covariance (method 2)

A. Consider again
d

dt
r(t) = −kr(t). (10)

B. This equation is built from a number of entities, including
d
dt , r and k.

C. Under a time translation gb,
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• d
dt and k each transform trivially;

• the function r transforms, as before, as (gbr)(t) = r(t− b).

D. The transformed equation is therefore

d

dt
r(t− b) = −kr(t− b). (11)

E. But asserting that (11) holds for all t is equivalent to assert-
ing that (10) holds for all t. We conclude that the original
(untransformed) equation (10) is time translation covariant.

ii. Method for form-invariance of equations version

A. Identify Θ.

B. Identify G.

C. Identify an action of G on each of the ingredients of each
equation in Θ.

D. Write down the equations with transformed (‘primed’) quan-
tities in place of untransformed ones.

E. Iff the result is a set of equations equivalent to the original
Θ, then Θ is G-covariant.

iii. Toy example of non-covariance (method 2)

A. Consider again (1) in conjunction with . . .

B. . . . the group B1 of one-dimensional boosts gv.

C. The ingredients of our equation transform as

gv :
d

dt
7→ d

dt
; (12)

gv : k 7→ k; (13)

gv : r(t) 7→ r(t)− vt. (14)

D. So the transformed equation is

d

dt
(r(t)− vt) = −k(r(t)− vt). (15)

E. But this is equivalent to (10) only if −v = vkt, which clearly
cannot hold for all t. This nonequivalence of the untrans-
formed and transformed equations means that the original
equation (10) is not boost invariant.

iv. Galilean covariance of Newtonian gravitation (method 2)

A. Our equation is

r̈i =
Gm1m2

|r1 − r2|3
(ri − ri+1) , i = 1, 2. (16)

B. Our group is the group B3 of three-dimensional boosts.
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C. Five quantities appear in this equation: the particle positions
r1 and r2, the masses m1 and m2, and the acceleration ri of
the ith particle. These transform as

r′i(t) ≡ (gvri)(t) = ri(t)− vt. (17)

r̈′i(t) ≡ ¨(gvri)(t) = r̈i(t). (18)

m′i ≡ gvmi = mi. (19)

D. The transformed equation is

r̈′i =
Gm′1m

′
2

|r′1 − r′2|3
(
r′i − r′i+1

)
; (20)

i.e., eliminating the primes,

d2

dt2 (ri − vt)

= Gm1m2

|(r1−vt)−(r2−vt)|3 ((ri − vt)− (ri+1 − vt)) .

E. But clearly this is equivalent to our original equation. So the
latter is Galilean boost covariant.

Note that in this last example, the argument for covariance was somewhat
cleaner using method 2 than using method 1. But the two methods are
(extensionally) equivalent.

3 Historical aside: Newton on Galilean relativ-
ity

1. Newton claims to infer this phenomenon from his laws of motion. After
setting out the latter, he infers several ‘corollaries’; his ‘Corollary V’ is:

The motions of bodies included in a given space are the same
among themselves, whether that space is at rest, or moves uni-
formly forwards in a right line without any circular motion

— i.e., that Galilean relativity holds.

2. Newton’s argument for ‘Corollary V’ is as follows:

For the differences of the motions tending towards the same
parts, and the sums of those that tend towards contrary parts,
are, at first (by supposition), in both cases the same ; and it is
from those sums and differences [i.e. those vectorial differences]
that the collisions and impulses do arise with which the bodies
mutually impinge one upon another. Wherefore (by Law II),
the effects of those collisions will be equal in both cases; and
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therefore the mutual motions of the bodies among themselves
in the one case will remain equal to the mutual motions of the
bodies among themselves in the other. A clear proof of which we
have from the experiment of a ship; where all motions happen
after the same manner, whether the ship is at rest, or is carried
uniformly forwards in a right line.

In calling it a ‘corollary’, Newton is claiming that Galilean relativity fol-
lows from his three laws of motion alone. But this is not the case; there
are two non sequiturs in Newton’s argument.

3. It does not follow from the laws of motion alone that ‘it is from those sums
and differences that the collisions and impulses do arise with which the
bodies mutually impinge one upon another’. This requires the additional
assumption that forces depend only on (vectorial) differences of positions
and/or velocities, not on absolute positions or absolute velocities. (Con-
sider a particle affected by the force F = −kv.)

4. It does not follow that ‘the effects of those collisions will be equal’ unless
we further assume that the mass of a given body is independent of the
body’s absolute position and absolute velocity. (Consider particles whose
masses are proportional to their absolute speeds.)

5. With these two auxiliary assumptions in place, Galilean relativity can
indeed be derived from Newton’s Second Law (by essentially Newton’s
argument).
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Wednesday week 2: The ‘ether wind’ search and
Lorentz’s program

Lecture handouts are posted (sometime) on Weblearn: See www.philosophy.ox.ac.uk
→ Lectures→ Lecture Materials→ (Undergraduate) Lecture Resources (HT11)→
CL 120 Intermediate Philosophy of Physics.

For more detail on this lecture’s material, see: Janssen and Stachel, ‘The op-
tics and electrodynamics of moving bodies’, to appear in Stachel, Going Critical,
Dordrecht: Springer. Available from Weblearn.

1 Ether theory up to 1880

1.1 The expectation of an ether wind

1. Around the beginning of the 19th century, the wave theory of light was
gaining acceptance.

2. In such a theory (as opposed to a particle theory of light), presumably,

(a) There must be a medium in which the waves propagate (the ether);

(b) The speed with which light propagates is independent of the speed
of the source (it will just be some given speed with respect to the
ether, regardless of how the source is moving).

3. But in that case the Earth’s movement through the ether should be de-
tectable. 19th century experiments persistently and spectacularly failed
to detect the ‘ether wind’.

1.2 Initial null results: refraction

1. Expectations based on the wave theory

(a) Refraction is normally thought to proceed via Snell’s Law (n1 sin θ1 =
n2 sin θ2).

(b) But in a wave theory, if this is true in the ether’s rest frame, then in
any frame that is moving with nonzero velocity with respect to the
ether, one expects (precisely calculable) deviations from Snell’s Law.

2. Arago’s experiment (1810)

(a) Arago studied the refraction of starlight from a given star over the
course of a year.

(b) Contrary to expectation, no deviations from Snell’s Law were ob-
served.
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1.3 The Fresnel drag coefficient (1818)

1. Fresnel noticed that one could explain Arago’s null result on the hypothesis
that the ether is not exactly stationary: it is generally stationary, but it
is partially dragged by moving refractive media (n > 1).

2. Quantitatively: if a refractive medium is moving with velocity v [with
respect to the general state of rest of the ether], the ether inside that
refractive medium will be moving with velocity fv, where the ‘Fresnel
drag coefficient’ 0 ≤ f < 1 depends on refractive index n.

3. Question: What functional dependence of f on n, if any, would lead to
the prediction that Snell’s Law is valid also in moving frames?

4. Answer: If f = 1− 1
n2 then Snell’s Law will be valid in all frames.

5. Thus the Fresnel drag theory, armed with the formula f = 1− 1
n2 , success-

fully retrodicts that no refraction experiment will detect the ether wind.

1.4 The Fizeau water experiment (1851)

1. This experiment was designed to test the Fresnel drag hypothesis.

2. The experiment: Light from a source is split into two parallel beams, which
are then made to traverse a given ‘circular’ path through a water device in
opposite directions, in such a way that one beam is always travelling with
the flow of water, while the other is always travelling against the flow of
water. On completing the path, the two beams are recombined and the
interference pattern observed. Fizeau wished to determine whether the
interference pattern varied with the speed of water flow.

3. Fresnel prediction: The Fresnel drag theory predicts that there will be
variation in the interference pattern with water speed.

4. Result: The result was exactly as predicted by Fresnel.

1.5 Problems with the Fresnel theory

1. Despite the experimental success of the Fresnel drag coefficient, it was
difficult to make physical sense of what might be going on. There seemed
to be two possibilities:

• Fresnel’s own suggestion: There are two kinds of ether: an ‘un-
draggable ether’ filling all space with some constant density, and
a ‘draggable ether’ present only in refractive media. When a refrac-
tive medium moves, all the draggable ether inside that medium is
totally dragged; the quantity (1− 1

n2v) is the average velocity of the
draggable and undraggable ethers.
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• Stokes’ suggestion: There is just one kind of ether, and it is carried
along with a fraction of the velocity of the moving refractive medium.

But neither of these accounts seems able to account for the fact that the
index of refraction depends on the frequency of the light being refracted.
The ether cannot be dragged with one velocity relative to one frequency
of light, and with another velocity relative to another . . .

2. The Fresnel drag hypothesis does not suffice to account for the null result
of the Michelson-Morley experiment . . .

2 The Michelson-Morley experiment (1887)

1. This experiment is carefully designed so that even the Fresnel drag theory
would predict that the ether wind should be detected via this experiment.

2. The experimental setup

(a) The Michelson interferometer sends a beam of light towards a half-
silvered mirror. Here the beam is split into two components that
continue at right angles to one another: one down ‘arm A’ of the
interferometer, the other down ‘arm B’. A short distance later each
half-beam encounters a second (but fully silvered) mirror, and is re-
flected back. The beams are recombined, and the resulting interfer-
ence pattern observed on a screen.

(b) The observed pattern will depend on (i) the lengths of the arms A
and B, and (ii) the speed of travel of the light along each arm in each
direction.

3. Qualitative rationale

(a) More precisely: In a laboratory that is moving relative to the ether
with speed v, the speed of light relative to the lab frame is expected
to be anisotropic: it should be c − v in the direction of the lab’s
motion, c + v in the opposite direction, and

√
c2 − v2 in directions

perpendicular to that of the lab’s motion.

(b) If we could ensure that the arms were exactly equal in length, then
anything other than constructive interference would indicate the pres-
ence of an ether wind. Unfortunately ensuring this is not technolog-
ically feasible . . .

(c) . . . However, regardless of the arm lengths, rotating the apparatus
should change the interference pattern in a predictable manner in
a moving frame, and would not if the apparatus were at rest with
respect to the ether. Thus we look for this change as a signature of
the ether wind.
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4. Quantitative calculation of the expected fringe shift on rotating the appa-
ratus

(a) Suppose (for simplicity) that the two arms are of equal length, L.

(b) Then, the out-and-back time for light to travel along the arm that is
parallel to the ether drift should be

∆t‖ =
L

c− v
+

L

c+ v
=

2Lc

c2 − v2
. (1)

(c) Meanwhile, the out-and-back time for light to travel along the arm
that is perpendicular to the ether drift should be

∆t⊥ =
2L√
c2 − v2

. (2)

(d) To second order in v2

c2 , these quantities can be approximated as fol-
lows:

∆t‖ ≈ 2L

c

(
1 +

v2

c2

)
; (3)

∆t⊥ ≈ 2L

c

(
1 +

1

2

v2

c2

)
. (4)

(e) Hence, the delay time is

∆t‖ −∆t⊥ =
L

c

v2

c2
; (5)

the corresponding number of periods for light of wavelength λ and

hence frequency c
λ is then n = 2L

λ
v2

c2 .

(f) After rotating the apparatus, the roles of the two arms are switched.
We thus have a phase shift given by

∆n =
2L

λ

v2

c2
. (6)

If L = 11mm, λ = 550nm and v = 30kms−1, this gives an expected fringe
shift ∆n ≈ 0.4 — certainly large enough to be observable (despite the fact

that the effect is ‘second order in v2

c2 ’).

5. The result

(a) The result of the Michelson-Morley experiment, infamously, was null
— rotating the apparatus did not lead to any fringe shift.

(b) Michelson and Morley concluded that ‘if there be any relative mo-
tion between the earth and the luminiferous ether, it must be small’;
‘small’ here means ‘probably less than one-sixth of the earth’s orbital
velocity, and certainly less than one-fourth.’

(c) This null result is a mystery: this ‘small relative motion’ could easily
obtain by luck at any given instant, but it is difficult to see how it
could obtain throughout the Earth’s orbit.
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3 Lorentz’s program (1890s)

Lorentz sought to explain both the results that had previously been explained
via Fresnel drag and the Michelson-Morley experiment, on the basis of a new
theory according to which the ether is completely immobile (i.e. not dragged at
all, even by refractive media).

1. Deriving the Fresnel drag coefficient

(a) Lorentz postulates small particles (‘ions’/‘electrons’) that generate
electric and magnetic fields in the ether satisfying Maxwell’s equa-
tions, and that in turn are acted on by these fields according to the
Lorentz force law.

(b) The propagation of light through a medium will be the sum of the
original primary wave and various ‘secondary waves’ generated by
‘electrons’ that are set into simple harmonic motion by the primary
wave.

(c) It follows from this model that an electromagnetic wave passing
through an electron-rich medium will effectively be slowed down, and
this by a factor n that depends on the density and properties of the
charged particles in question.

(d) We can also calculate what will happen if the electron-rich medium
is moving. Lorentz finds that such waves will, if his theory is correct,
travel with speed c

n − v
(
1− 1

n2

)
— i.e., that their propagation is

modified by precisely the Fresnel ‘drag’ coefficient, but with no need
for any ‘ether drag’ to explain this.

(e) The first major triumph of Lorentz’s theory over a ‘partial ether
drag’ hypothesis is that frequency-dependence of a medium’s index
of refraction is no longer a problem.

2. The theorem of corresponding states

(a) Lorentz seeks to give a general argument for the claim that no opti-
cal experiment, within a broad class (broader than ‘refraction exper-
iments’), will detect the ether wind.

(b) To this end, Lorentz introduces the following auxiliary functions of
the space and time coordinates and of the electric and magnetic fields
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at a given point:

t′ =

(
t

γ
− γ v

c2
(x− vt)

)
;

x′ = γ(x− vt);
y′ = y;

z′ = z;

E′x = Ex

E′y = γ
(
Ey −

v

c
Bz

)
E′z = γ

(
Ez +

v

c
By

)
B′x = Bx

B′y = γ
(
By +

v

c
Ez

)
B′z = γ

(
Bz −

v

c
Ey

)
.

(c) Using these quantities and the known equations of electromagnetic
theory, however, Lorentz is able to prove the following striking result:

Lorentz’s (exact) theorem of corresponding states. Let S be
a configuration of charged particles and electric and magnetic
fields in space and time satisfying the equations of electrodynam-
ics. Let S′v be the configuration obtained from S by first putting
primes on all appearances of space and time coordinates and
expressions for the electric and magnetic fields, and then elimi-
nating the primes using the definitions of the primed in terms of
the unprimed coordinates. Then, the constructed configuration
S′v itself satisfies the same equations of motion.

(d) On the basis of this theorem, Lorentz is able to sketch a general ar-
gument for the claim that no optical experiment whose result boils
down to observation of a stationary pattern of brightness and dark-
ness will ever detect the ether wind:

i. What is perceived as darkness is the vanishing of the electric and
magnetic fields. Similarly, what is perceived as brightness is a
large value of the time-averages of the absolute values of such
quantities.

ii. Let S be the configuration of electric and magnetic fields that
would be produced by a given experimental setup at rest with
respect to the ether. Let Sv be the ‘corresponding state’ moving
with velocity v with respect to the ether, in the sense of the TCS;
so Sv is the configuration that would be produced by the given
experimental apparatus, if it were moving with velocity v with
respect to the ether.
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iii. The ‘corresponding state’ Sv has the auxiliary fields vanishing
(resp. being large) in the spacetime regions that ‘correspond’
(in the sense of the auxiliary spatial coordinates and the ‘local
time’) to the regions in which the real fields vanished (resp,. were
large) in the original field configuration.

iv. But since the auxiliary fields are linear combinations of the real
fields, if the auxiliary fields vanish (resp are large) then the real
fields must also vanish (resp be large), and thus darkness and
brightness must be observed in those corresponding regions —
so the pattern is unchanged.

v. Hence, observation of the pattern of brightness and darkness will
not enable the observer to distinguish between the case in which
he is at rest with respect to the ether, and the case in which he
is moving with velocity v with respect to the ether.

(e) There are, however, two holes in this argument as it stands:

i. In the ‘corresponding state’, the darkness-brightness pattern is
shrunk in the longitudinal direction. So we might be able to
detect the ether wind by e.g. measuring the distance between
successive bright fringes.

ii. The argument assumes that the experiment in question takes
place ‘in a vacuum’ — i.e. that the electromagnetic goings-on are
not interacting with any other matter located at independently
fixed points of space and time. This assumption, of course, is
false in the Michelson-Morley experiment. Thus Lorentz’s theo-
rem of corresponding states has as yet done nothing to remove
the expectation of a positive result for that experiment.

3. ‘Completing’ the account: The contraction hypothesis

(a) The two ‘holes’ in the above argument can be repaired if we sup-
pose that matter deforms when it is set in motion: specifically, if a
body moving with speed v contracts in length by a factor γ in the
longitudinal direction.

(b) In that case, any ruler that we tried to use to measure the distance
between successive brightness fringes would itself contract in such a
way as to mislead us into thinking that the pattern had not been
shrunk . . .

(c) . . . and the arms of the Michelson-Morley interferometer would con-
tract in just such a way as to compensate for the differences in the
speed of light in the longitudinal and transverse directions . . .

(d) . . . So empirical adequacy is recovered. But the ‘contraction hypoth-
esis’ that was required to recover it may appear hopelessly ad hoc
(?).
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Friday week 2 (and Wednesday week 3): Einstein 1905

Einstein, ‘The electrodynamics of moving bodies’ (1905). Available from We-
blearn.

1 Introduction

Preview: The distinctive things about Einstein’s approach in 1905 include that

1. it eliminates ‘asymmetries which do not appear to be inherent in the
phenomena’.

2. It accounts in one shot (?) for all null ether-wind results.

3. It does not postulate a luminiferous ether at all, or a standard of absolute
rest.

4. It insists on (and makes liberal use of) an operational understanding of
the meaning of the coordinates in any given frame of reference: if it is
a physical fact that setting a rod in motion causes it to shrink, this has
implications for the transformations relating the coordinates of different
inertial frames. (‘Insufficient consideration of this circumstance lies at
the root of the difficulties which the electrodynamics of moving bodies at
present encounters’.)

5. It is a ‘principle theory’, rather than a ‘constructive theory’.

2 Principle theories and constructive theories

1. Einstein (later — first in 1919) draws a distinction between ‘principle
theories’ and ‘constructive theories’ in physics.

2. A ‘constructive theory’ is a theory that attempts to provide a detailed
dynamical picture of what is microphysically going on, from which predic-
tions for observable phenomena can be derived. (Most theories in physics
are like this.)

3. A ‘principle theory’ is a theory that takes certain ‘phenomenologically well-
grounded principles’ as postulates, and derives from them constraints on
what the underlying detailed dynamical equations could be like, without
attempting to give a fully detailed account of what those equations are.
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4. Paradigm example: Thermodynamics is a principle theory; the ‘phe-
nomenologically well-grounded postulates’ in this case are the 1st/2nd/3rd
laws of thermodynamics. From this we are supposed to derive e.g. the
existence of an entropy function that never decreases, and various relation-
ships between various functions of state. The corresponding constructive
theory would be the (statistical) kinetic theory of gases.

5. One might be motivated to construct a principle theory by wanting to
make some progress before the fully detailed microphysical picture (con-
structive account) is known.

6. Einstein in 1905 sees himself as being in this situation: Lorentz has been
pursuing a constructive approach, but Einstein is bothered by deep suspi-
cions that the true equations governing intermolecular forces are very far
from being known.

3 Summary of Einstein’s 1905 paper

1: ‘Definition of simultaneity’

1. Einstein’s operational understanding of coordinates means that he will
require space coordinates to ‘match’ the lengths of measuring rods that
are at rest in the system in question, and time coordinates to ‘match’
the tickings of clocks at rest in that system. But even to set up one
coordinate system, we need more than this: we need to decide how to
sychronise clocks that are spatiall separated from one another.

2. Einstein stipulates that clocks are to be synchronised (i.e. simultaneity is
to be defined) in such a way that the one-way speed of light is isotropic.

(a) I.e.: Let OA, OB be inertial worldlines that are stationary in a given
frame F. Let A1, A3 be events on OA, and let B2 be an event on OB .

Let a light signal leave OA at the event A1, reaching OB at the
event B2; let the signal then be reflected immediately back to OA,
arriving at the event A3. Then say that the clocks tA, tB are Einstein-
synchronous relative to the frame F iff

tB(B2)− tA(A1) =
1

2
(tA(A3)− tA(A1)) . (1)

(b) Note well that there is no such thing as a one-way speed, until and
unless we have defined simultaneity.

3. We assume that Einstein synchrony is a symmetric and transitive relation.
[Exercise: what does this assumption amount to, physically?]
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2: ‘On the relativity of lengths and times’

Einstein helps himself to a ‘stationary’ coordinate system K, defined to be one
in which ‘the laws of Newtonian mechanics hold good’.

In this section Einstein lays down the two ‘phenomenologically well-grounded
principles’ that he intends to ‘raise to the status of postulates’:

The relativity principle The laws by which the states of physical systems
undergo change are not affected, whether these changes be referred to
the one or the other of two systems of coordinates in uniform translatory
motion.

The light postulate Any ray of light moves in the ‘stationary’ system of co-
ordinates with the determined velocity c, whether the ray be emitted by
a stationary or by a moving body. Hence [sic?]

velocity =
light path

time interval
, (2)

where time interval is to be taken in the sense of the definition in section
1.

3: ‘Theory of the transformation of coordinates and times
from a stationary system to another system in uniform mo-
tion of translation relatively to the former’

The game now is to derive coordinate transformations from these [and a couple
of other] principles. In addition to (RP) and (LP), Einstein will need to assume

• The homogeneity of space and time;

• The isotropy of space;

• ‘Reciprocity’: if two inertial coordinate systems S, S′ in standard configu-
ration are such that S′ is moving with speed v in the positive x direction
relative to S, then S is moving with speed v in the negative x direction
relative to S′.

Let k be a system of coordinates that is moving with speed v along the
positive x-axis relative to the ‘stationary’ system K. Let ξ, η, ζ, τ be coordinates
for k, determined by the conditions of surveyability-using-rods-and-clocks-that-
are-stationary-relative-to-k and the Einstein definition of simultaneity applied
in k (for τ). Einstein then argues as follows:

1. From Homogeneity, infer that the coordinate transformations relating in-
ertial coordinate systems are linear.

2. From Einstein synchrony in k, derive expressions for ∂τ
∂x′ ,

∂τ
∂y and ∂τ

∂z in

terms of ∂τ∂t , and hence (given the linearity of the transformations) obtain

τ = φ(v)
1

γ

(
t− v

c2 − v2
(x− vt)

)
, (3)
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where γ :=
(

1− v2

c2

)− 1
2

.

3. Consider a light ray emitted from the origin in the positive ξ direction.
Use RP and LP to write down expressions for the relationship between ξ
and τ that holds on the path of this ray, and similarly (using LP alone)
for the relationship between x and t that holds on the path of this ray,
Einstein can derive the expression

ξ = φ(v)γ(x− vt); (4)

furthermore, although this expression has initially been derived only for
points on the light ray, the fact that ‘a point at rest in the system k must
have a system of values x′[≡ x− vt] independent of time’ ensures that the
same relationship must then be true for all points.

Similarly, by considering rays of light emitted in the η and ζ directions
from the perspectives of both K and k, we obtain

η = φ(v)y; (5)

ζ = φ(v)z. (6)

4. We now have the Lorentz transformations up to an as yet undetermined
function φ(v). To fix this function:

(a) Invoke RP and Reciprocity to argue that φ(v)φ(−v) = 1.

(b) Note that given Einstein’s operational understanding of the coordi-
nates, φ(v) can be interpreted physically as inverse of the transverse
length contraction factor, i.e. the factor by which setting a body
in motion causes it to shrink in the direction perpendicular to its
motion.

(c) Given that physical interpretation, Spatial Isotropy entails that φ(v) =
φ(−v).

(d) We argue somehow against the rogue possibility that φ(v) = −1
(using continuity and φ(0) = +1?).

(e) It follows that φ(v) ≡ 1. We now have the Lorentz transformations.

4: ‘Physical meaning of the equations obtained in respect
to moving rigid bodies and moving clocks’

1. Length contraction:

(a) Consider a rigid sphere at rest in k. Points on its surface must satisfy
the equation

ξ2 + η2 + ζ2 = R2. (7)
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(b) But applying the coordinate transformations shows that this is equiv-
alent to the condition

γ2(x− vt)2 + y2 + z2 = R2. (8)

(c) This shows that a moving sphere contracts by a factor γ ≡ 1√
1− v2

c2

in the direction of its motion.

2. Time dilation

(a) Consider a clock that is at rest in k, hence moving with speed v in
the +x direction relative to K.

(b) From the Lorentz transformations, we have the general formula

τ =
1

γ

(
t− v

c2 − v2
(x− vt)

)
. (9)

(c) Points on the worldline of the moving clock in addition obey the
equation x = vt.

(d) Thus (9) reduces to τ = t
γ .

(e) That is, the ‘moving clock runs slow’, in the sense that : if our moving
clock A is initially synchronised with a clock B that is at rest in S at
the common spatial origin at t = τ = 0, and is later compared with a
third clock C that is at rest in S and that is synchronised with B by
Einstein-Poincare synchrony, then A will fail to read the same time
as C when they pass one another.

5: ‘The composition of velocities’

1. Einstein considers a point-sized object moving with velocity (wξ, wη, 0)
with respect to the ‘moving’ system k. The question is what the velocity
of this point will be relative to the ‘stationary’ system K.

2. By writing down expressions relating the k-coordinates of this object to
one another and invoking his transformations between the k-coordinates
and the K-coordinates, Einstein derives the now-standard ‘relativistic ve-
locity addition law’: the coordinates satisfy

x = t
(wξ + v)(
1 +

wξv
c2

) ; (10)

y = t
wη

γ
(
1 +

wξv
c2

) ; (11)

z = 0. (12)
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3. In particular, for the case of parallel velocities (wη = 0), the speed V of
the object according to the ‘stationary’ system K is given by

V =
v + w

1 + vw
c2
. (13)

4. So the ‘Galilean law for the composition of velocities’, V = v+w, is valid
in the limit v

c → 0, but only in that limit.

4 Einstein 1905’s account of Fizeau 1851 and
MM 1887

1. Einstein on Fizeau:

(a) The outcome of the Fizeau experiment can be predicted using Ein-
stein’s new formula for the (relativistic) addition of velocities.

(b) This predicts that light travelling (resp.) with/against the water flow
in Fizeau’s device will be travelling with speed

V =
c
n ± v

1± v
cn

. (14)

(c) Expanding this to first order gives a formula that agrees with Fres-
nel’s prediction. Expanding it to higher order gives corrections to
Fresnel’s prediction.

(d) Thus Einstein’s theory can explain why Fresnel’s prediction was cor-
rect to within the experimental error, but also predicts that if we were
able to look closely enough (which we probably can’t, in this experi-
ment) we would see small discrepancies between Fresnel’s prediction
and experimental reality.

2. Einstein on Michelson-Morley . . .

(a) Short version: Einstein’s 1905 theory predicts null results for all
ether-wind experiments at once, trivially (i.e. from the relativity
principle alone).

(b) Long version: Einstein’s 1905 theory entails the truth of a fully gen-
eral Lorentz-style ‘theorem of corresponding states’ and contraction
hypothesis, and thus vindicates Lorentz’s explanation of the null re-
sults.

(c) You decide which of these versions is ‘better’ !
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Friday week 3: Variations on Einstein’s theme

References to Brown are to his Physical relativity, Oxford University Press
(2005).

1 More on Reciprocity

1. A Reciprocity-violating scenario:

(a) Suppose that the following conditions held:

i. the Light Postulate;

ii. clocks are synchronised according to the Einstein procedure;

iii. rods that are moving with respect to the ‘stationary’ frame S
contract longitudinally by a factor γ; but

iv. clocks that are moving with respect to S do not slow down (or
speed up) — i.e., contrary to special relativity, there is no time
dilation.

(b) We wish to determine whether, if S′ is moving with velocity v accord-
ing to S in the positive x direction relative to S, it follows that S is
moving with velocity −v according to S′ in the positive x′ direction
according to S′. Well . . .

i. Consider an object that is at rest in S′, and that passes through
the common (spatiotemporal) origin O of S and S′. Let A be
some event that is later than the origin, and on the worldline of
our object. Let B be the event that is at the spatial origin of S
and is simultaneous with A according to S.

ii. Reciprocity would require xA

tA
= −x

′
B

t′B
.

iii. Consider a rod at rest in S′, and whose ends pass through A
and B respectively . . . Our length contraction assumption tells

us that xA < −x′B (specifically, it tells us that xA = −x
′
B

γ ).

iv. Consider a clock at rest at the spatial origin of S′ . . . Our as-
sumption of no time dilation (with respect to S) tells us that
t′A = tA. But by construction, tA = tB , and by considering Ein-
stein synchrony in S′ we can see that t′B > t′A. Hence we have
t′B > tA.

v. This does not yet tell us whether or not Reciprocity holds: when
we try to evaluate that condition we have two inequalities ‘point-
ing in different directions’, and we do not know whether they
will ‘cancel’ one another. But we can see that it would require

1



a coincidence — a precise coordination between the (logically
independent) length contraction and time dilation factors — to
give us Reciprocity.

(c) To go further, we can proceed quantitatively, as follows

i. The argument that Einstein uses to derive his τ transformation
assumes only ‘Einstein synchrony’ and the light postulate. Thus
the same argument gives us the same result:

t′ =
φ(v)

γ

(
t− v

c2 − v2
(x− vt)

)
. (1)

ii. Imposing the condition ‘no time dilation’ forces φ(v) = γ. Hence
the above reduces to

t′ =

(
t− v

c2 − v2
(x− vt)

)
(2)

= γ2t− v

c2 − v2
x. (3)

iii. But x′ must be a function of x alone. To say that we have
longitudinal length contraction by a factor γ is to say that in
particular,

x′ = γ(x− vt). (4)

iv. Hence our velocity transformation law is given by

∆x′

∆t′
=

γ(∆x− v∆t)

γ2∆t− v
c2−v2 ∆x

(5)

=
γ(∆x

∆t − v)

γ2 − v
c2−v2

∆x
∆t

(6)

v. But this means that when ∆x
∆t = 0, we have

∆x′

∆t′
= − v

γ
, (7)

which is not equal to −v. This is a failure of Reciprocity.

2. Reciprocity and the Relativity Principle

(a) The above is also a scenario in which the Relativity Principle fails:
for example, while there is (by construction) no time dilation from
the point of view of S, a clock that is stationary with respect to S
‘runs slow’ according to S′.

(b) So is Reciprocity derivable from RP?

(c) No. Reciprocity is (apparently!) derivable from RP and Isotropy
together . . . (Brown pp.106-7)

(d) But (our moral): the condition is non-trivial. So one must either
have such a derivation of it, or explicitly assume it.
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2 Ignatowsky’s approach to deriving the Lorentz
transformations

Brown pp. 105–110

1. Ignatowski seeks to derive the Lorentz transformations using Einstein’s
assumptions minus the light postulate.

2. This claim should elicit healthy suspicion: which of the remaining assump-
tions is violated by Newtonian physics (complete with Galilean transfor-
mations)?

3. What you can get from Ignatowsky’s assumptions: the ‘Ignatowsky trans-
formations’,

t′ = (1−Kv2)−
1
2 (t−Kvx) (8)

x′ = (1−Kv2)−
1
2 (x− vt) (9)

y′ = y (10)

z′ = z, (11)

where K is an unknown constant. (It follows from these transformations

that K−
1
2 is an invariant speed.)

4. Putting K = 1
c2 reduces these to the Lorentz transformations. But this

value for K cannot be obtained from Ignatowsky’s assumptions: it must
be assumed separately.

5. Putting K = 0 reduces the Ignatowsky transformations to the Galilean
transformations. (So, as our healthy suspicion guessed, Ignatowsky’s as-
sumptions indeed did not suffice to rule out the Galilean case.)

3 The experimental approach to deriving the
Lorentz transformations

Brown pp. 26–31, 46–46 and 82–87

One might worry that RP and LP are themselves fairly theoretically buried
assumptions. Can we start from something closer to experiment, and therefore
more epistemologically secure?

1. A very general argument (assuming only Homogeneity and Isotropy) forces
the coordinate transformations between inertial frames (in ‘standard con-
figuration’) to take the form
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t′ =
1

D(1− αv)
(t− αx) (12)

x′ =
1

C‖
(x− vt) (13)

y′ =
1

C⊥
y (14)

z′ =
1

C⊥
z. (15)

2. Michelson-Morley (1887)

(a) The Michelson-Morley experiment is naturally interpreted as telling
us

i. that the speed of light within any single inertial frame is isotropic,
and

ii. that the longitudinal and length contraction factors are related
to one another by C⊥ = γC‖.

(b) This narrows down our transformations to

t′ = kγ
c

c′
(t− vx

c2
) (16)

x′ = kγ(x− vt) (17)

y′ = ky (18)

z′ = kz, (19)

where c is the speed of light in S, and c′ is the speed of light in S′.

3. The Kennedy-Thorndike experiment (1932)

(a) From MM we know that the light speed is isotropic within any one
inertial frame, but we do not know that the (isotropic) light speed in
S is the same as the (isotropic) light speed in S′ (i.e., we do not know
that the speed of light is invariant). Enter Kennedy-Thorndike.

(b) The KT experiment is a variant on the Michelson-Morley experiment.
Instead of rotating the interferometer within a given inertial frame,
Ives and Stilwell investigate whether the interference pattern changes
during the course of the year, i.e. from one inertial frame to another.

(c) Provided the interferometer arms are of unequal length, one expects a
positive result unless the light-speed is the same in all inertial frames.

(d) The result was null.

(e) Imposing the invariance of the light-speed narrows down our transfor-
mations further: putting c′ = c in the above gives us the ‘k-Lorentz’
transformations.

4



4. The Ives-Stilwell experiment (1938)

(a) As yet we have no experimental evidence for the undetermined func-
tion k (Einstein’s φ(v)). Enter Ives-Stilwell.

(b) The Ives-Stilwell experiment is based on the fact that this undeter-
mined factor affects time dilation.

(c) A particular case of this: from the k-Lorentz transformations one
can derive the relativistic Doppler effect, up to modifications that
depend on the factor k. Thus, by observing the apparent frequency
of light emitted by a fast-moving source, Ives and Stilwell can obtain
an experimental determination of k.

(d) The result gives k = 1, and hence the Lorentz transformations.
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Wednesday week 4: Spacetime structure from Aristotle
to Minkowski

Earman, J. World enough and space-time, MIT Press (1989), Chapter 2.

1 Key ideas of the ‘spacetime structure’ approach

1. Some coordinate systems are made better than others not by the way
matter behaves, but by the structure of space and time/spacetime [which
in turn also, via the dynamical laws, affects how matter behaves].

(a) Thus the inertial frames (e.g.) can be defined as those frames that
match spacetime’s ‘inertial structure’ in a preferred way (to be clari-
fied!), rather than e.g. those relative to which ‘all free particles’ have
constant velocity.

2. We distinguish between ‘meaningful’ and ‘meaningless’ questions (in a
loose sense of these terms): a question is ‘meaningful’ iff

(a) It can be posed in a coordinate-free way, by reference to the real
structures of space and time themselves; or (equivalently)

(b) Its answer is one that all ‘good’ coordinate systems (i.e. coordinate
systems that bear a common privileged relationship to the underlying
spacetime structure) agree on. (This is the idea of ‘objectivity as
invariance’.)

3. Many of the key assertions that have been made throughout history can
be rephrased (thoroughly anachronistically) as differing postulates about
what structure spacetime has.

2 Spacetime structure from Aristotle to Newton

1. ‘Machian spacetime’

(a) For any two points a, b, there is a fact about whether or not a and b
are simultaneous.

(b) For any two points that are simultaneous, there is a fact about their
spatial separation.

(c) There are no facts about

i. whether or not a given particle is at rest;

ii. whether or not a given particle is moving with constant velocity;
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iii. whether or not a given configuration of particles is rotating;

iv. the spatial distance between two events that are non-simultaneous;

v. the relative speed of two given particles.

2. Leibnizian spacetime

(a) All the structure of Machian spacetime is still present. In addition:

(b) There is a temporal metric: for any two points a, b, there is a fact
about the time interval between a and b.

3. Maxwellian spacetime

(a) All the structure of Leibnizian spacetime is still present. In addition:

(b) There is a standard of rotation: for any two points a, b on one times-
lice and points c, d on a second timeslice, and given a rod whose ends
at the first time coincide with a and b respectively, there is a fact of
the matter about whether one would have to rotate the rod in order
to make it the case that at the second time its ends coincided with c
and d.

4. Galilean/Neo-Newtonian spacetime

(a) All the structure of Leibnizian spacetime is still present. In addition:

(b) The spacetime has affine structure: i.e. for any line through space-
time, there is a fact about whether or not that line is ‘straight’.

5. Newtonian spacetime

(a) All the structure of Galilean spacetime is still present. In addition:

(b) There is a standard of absolute rest : i.e. for any two points, there is
a fact about whether or not they are in ‘the same (spatial) place as’
one another.

6. Aristotelian spacetime

(a) All the structure of Newtonian spacetime is still present. In addition:

(b) There is a preferred spatial location (the centre of the universe).

3 Minkowski spacetime

1. Forget the previous structures . . . There is a spatiotemporal metric: For
any two points a, b, there is a fact about their spatiotemporal distance from
one another.

2. The Minkowski spacetime interval:
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(a) Coordinate-dependent expression (in a Lorentz coordinate system):

d(a, b) =
√

(∆t(a, b)2 − ∆x(a, b)2 − ∆y(a, b)2 − ∆z(a, b)2), (1)

where ∆t(a, b) := t(a)− t(b), and mutatis mutandis for ∆x,∆y, ∆z.

(b) The Minkowski interval between two points A, B of spacetime may
be

i. ‘timelike’: d(a, b) real (‘hyperboloid of two sheets’)

ii. ‘spacelike’: d(a, b) pure imaginary (‘hyperboloid of one sheet’)

iii. ‘lightlike’: d(a, b) = 0 (double cone)

3. Q: What other facts are there?

(a) A: Just those that are definable in terms of the spacetime interval.

(b) How to get a handle on which facts are so definable: just those on
which all Lorentz coordinate systems agree. (E.g. We do have a
standard of straightness.)

4 Newton’s mistake: Newtonian vs neo-Newtonian
spacetime

1. We have neither a priori nor direct empirical access to the structure of the
spacetime we live in.

2. Our guide to which structure we have is in the dynamical laws: we should
postulate as much structure as is required to state the laws of our best
physical theories, and no more. (‘The covariance group of the dynamical
equations should equal the invariance group of the spacetime structure.’)

3. With hindsight, Newton violated this requirement: Newtonian physics
(with no dependence of forces, masses etc on absolute velocity . . . ) can
be formulated in (merely) neo-Newtonian spacetime. Occam’s Razor thus
advises against postulating, in addition, a standard of absolute rest.

4. A question to ponder: Why did Newton make this mistake (if indeed it is
a mistake)?
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Friday week 4: Generally covariant theory-formulations

J. Norton, ‘Philosophy of space and time’, sections 5.4 – 5.7. Available online
from http://www.pitt.edu/ jdnorton/papers/PST-2.pdf, or from Weblearn.

1 Motivation for the general-covariance approach

1. We usually formulate physical laws in such a way that the laws are true
only relative to a privileged class of coordinate systems (this is their ‘stan-
dard formulation’). For instance, Newton’s laws are valid only in inertial
frames.

2. On reflection, there is something odd about this:

(a) Suppose we have two (or more) free Newtonian particles, widely sep-
arated from one another in space.

(b) In order for there to exist any frame in which both particles are
moving with constant velocity, it seems that the ‘last’ particle must
somehow ‘know’ how the ‘first’ particle ‘decided’ to move, and behave
accordingly.

(c) But this seems to amount to a ‘cosmic conspiracy’.

3. How to remove the sense of conspiracy?

[S]omething real has to be conceived as the cause for a preference
of an inertial system over a noninertial system. (Einstein, 1924)

4. Realists about spacetime structure claim that the relevant pieces of space-
time structure supply this ‘something real’.

5. The point of formulating theories in a ‘generally covariant’ way is that
everything the theory in question is in fact ontologically committed to,
including spacetime structure, is then represented explicitly in the equa-
tions. In contrast, in standard formulation, spacetime structure is presup-
posed but not explicitly represented.

2 Standard vs generally covariant formulations:
a toy theory

1. Consider first a ‘toy theory’: we will just model a temporal continuum, T .

(a) T is a continuum of points. For any two points a, b, there is a fact
about the temporal displacement Dt(a, b) of b from a.
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(b) We model T via a coordinate system, t : T → R.

(c) In this special coordinate system, the temporal displacement of any
point from any other is given by the corresponding difference in tem-
poral coordinates: Dt(a, b) = t(b)− t(a).

(d) But there is some arbitrariness in our choice of coordinate system: If
t is an adequate coordinate system, so also is t′ := t+ a (a ∈ R).

(e) ‘Objectivity = invariance’: the physically real features are the fea-
tures that all allowed coordinate-dependent descriptions agree on.

2. A generally covariant formulation of this theory

(a) A generally covariant formulation (by definition) is one in which the
facts can be represented just as adequately in any coordinate system.

(b) How is this possible?

(c) To construct a generally covariant formulation of our toy theory:

i. Postulate a ‘scale factor’, w : T → R.

ii. If t is a standard coordinate system, then, in t, w = 1 everywhere.

iii. But in an arbitrary coordinate system, in general, w 6= 1.

A. To transform the ‘scale factor’ between coordinate systems t
and t′, we need to use the formula

w′ =
dt

dt′
w. (1)

iv. In any coordinate system, temporal displacements can be recov-
ered via the formula

Dt(a, b) =

∫ b

a

w · dt. (2)

3 Euclidean space in standard and generally co-
variant formulation

In Euclidean space, there is a fact about the distance between any two points.
The space is ‘homogeneous’ (every point is ‘like’ every other) and ‘isotropic’
(every direction is ‘like’ every other).

1. The standard formulation

(a) Distance facts are recovered from coordinates via

DE(a, b) =
√

(x(a)− x(b))2 + (y(a)− y(b))2 + (z(a)− z(b))2. (3)

(b) If (x, y, z) is a preferred coordinate system, so also is any x′ : S → R3

that is related to x by a transformation of the form

x′ = Rx + a. (4)
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2. The generally covariant formulation

(a) We postulate a matrix field, γµν : S → R9.

(b) Distances are recovered from this matrix field via the formula

l =

∫ √
γµνdxµdxν . (5)

(c) In the ‘Cartesian’ coordinate systems of our standard formulation,
this two-form becomes a diagonal matrix:

γµν =

 1 0 0
0 1 0
0 0 1

 . (6)

i. Exercise: What is γ′µν , if the ‘primed’ coordinates are spherical
polars?

(d) The general transformation law for γµν is γ′µν = γαβ
∂xα

∂x′µ
∂xβ

∂x′ν .

(e) With this transformation law for γ, all coordinate systems agree with
one another about the distance between a given pair of points.

4 Special-relativistic theories (in standard and
in generally covariant formulation)

4.1 Minkowski spacetime

1. The spacetime structure is exhausted by the Minkowski spacetime interval.

2. Standard formulation

(a) The spacetime interval between two points a, b is given, in terms of
preferred coordinates, by

d(a, b) =
√

(∆t(a, b)2 −∆x(a, b)2 −∆y(a, b)2 −∆z(a, b)2), (7)

where ∆t(a, b) := t(a)− t(b), and mutatis mutandis for ∆x,∆y, ∆z.

(b) If xµ ≡ (t, x, y, z) is a preferred coordinate system, so also is any
x′ : S → R4 that is related to x by a Lorentz transformation.

3. Generally covariant formulation

(a) The spacetime interval between spacetime points a and b is given by
an integral along any curve joining them:

d(a, b) =

∫ b

a

√
ηµνdxµdxν . (8)
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(b) η has the general transformation law

η′µν = ηαβ
∂xα

∂x′µ
∂xβ

∂x′ν
. (9)

(c) With this transformation law for η, the expression (8) gives the cor-
rect answer for the spacetime interval in an arbitrary coordinate sys-
tem.

4.2 Dynamical theories formulated in Minkowski space-
time (i.e. special-relativistic theories)

1. Content of the theory, in standard formulation: Dynamical laws must be
Lorentz covariant. (= ‘The special principle of relativity’, according to
Friedman)

(a) Example 1: The law of inertia, in standard formulation

ẍ = 0 (10)

(b) Example 2: Maxwell’s equations, in standard formulation1

∂Fµν
∂xν

= Jµ; (14)

∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0. (15)

1. Content of the theory, in generally covariant formulation: there is a sym-
metric 4 × 4 matrix field ηµν (properly: a tensor field of type (0, 2)) of
‘Lorentz signature’, and there are no other ‘spacetime structure’ fields.

(a) Example 1: The law of inertia, in generally covariant formulation

d2xµ

dλ2
+ Γµνσ

dxν

dλ

dxσ

dλ
= 0. (16)

1Explanatory note: This is the four-dimensional or ‘manifestly Lorentz covariant’ (stan-
dard) formulation of Maxwell’s equations. Fµν is a 4×4 antisymmetric matrix field [properly,
a two-form] encoding both E and B,

Fµν =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

 ; (11)

Jµ is the ‘charge-current density’ (ρ,−J). The Maxwell equation (14) (for example) is then
equivalent to the two possibly-more-familiar ‘3D’ equations

∇ ·E = ρ, (12)

∇×B−
∂E

∂t
= J. (13)
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(b) Example 2: Maxwell’s equations, in generally covariant formulation

Fµν;ν ≡ ∂Fµν
∂xν

− ΓλµνFλν − ΓλννFµλ (17)

= Jµ; (18)

F[µν;σ] ≡
1

3
(
∂Fµν
∂xσ

− ΓλµσFλν − ΓλνσFµλ (19)

+
∂Fνσ
∂xµ

− ΓλνµFλσ − ΓλσµFνλ (20)

+
∂Fσµ
∂xν

− ΓλσνFλµ − ΓλµνFσλ) (21)

= 0. (22)

(c) Here, in each case, Γ is the ‘Christoffel symbol’, which is a fixed
function of the matrix field ηµν ; it is a function that vanishes in
Lorentz coordinate systems, and not in other coordinate systems.2

5 A bit more on general covariance

1. Two ways of modelling a ‘billiard table with a dip’:

(a) ‘Standard formulation’:

i. The only physical quantity explicitly represented in the theory
is the ball trajectory, f : T → R2

ii. The equations of motion encode the instructions ‘accelerate near
the coordinate point x = y = 3’

iii. In this formulation, the theory is (obviously) not translation co-
variant

(b) ‘Generally covariant formulation’:

i. We represent the ball trajectory via a function f : T → R2 as
before, but also we represent the shape of the table via a ‘table
height function’ φ : R2 → R

ii. The equations of motion encode the instructions ‘accelerate near
the dip in φ’

iii. This theory is translation covariant

2. Basic idea of generally covariant formulations: If you explicitly model (by
means of additional fields etc.) the spacetime structure that your theory
presupposes, as well as the more directly ‘observable’ quantities, then you
can use whatever coordinate system you like — coordinates are just labels.

2For the aspiring cognoscenti:

Γρµν =
1

2

∑
ρ

ηρσ
(
∂ηνσ

∂xµ
+
∂ηµσ

∂xν
−
∂ηµν

∂xσ

)
(23)

— so clearly Γ vanishes in any coordinate system in which η is constant.
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3. The relationship between standard and GC formulations

(a) In the generally covariant formulation of SR, there exist coordinate
systems in which η takes the same simple form, diag(−1, 1, 1, 1), ev-
erywhere in spacetime.

(b) In those coordinate systems, the ‘Christoffel symbols’ Γσµν all vanish.

(c) If we promise to work only in coordinate systems that bear this spe-
cial relationship to η, we can replace expressions like Γ, in our (gen-
erally covariant) equations, with the numerical values that they take
in these special coordinate systems.

(d) The resulting equations will (of course) pick out the intended set of
models only relative to coordinate systems in which η and Γ do take
the special numerical values we have substituted for them.

i. This just is the standard formulation.

ii. It is now utterly unmysterious why the standard-formulation
equations are valid only in a certain ‘privileged’ subset of math-
ematically possible coordinate systems.

6 ‘What is special relativity?’

1. Special relativity as a principle theory

(a) ‘Special relativity consists of the Relativity Principle, the Light Pos-
tulate, whatever supplementary principles are needed to derive the
Lorentz transformations therefrom, and the said derivation of the
Lorentz transformations.’

2. Special relativity as a statement about transformations between privileged
coordinate systems

(a) ‘Special relativity is the statement that the laws of physics (in stan-
dard formulation) are Lorentz covariant.’

3. Special relativity as a statement about the structure of spacetime

(a) ‘Special relativity is the statement that spacetime structure (over
and above topological and differential structure) is exhausted by the
Minkowski metric.’

Q(?): Which of the above captures the essence of special relativity?
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Wednesday week 5: Relativity and conventionality of
simultaneity (Part I)

John Norton, ‘Philosophy of space and time’, section 5.3 (in Part I). Available
from Weblearn.

1 Introduction and background

1. Preamble 1: Simultaneity in pre-relativistic physics

(a) Before the advent of relativity theory, it was assumed without ques-
tion that there was a matter of fact about which events are simulta-
neous with which others.

(b) Theorising about the nature of the simultaneity relation often con-
nected simultaneity with causation.

i. Kant’s “positive and negative causal criteria”: two events are
simultaneous iff one of the following conditions holds:

A. Neither is a cause of the other (NCC); or,

B. Each is a cause of the other (PCC).

(c) In prerelativistic physics, we are supposed to allow causal influences
to travel with any speed (including infinite). Then, according to
Kant’s definitions, simultaneity is an equivalence relation on the class
of events.

(d) But special relativity’s ‘speed limit’ for causal signals changes all this.

2. Simultaneity in special relativity: initial moves

(a) In SR, Kant’s criteria would have us identify the ‘is simultaneous
with’ relation with the ‘is spacelike separated from’ relation.

(b) But the latter is not an equivalence relation.

(c) This is a problem if simultaneity is supposed to correspond to ‘same
time coordinate in the good coordinate systems’. [Q: Need it so
correspond?]

(d) The standard solution to this problem (cf. lecture 4) is Einstein’s
‘definition’ of simultaneity in terms of light signals.

(e) Note that Einstein-simultaneity is frame-relative: that is, two events
that are Einstein-simultaneous relative to one frame will in general
be non-Einstein-simultaneous relative to another.
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(f) Our question now is whether the Einstein synchrony criterion is itself
a convention, as opposed to giving the One True Way of synchronising
clocks in special relativity.

3. Preamble 2: Fact vs convention

(a) One of the most difficult tasks in the foundations of physics is dis-
tinguishing between those aspects of a given theory that should be
taken to represent (or to purport to represent) aspects of physical
reality, and when, on the other hand, a given apparent amendment
of theory amounts merely to a change of convention.

(b) A trivial example at each extreme

i. Example 1: Jones formulates classical mechanics using the letter
x to represent a particle’s spatial position. Smith uses r to rep-
resent spatial position, but otherwise her formulation of classical
mechanics is identical to Jones’s.

ii. Example 2: Davies has a theory that predicts that a cannonball
fired horizontally in a uniform gravitational field will describe a
parabolic path. Evans has a theory that predicts that such a
cannonball will traverse a straight-line path.

(c) Question: is simultaneity a matter of fact, or a matter of convention?

2 Alternatives to Einstein synchrony

1. Alternative synchrony schemata: Reichenbach (I)

(a) We proceed as in Einstein’s definition, but replace the factor of 1
2 in

Einstein’s equation (??) with a parameter ε:

tB(B2)− tA(A1) = ε (tA(A3)− tA(A1)) . (1)

ε is then permitted to take any value in the interval (0, 1).

(b) Example: setting ε = 1
4 has the consequence of ‘tilting’ the lines of

simultaneity between the worldlines OA and OB .

(c) Objection: the resulting assignment of temporal coordinates does not
define an inertial timescale.

i. Definition: A timescale (i.e., an assignment of time coordinates
to spacetime points) is said to be inertial iff relative to that
timescale, free particles have (or: would have!) constant velocity.

2. Alternative synchrony schemata: Reichenbach (II)

(a) The Reichenbach-1 synchrony scheme resulted in a non-inertial timescale
because we used the same non- 12 value of ε for every spatial direction.
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(b) The idea of the Reichenbach-2 scheme is to retain the feature ε 6= 1
2 ,

but nevertheless to end up with an intertial timescale, by allowing ε
to vary with spatial direction.

(c) The scheme:

i. For each frame F , choose a direction rFmax and a value εFmax ∈
(0, 1).

ii. For events that are a positive distance from OA in the spatial
direction rmax, apply the Reichenbach-1-(εmax) scheme as above.

iii. Extend the simultaneity surfaces to events in other spatial direc-
tions from OA by imposing the requirements that

A. the simultaneity surfaces be (hyper)planes, i.e. that the re-
sulting timescale be inertial;

B. rFmax is the direction of maximum ε for the frame F .

(d) The resulting simultaneity relation will be that given by Einstein
synchrony for *some* inertial frame, but not necessarily the frame F
whose notion of simultaneity we are defining.

(e) Question: Does this ‘Reichenbach-II’ schema synchronise distant clocks
correctly?

3. Interlude: Synchrony by slow clock transport

(a) Q1: How have we synchronised clocks for the past 2000+ years, in
practice?

i. Usually: by clock transport.

(b) Q2: But special relativity entails [doesn’t it?] that the rate at which
a clock ticks changes when we set the clock into motion. (Pan Am.)
So how have we got away with this practice, without running into
inconsistencies?

i. If clock transport is slow enough, we have approximate path-
independence.

ii. It can be shown (Eddington) that, in the limit v
c → 0, synchrony

by slow clock transport leads to the same (frame-relative) stan-
dard of simultaneity as does the Einstein-Poincare convention.

(c) Q3: But isn’t ‘slowness’ itself a synchrony-relative matter?

i. A: Yes. But we can define the ‘self-measured speed’ in the ab-
sence of any synchrony schema, and understand ‘slow’ in self-
measured terms.

3 Arguments for the conventionality thesis

1. Reichenbach’s argument for the conventionality of simultaneity
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(a) Reichenbach’s argument is based on the empiricist/positivist idea
that the only facts are observable facts. (Motivation: underdetermi-
nation.)

P1: Empirical equivalence. Versions of SR that differ only on the
standard of simultaneity are observationally equivalent.

P2: Criterion of conventionality. If two sets of statements are
observationally equivalent, then they agree on all matters of fact,
and the choice between them is a choice of convention.

Conclusion: Conventionality of simultaneity. The choice between
versions of SR that differ only on standard of simultaneity is a
choice of convention.

(b) Objections:

i. Empirical claim: P1 is false (? TBC)

ii. Anti-positivism: P2 is false (? See Phil of Science course!)

2. Grunbaum’s argument for conventionality of simultaneity

(a) Grunbaum rejects positivism, but thinks that conventionalism about
simultaneity is true nonetheless.

P1: Basic quantities. The basic spatiotemporal quantities are the
topology of the spacetime manifold, and the facts about which
pairs of spacetime points are causally connectible.

P2: Criterion of factuality. A spatiotemporal relation is factual
iff it is definable in terms of the basic quantities; otherwise it is
conventional.

P3: Indefinability of simultaneity. Simultaneity is (a spatiotem-
poral relation that is) not definable in terms of topology and
causal-connectibility facts.

Conclusion: Conventionality of simultaneity. Simultaneity is con-
ventional, not factual.

(b) Objections:

i. Question-begging: P1 is unmotivated (?)

ii. Does Grunbaum’s P2 capture what we (all!) mean by ‘conven-
tional’?

iii. Malament’s theorem: P3 is false (? TBC)
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Friday week 5: Relativity and conventionality of
simultaneity (part II)

1 Phenomenological counterarguments to the con-
ventionality thesis

1. Overview

(a) In response to Reichenbach and Grunbaum’s conventionality thesis,
it was sometimes claimed that simultaneity was empirically accessi-
ble (i.e. that convention-free phenomena together with the laws of
physics could establish the holding of simultaneity relations).

(b) If true, this would show Reichenbach’s P1 to be false, and (presum-
ably) would also show that Grunbaum’s argument is unsound.

(c) Examples:

i. Argument from clock transport

ii. Arguments from the measurability of the one-way speed of light
(Rømer 1676, Bradley 1726, Fizeau 1849)

iii. Argument from Maxwell’s equations

iv. Argument from the conservation of momentum

(d) None of these anti-conventionalist arguments is sound. But it is very
instructive to see where each of them fails.

2. Argument from clock transport

(a) Claim: We can discover facts about simultaneity by transporting
clocks. What we discover is that the Einstein-Poincare means for
establishing synchrony is correct.

(b) Reply: Synchrony by clock transport is just another synchrony schema
(one that happens to coincide with Einstein-Poincare synchrony in
the limit of slow clock transport).

3. Measurements of the speed of light (I): The eclipses of Io (Rømer 1676)

(a) Astronomical tables suggested that Io, one of Jupiter’s moons, should
move into the shadow of Jupiter on November 9, 1676, at 45 seconds
after 5:32am.

i. These tables were based on numerous observations of previous
eclipses, from which the average orbit time etc of Io had been
calculated.
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(b) Rømer noticed that certain irregularities in the recorded intervals
eclipse times — irregularities that other astronomers had been treat-
ing as random — were actually systematic, and that they could be
explained by the hypothesis that light travelled with a finite speed.

(c) Rømer correctly predicted that the November 9 eclipse would occur
exactly 10 minutes later than the accepted prediction.

(d) One can calculate the magnitude of the one-way speed of light from
the amount of time by which eclipses are delayed/advanced. (Result:
∼ 2.12 × 108ms−1(1676);∼ 3 × 108ms−1(1809).)

4. Measurements of the speed of light (II): Stellar aberration (Bradley 1729)

(a) To view a star through a telescope, one cannot quite point the tele-
scope straight at the star: one needs to aim the telescope slightly
‘off’ the line along which light is arriving, due to the fact that the
Earth has (in general) a non-zero velocity in the plane perpendicular
to the arriving light ray, and the fact that the speed of light is finite.
(It’s like catching rain in a straw.)

(b) This effect is small, but noticeable. By measuring the ‘angle of aber-
ration’ — the angle by which the telescope must be aimed ‘off’ in
order to ‘catch’ light from a given star — one can, again, calculate
the speed of light. (Result: 3.01 × 108ms−1.)

5. Measurements of the speed of light (III): Fizeau’s cog-wheel apparatus
(Fizeau 1849)

(a) Fizeau’s apparatus: a cog-wheel and mirror

(b) By determining which wheel-speeds allowed a light pulse to pass
through the gaps between cogs on both outward and return jour-
neys, and which did not, Fizeau was able to calculate the speed of
light. (Result: ∼ 3.15 × 108ms−1.)

6. Light-speed measurements and synchrony

(a) The Fizeau measurements are of the average round-trip speed of light.
But the Rømer and Bradley measurements are of the one-way light
speed.

7. The (anti-conventionalist) argument from the measurability of the speed
of light:

P1. The one-way speed of light has been measured experimentally, and
found to be isotropic.

P2. The one-way speed of light is isotropic according to the Einstein-
Poincare synchrony convention, but not according to any rival con-
vention.
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C. Synchrony schemata that fail to agree with the Einstein-Poincare scheme
are inconsistent with experimental results.

Is this argument valid? Is it sound?

8. Synchrony presuppositions in the Rømer measurements

(a) To calculate the one-way speed of light from the Rømer measure-
ments: Let ∆T be the time interval between two particular successive
eclipses (as recorded by clocks on Earth) that we would expect on the
assumption that light travelled at infinite speed. Let the measured
interval between those eclipses be ∆T + δt. Let r be the distance be-
tween the positions of the Earth when the two eclipses are observed
(in, say, a frame in which the Sun is stationary; for present purposes
we can regard this frame as inertial). Then, the one-way light speed
is given by r

δt .

(b) But δt is the time lapse recorded by a clock that is moving relative
to the frame we are using (viz., a frame in which the two observation
events are a distance r apart). Thus, to presuppose that it records
the ‘true’ time lapse between these events (relative to the frame in
question) is to presuppose synchrony by slow clock transport.

9. Argument from Maxwell’s equations

(a) Anti-conventionalist argument:

P1 Maxwell’s equations form part of a well-confirmed physical the-
ory.

P2 Maxwell’s equations entail that the one-way speed of light is
isotropic (specifically, that the speed is c in all directions).

C1 Well-confirmed physical theory entails that the one-way speed of
light is isotropic.

P3 Only the Einstein synchrony scheme agrees with the isotropy of
the one-way speed of light.

C2 Only the Einstein synchrony scheme is consistent with well-
confirmed physical theory.

(b) Reply: Maxwell’s equations entail the isotropy of the one-way speed
of light in Lorentz charts (and also the anisotropy of the one-way
speed of light in ‘Reichenbach-2’ charts).

10. Argument from the conservation of momentum

P1. It is well-confirmed (both theoretically and experimentally) that mo-
mentum is conserved in all interactions.

P2. Momentum is not conserved according to ‘Reichenbach-2’ synchrony.

C. Reichenbach-2 synchrony is inconsistent with theory and experiment.
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Reply: What is well-confirmed (theoretically and experimentally) is that
mv is conserved relative to Lorentz charts . . .

11. General counterargument: from the possibility of a generally covariant
formulation

(a) All phenomenological arguments against nonstandard synchrony must
fail.

P1 Any special-relativistic theory can be given a generally
covariant form.

P2 A generally covariant theory gives correct empirical predictions
relative to one coordinate system iff it gives correct predictions
relative to all coordinate systems.

C1 Any phenomena that can be correctly predicted by a special-
relativistic theory can be correctly predicted using any coordi-
nate system.

P3 Non-standard synchrony conventions are just non-standard co-
ordinate systems.

C2 Any phenomena that can be correctly predicted by a special-
relativistic theory can be correctly predicted by a descriptive
scheme that includes a non-standard synchrony convention.

2 Malament’s theorem

1. A preliminary consensus

(a) Circa 1977, the orthodox view was that Reichenbach and Grunbaum
were correct: that simultaneity in special relativity is conventional.

2. Malament’s theorem (1977)

(a) Malament proved that the Einstein simultaneity relation for a given
inertial frame F is the only nontrivial equivalence relation that is
definable from (a) the lightcone structure of Minkowski spacetime
and (b) the frame F.

(b) This resulted in ‘one of the most dramatic turns in the debate over
the conventionality of simultaneity’ (Norton).

3. Sketch of Malament’s result

(a) ‘Causal automorphism’: A map from Minkowski spacetime onto itself
that preserves lightcone structure.

(b) ‘O-causal automorphism’: A map from Minkowski spacetime onto
itself that both preserves lightcone structure, and takes all points on
the worldline O to (possibly, but not necessarily, distinct) points on
O.
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(c) Claim (about definability): a relation [on Minkowski spacetime] is
‘definable in terms of causal structure and the worldline O’ iff it is
invariant under all O-causal automorphisms.

(d) Claim: The only relation on Minkowski spacetime that

i. is invariant under all O-causal automorphisms,

ii. is ‘non-trivial’,

iii. is not the universal relation, and

iv. relates some point on O to some point not on O

is the relation of Einstein-Poincare synchrony in the rest frame of O.

i. This should not be particularly surprising. A Reichenbach-2 syn-
chrony relation, for instance, required the specification of a direc-
tion rmax, and (as a result) clearly is not invariant under spatial
rotations leaving O fixed (and such rotations are of course O-
causal automorphisms).

4. The (ir?)relevance of Malament’s theorem to the debate

(a) As we saw above, some such definability claim was an essential premise
for Grunbaum’s argument for the conventionality thesis. So Mala-
ment may have shown that Grunbaum’s argument is unsound on
technical grounds. But

i. It’s not obvious that Malament’s result establishes even this.

A. For Grunbaum, the issue was supposed to be ‘definability in
terms of topological and causal structure’. Malament dis-
cusses instead ‘definability in terms of causal structure and
worldline O.’ Insofar as this is permissible, [why] isn’t ‘de-
finability in terms of worldline O and spatial direction rFmax’
equally permissible?

ii. Grunbaum’s argument isn’t the only pro-conventionality argu-
ment we have.

iii. Even showing that all arguments we have for conventionality
are unsound does not/would not show that simultaneity is not
conventional.

iv. Grunbaum’s notion of conventionality isn’t the only notion in
town, and it’s not obvious that it’s the most interesting notion
of conventionality.
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Wednesday week 6: Length contraction and time
dilation

1 Length contraction

1. Length contraction: the basics

(a) Length contraction from the Lorentz transformations

i. (Ideal) rods aligned with the x-axis measure the Lorentz x coor-
dinate in their own rest frame.

ii. The Lorentz transformation for the x coordinate is

x′ = γ (x− vt) . (1)

iii. Since γ > 1, this means that at t = 0 we have x′ > x.

iv. So, for a rod whose left-hand end passes through the common
origin of S and S′ at t = 0, we have l′ > l (where l′ is the length
of the rod relative to the ‘moving’ system S′, and l is the length
of the same rod relative to the ‘stationary’ system S).

v. But l′ must be the rest length of the rod.

vi. So, the length l (relative to S) of a rod that is moving (relative
to S) is less than that rod’s rest length — i.e., a moving rod
contracts.

(b) Clarification: doesn’t the same argument work equally well (or badly!)
in reverse, to show that a moving rod expands?

i. The reverse argument: the inverse Lorentz transformation is

x = γ(x′ + vt′). (2)

ii. From this we see that at t′ = 0 we have x = γx′ . . .

iii. . . . hence x > x′ . . .

iv. . . . hence the length of the rod relative to S is greater than its
length relative to S′, i.e. is greater than its rest length???

(c) Resolution of this puzzle: the difference in x coordinate between the
intersections of the worldlines of the left-hand and right-hand ends
of the rod and the t′ = 0 hyperplane (as opposed to: the t = 0
hyperplane) is not ‘the length of the rod relative to S’: to find that
length, we must consider a simultaneity hyperplane of S.
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(d) Side-remark: note that the length of a given object in a given frame
depends on the synchrony scheme for distant clocks in that frame —
if (and only if) the object is moving relative to the frame in question.
(Hence conventionalists about simultaneity should, for consistency,
also be conventionalists about lengths of moving objects.)

2. ‘Mere perspectivalism’ about length contraction

(a) Length contraction seems to arise because the length of a rod is
frame-relative.

(b) So it seems (?) that one ‘gets a rod to contract’ merely by chang-
ing one’s own frame of reference; but, in doing so, one clearly does
nothing at all to the rod itself.

(c) This line of thought seems (?) to suggest that length contraction is
not a real physical effect, but a ‘merely perspectival’ one.

3. Bell’s ‘three-spaceships’ puzzle

(a) Three small spaceships, A, B and C, drift freely in a region of space
remote from other matter, without rotation and relative motion, with
B and C equidistant from A. On reception of a signal from A the mo-
tors of B and C are ignited and they accelerate gently. Let the ships
B and C be identical, and have identical acceleration programmes.
Then (as reckoned by the observer in A) they will have at every mo-
ment the same velocity, and so remain displaced one from the other
by a fixed distance. Suppose that a fragile thread is tied initially
between projections from B and C[, and that] it is just long enough
to span the required distance initially. (Bell, 1976)

(b) Q: Will the string break?

4. Comoving frames analyses of length-contraction phenomena

(a) Basic idea: Use the postulate that the object takes on its rest length
in its own instantaneous rest frame, together with the Lorentz trans-
formations relating the object’s instantaneous rest frame to the ‘lab
frame’ in question, to deduce the description of the phenomenon in
question in terms of the ‘lab frame’.

(b) ‘Comoving frames’ analysis of the rockets problem

i. Let l be the original length of the string, in the original rest
frame of the rockets.

ii. After being boosted, the string must have natural length l in its
new rest frame.

iii. So what we have to work out is: whether the separation of the
rockets, in the rockets’ rest frame after being boosted, is smaller
than, greater than or equal to l.
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iv. From the Lorentz transformations, we can deduce that it is greater
than l.

v. It follows that the string will be stretched (and presumably will
eventually break).

5. Homework exercise 1: What is the description of the three-rocket scenario
from the point of view of the eventual rest frame of spaceships B and C?

6. Homework exercise 2: Car in a garage

(a) You have a fancy new car. It is 5m long. Unfortunately, your garage
is only 4m long. It seems you have a parking problem. But then,
having learnt special relativity, you have a brainwave: if you drive
the car into the garage fast enough, you’ve been taught, the car will
contract lengthwise. If you then slam on the brakes really hard and
have a friend close the garage door really fast, you’ll be able to shut
the door with the car inside the garage.

(b) Q: Is this (in principle) possible?

2 Time dilation

1. Time dilation: the basics

(a) Time dilation from the Lorentz transformations

i. (Ideal) clocks measure the Lorentz time coordinate in their own
rest frame.

ii. The Lorentz transformation for the time coordinate is

t′ = γ
(
t− vx

c2

)
(3)

≡ 1

γ

(
t− v

c2 − v2
(x− vt)

)
. (4)

iii. Hence, on the worldline of a clock that passes through the origin
at t = 0 and moves in the direction of increasing x with speed v,
we have (x = vt, and hence) t′ = t

γ .

iv. This means that at any given time (as judged by the ‘stationary’
frame), the reading on the moving clock is less than the read-
ing on a stationary clock with which it was synchronised at the
common origin at t = 0. In this sense ‘a moving clock runs slow’.

(b) Clarification: doesn’t the same argument work equally well in reverse,
to show that a moving clock speeds up?

i. If we consider the inverse transformation and set x′ = −vt′, then
we get t = t′

γ . . .
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ii. Response: Yes, but this only shows that the moving clock reg-
isters (at a given point on its worldline) a higher reading than
does the stationary clock at a simultaneous-according-to-S′ point
on the worldline of the stationary clock. This does not amount
to the conclusion that a moving clock speeds up according to the
(stationary) frame in which it is moving. To make that mistake
is again to neglect the relativity of simultaneity.

(c) Side-remark: whether or not a clock moving in a given direction runs
slow relative to any given frame depends on how distant clocks are
synchronised in that frame. (Hence conventionalists about simul-
taneity should be conventionalists about time dilation — up to a
point!)

2. The twins ‘paradox’

(a) The (would-be) paradox:

i. The stay-at-home twin reasons that, since the rocket twin is mov-
ing throughout, the rocket twin will age more slowly, and be
younger at their reunion.

ii. But the rocket twin can just as well reason likewise, and predict
that the stay-at-home twin will be younger at the reunion.

iii. It cannot be that both twins are correct!

3. Defusing the ‘paradox’

(a) An explanation based on acceleration?

i. Claim: The rocket twin cannot use this reasoning, because her
trajectory is not inertial throughout.

ii. This is not a relevant disanalogy: acceleration is not required for
the ‘twins effect’.

A. An acceleration-free version of the ‘twins paradox’

(b) The claim that GR is required in order to dissolve the paradox

i. Claim: This is indeed a paradox within special relativity. It
demonstrates the need for general relativity: special relativity
cannot reason correctly about non-inertial frames.

ii. This is badly confused.

A. Special relativity can underpin correct reasoning using any
coordinate system (since it has a generally covariant formu-
lation).

B. As above, non-inertial frames are anyway not required to set
up the ‘paradox’.

(c) Correcting the rocket twin’s reasoning
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• The rocket-twin’s reasoning neglects the relativity of simultane-
ity: specifically, the fact that his pre-turn and post-turn frames
do not agree regarding which point on the stay-at-home twin’s
worldline is ‘simultaneous with’ the rocket twin’s turn point.

• As a result of this neglect, there is a section of the stay-at-home
twin’s worldline that the rocket twin fails to ‘count’.

(d) The spacetime-structure explanation

i. Dead simple: the two twins traverse curves of different proper
time. The stay-at-home’s worldline is longer (in the Minkowski
metric!) than the rocket twin’s worldline.

A. Each’s ageing process is a clock surveying proper time along
its own worldline.

(e) A spatial analogy: The ‘wheel paradox’

i. Suppose you and I live in a Euclidean space. We start at a
common point of space, and we each walk in a straight line away
from this point. Each of us uses a coordinate system such that
we are walking in our own positive z-direction.

A. I report that you are travelling further for each unit gain in
z-distance than I am. You report that I am travelling further
for each unit gain in z-distance than you are.

ii. After some distance, I turn through 90 degrees and walk until
my path once again intersects yours. As I turn, I change the
coordinate system I am using, so that it will still be the case
after my turn that I am walking in my own positive z-direction.

iii. When our paths intersect for a second time, I will have walked
further than you. This can be verified by e.g. having had us each
roll a wheel of the same diameter along our path, and count the
number of times the wheel turns.

A. You could explain this fact by noting that throughout your
journey, I was walking further per unit gain in z-distance
than you were.

B. But (the ‘wheel paradox’) couldn’t I say the same about you?

4. Advanced homework exercise: the ‘twin paradox’ on a cylinder

(a) Suppose that space is closed (and has one dimension), so that the
topology of spacetime is a cylinder.

(b) Then, we can set up a ‘twin paradox’ in which each twin stays at rest
in a single inertial frame throughout.

(c) How can the ‘paradox’ be defused in this case??
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Friday week 6: Bell’s ‘Lorentzian pedagogy’

Basic idea of the Lorentzian pedagogy

1. Bell’s central point: while one can explain phenomena such as length
contraction and time dilation via comoving-frames accounts (i.e. always
reasoning fist in terms of the rest frame of the object of interest and using
the Lorentz transformations to transform back to the ‘lab’ frame), it is
not necessary to switch between frames in order to see what will happen
in such puzzle cases in special relativity. A correct and comprehensible
story can always be told from within a single frame.

2. Also: understanding is increased by seeing how.

3. The more general point is (perhaps) that while ‘principle’ theories are
good for (some) predictions, there is always insight to be gained by also
understanding the underlying ‘constructive’ story:

If you are, for example, quite convinced of the second law of thermo-
dynamics . . . , there are many things that you can get directly from
the second law which are very difficult to get directly from a detailed
study of the kinetic theory of gases, but you have no excuse for not
looking at the kinetic theory of gases to see how the increase of en-
tropy actually comes about. In the same way, although Einstein’s
theory of special relativity would lead you to expect the FitzGerald
contraction, you are not excused from seeing how the detailed dy-
namics of the system also leads to the FitzGerald contraction. (Bell
1992)

1 Step 1: Electric and magnetic fields generated
by a moving charge

1. We know, from electromagnetism, the electric and magnetic fields that
are generated by a particle of charge Z moving with speed V along the
positive z-axis:

Ez = Zez′
(
x2 + y2 + z′2

)− 3
2

Ex = Zex
(
x2 + y2 + z′2

)− 3
2

(
1− V 2

c2

)− 1
2

Ey = Zey
(
x2 + y2 + z′2

)− 3
2

(
1− V 2

c2

)− 1
2

Bx = −
(
V
c

)
Ey

By = +
(
V
c

)
Ex

Bz = 0,

(1)
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where z′ := (z − zN (t))
(

1− V 2

c2

)− 1
2

.

2. In the special case V = 0, these fields are (of course) spherically symmet-
rical. But for V 6= 0, they are not.

3. We should therefore expect, on theoretical grounds, that matter in rapid
motion will change shape.

2 Step 2: An electron orbiting the moving charge

Consider now an electron orbiting a moving nucleus.

1. The nucleus (since it has a net positive charge) generates fields as described
above.

2. The equation of motion for an electron moving in an external electromag-
netic field is given by

dp

dt
= −e

(
E +

ṙe
c
×B

)
, (2)

where ṙe = p√
m2+p2

c2

.

3. It follows that (if the nucleus is accelerated gradually enough not to e.g.
tear apart the atom) the initially circular orbit deforms into an ellipse.

4. Also: If the period of the orbit when the nucleus is stationary is T , it
follows from the above equations of motion that the period of orbit around

the moving nucleus is T
(

1− V 2

c2

)− 1
2

.

3 Step 3: A change of variables

1. Consider the following change of variables:

z′ :=
(

1− V (t)2

c2

)− 1
2

(z − zN (t)) ,

x′ := x,
y′ := y,

t′ :=
∫ t

0
dτ
√

1− V (t)2

c2 − 1
c2V (t)z′.

(3)

2. In terms of these variables, the orbit is ‘circular’ with ‘period T ’, and has
‘constant angular velocity’. Note that

The description of the orbit of the moving atom in terms of the
primed variables is identical with the description of the orbit of
the stationary atom in terms of the original variables . . .
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(a) And note that we can read off length contraction and time dilation
from the truth of this statement, together with the form of our change
of variables (x, y, z, t) 7→ (x′, y′, z′, t′).

3. Further: consider the following change of variables for the fields:

E′x =

(
Ex −

V

c
By

)(
1− V 2

c2

)− 1
2

(4)

E′y =

(
Ey +

V

c
Bx

)(
1− V 2

c2

)− 1
2

(5)

E′z = Ez (6)

B′x =

(
Bx +

V

c
Ey

)(
1− V 2

c2

)− 1
2

(7)

B′y =

(
By −

V

c
Ex

)(
1− V 2

c2

)− 1
2

(8)

B′z = Bz. (9)

4. Then, we can further add:

. . . [And T]he expression of the field of the uniformly moving
charge in terms of the primed variables is identical with the ex-
pression of the field of the stationary charge in terms of the
original variables. (Bell, 1976; emphasis in original)

(a) Example: Compare e.g. Ey for the stationary atom with E′y for the
moving atom.

4 Step 4: Moving observers

1. Above, we introduced the ‘primed’ coordinates x′, y′, z′, t′ merely for math-
ematical convenience, without any suggestion that e.g. t′ was a ‘time’
coordinate.

2. However, it is easy to see that these primed coordinates ‘are precisely those
which would naturally be adopted by an observer moving with constant
velocity who imagines herself to be at rest ’ (Bell, ibid., p.75; emphasis in
original).

3. If we regard our original (‘stationary’) observer as being ‘really’ at rest, we
will regard the moving observer as subject to certain systematic illusions:

(a) Her measuring rods are contracted in the z direction. But she doesn’t
realise this, because e.g. the retinas of her eyes are contracted in the
z direction also.
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(b) Her clocks run slow. But she doesn’t realise this, because e.g. her
thinking runs slow too.

(c) Her moving charge generates a nonzero magnetic field. But she
doesn’t notice this field, because all test-particle accelerations are
equally consistent with the alternative hypothesis that (she is sta-
tionary and) the electric and magnetic fields are those given by the
‘primed’ expressions . . .

5 Step 5: Generalising the lesson: Lorentz co-
variance

1. Above, we proceeded by studying the specific dynamical laws (viz., Maxwell’s
equations and the relativistic Lorentz force law) for the phenomenon we
were interested in.

2. But (almost) the only feature of these laws that we actually needed, in
order to see that moving objects behave the same way in terms of the
‘primed’ coordinates (3) as stationary objects behave in terms of the ‘un-
primed’ coordinates, was their Lorentz covariance.

3. ‘Law L is Lorentz covariant’: this means (cf. our discussion of Galilean
covariance, in lecture 2)

(a) Form-invariance of equations version: If we replace both x, y, z, t and
the other dynamical quantities (e.g. E,B,p) in law L with their
‘primed’ counterparts, and then we eliminate the primes using the
expressions for the Lorentz transformations that relate primed to
unprimed quantities, we recover the same laws we started with.

(b) Space-of-solutions version: For any solution of the dynamical equa-
tions that is expressed in terms of the original coordinates x, y, z, t,
one can construct a new solution by putting primes on all the vari-
ables and then eliminating these primes by means of the expressions
relating primed to unprimed quantities (cf. the italicized quotes in
Step 3). I.e.

‘Given any state of motion of the system, there is a cor-
responding ‘primed’ state which is in overall motion with
respect to the original[. And it follows from the form of the
Lorentz transformations that this primed counterpart] shows
the Fitzgerald contraction, and the Larmor dilation.’ (Bell,
ibid., p.73)

6 The upshot

What follows from all this?
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1. Not that there is a standard of absolute rest. (The ‘Lorentzian philoso-
phy’)

2. Not that one cannot predict, or that one cannot explain, length contrac-
tion and time dilation by first considering the description of each object
in its own rest frame and using the Lorentz transformations to work out
deritatively how that object will appear to observers in other frames.

3. Rather, that (as advertised at the outset) it is always possible to tell
a correct and comprehensible story from within a single frame. (The
‘Lorentzian pedagogy’)

5



CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Wednesday week 7: The arrow of explanation between
dynamics and geometry

Harvey Brown, ‘Physical Relativity’, esp. chapter 8.
Brad Skow’s review of Brown’s book, online at http://ndpr.nd.edu/review.cfm?id=6603.

1 Introduction: What’s the issue?

1. We have seen, so far, two distinct styles of ‘explanation’ of length contrac-
tion and time dilation:

(a) In terms of spacetime structure

i. The spacetime geometry is as given by the Minkowski metric.
This metric induces separate spatial and temporal metrics rel-
ative to each frame. Rods/clocks at rest in a given frame just
are devices that survey (resp.) the spatial/temporal metrics in
their own rest frame. It follows from the Lorentz transforma-
tions (which themselves follow from the Minkowski geometry)
that such rods and clocks must (resp.) contract/slow down when
set in motion.

(b) In terms of dynamics

i. Lorentz-pedagogically: on the basis of the details of a particular
Lorentz-covariant dynamics (e.g. Bell 1967)

ii. Truncated-Lorentz-pedagogically: on the basis of Lorentz covari-
ance of the dynamical laws alone (again, see Bell 1967)

A. Explanation in general: adding irrelevant details doesn’t im-
prove an explanation

iii. Two notes of caution on the truncated Lorentzian pedagogy: As
Bell noted (but did not particularly emphasise), Lorentz covari-
ance alone does not entail that (hence, does not explain why)
either

A. A given system in a given state does go into the correspond-
ing ‘primed’ state when the system is boosted. (‘The boost-
ability of rods and clocks’.)

B. There are any systems that render ‘length/duration in frame
F’ empirically accessible in the first place. (The existence of
rods and clocks.)

iv. But it seems innocuous to add these two conditions as auxiliary
assumptions.

(c) In terms of both
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i. We explain length contraction and time dilation in terms of
Lorentz covariance (as in the truncated Lorentzian pedaogy),
but we then to on to explain Lorentz covariance itself by appeal
to Minkowski geometry.

ii. This latter position probably represents the ‘orthodox’ (‘expla-
nationist’) perspective on explanation in special relativity.

2. Disputed questions

(a) Does postulating Minkowski geometry for spacetime explain

i. the Lorentz covariance of the dynamical laws?

ii. Phenomena such as length contraction and time dilation?

(b) Insofar as special relativity is empirically adequate, should this lead
us to believe in Minkowski geometry as an independent real feature
of the world?

(c) Two views of Minkowski geometry: Insofar as we believe Special
Relativity . . .

i. ‘Explanationism’: . . . we should believe in an independent Minkowski
geometry, and (perhaps: precisely because) postulating this ge-
ometry enables us to explain various things that we can’t other-
wise explain.

ii. ‘Codificationism’: . . . we should believe that the geometry of
spacetime is Minkowskian, but this latter statement is a mere
codification of certain facts about the [standard-formulation] dy-
namical laws (namely, the brute fact that they are all Lorentz
covariant). As such, it cannot explain those facts.

A. ‘Opium sends people to sleep because it has a dormitive
virtue’. This is not an explanation.

2 Two preambles from the philosophy of science

1. Preamble 1: (Scientific) antirealism

(a) Scientific realism (roughly): The empirical success of a scientific the-
ory gives us a good reason to believe in the entities postulated by
that theory/to believe that the theory is (approximately) true.

(b) Scientific antirealism (roughly): The empirical success of a scientific
theory gives us a good reason to believe that that theory will continue
to be empirically successful, but not that what it says about goings-
on beyond the observable level is true, or approximately true, or that
(anything like) the unobservable entities postulated by the theory
exist.

i. Examples: antirealism about

A. electrons,
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B. heliocentric astronomy (Osiander’s preface);

C. unobservable goings-on in quantum mechanics.

(c) Antirealism across the board vs antirealism about particular entities

i. An antirealist-about-(say)-electrons would just say that electrons
don’t exist (or that we have no good reason to believe that they
do exist). A blanket (scientific) antirealist would say that we
have no good reason to believe in the existence of any of science’s
‘theoretical’/‘unobservable’ entities.

ii. Our ‘codificationist’ is an antirealist about the Minkowski metric,
but is not a blanket scientific antirealist.

2. Preamble 2: Inference to the best explanation

(a) Nobody thinks that scientific theories are deductively proved from
experimental data.

(b) Nobody thinks that scientific theories proper (as opposed to: phe-
nomenological models) are obtained by simple inductive generalisa-
tion from experimental data.

(c) The methodology is better described as hypothetico-deductive: one
postulates or hypothesises a theory, deduces predictions from that
theory (what one would expect to see in experiments if that theory
were true), and tests those predictions against experiment. If the
predictions do match experiment, this is, in some sense, a strike in
favour of the theory. (Here agreement ends as to what exactly is
going on.)

(d) Scientific realists are often fans of inference to the best explanation
(IBE):

i. Advocates of IBE think that inferences of the form

P1. We have obtained data D.

P2. Theory T is the best available explanation of data D.

C. Theory T is [approximately] true,

while (of course) not deductively valid, are reasonable (i.e. that
it is reasonable to assign high probability to their conclusions on
the basis of their premises).

ii. The link between our disputed questions: if postulating Minkowski
geometry facilitates the best available explanation of Lorentz co-
variance, then IBE recommends believing that postulate.

3 Claim 1: ‘Minkowski geometry entails Lorentz
covariance’

1. More carefully: There are two claims here:
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(a) Claim 1a: The claim that there is a Minkowski metric (explicit repre-
sentation of which has been suppressed in our ‘standard formulation’)
entails that standard-formulation laws will in general not be covari-
ant under non-Lorentz transformations.

(b) Claim 1b: The claim that there is no suppressed structure other than
the Minkowski metric entails that standard-formulation laws will be
covariant under Lorentz transformations.

2. Spelling out the argument for, e.g., Claim 1b:

(a) Suppose that we start with a theory in generally covariant form, and
that one of the fields is the Minkowski metric field.

(b) Suppose that we move to a ‘standard formulation’ by replacing the
components of the Minkowski field, but nothing else, with their nu-
merical values in Lorentz coordinate systems.

(c) It follows immediately that the standard-formulation laws will be
Lorentz covariant (since the values of (all) the suppressed fields are
the same in all Lorentz charts).

3. Example:

(a) Some of Maxwell’s equations are written in generally covariant form
as

∂Fµν

∂xν
− Γλ

µνFλν − Γλ
ννFµλ = ηµνJ

ν . (1)

(b) In Lorentz coordinate systems (and not in other coordinate systems),
all the components of Γ are zero, and ηµν is everywhere just the
diagonal matrix diag(−1, 1, 1, 1).

(c) Hence, in a (NB: in any) Lorentz coordinate system, and not in
any other coordinate systems, our equations reduce to the ‘familiar’
standard-formulation Maxwell equations

∂Fµν

∂xν
= (−J0,J). (2)

4 Entailment vs explanation

1. Suppose all parties agree [as they should] that Claim 1 is true. We can
still ask: Does Minkowski geometry explain Lorentz covariance?

2. To answer this further question, we need to get clearer on the issue of what
exactly an explanation is.

3. The ‘deductive-nomological’ (DN) model: Theory T (the ‘explanans’) ex-
plains data D (the ‘explanandum’) iff there is a deductively valid argument
with D as conclusion, and with the following features:
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(a) The argument’s premises include T .

(b) The argument would no longer be valid if T were deleted from the
list of premises.

(c) The argument’s premises are all true.

4. Example:

(a) Q: Why did the string break?

(b) A: The string had a tensile strength of 10N. A 20N force was applied
to it. Any time a force exceeding a string’s tensile strength is applied
to that string, the string will break. [Therefore, the string broke.]

5. According to the D-N model, our derivation of Lorentz covariance from
Minkowski geometry [specifically: from the statement that the Minkowski
geometry is the only background structure] is an explanation.

6. The problem is that the D-N account of explanation is quite generally too
permissive: it is generally recognised that not every ‘D-N explanation’ is
really an explanation.

(a) We need (at least) a further condition that the explanans is in some
sense more fundamental than the explanandum. (Cf. the example of
the flagpole and its shadow.)

(b) In the present debate, this leads to stalemate, when that debate is
conducted under the banner of IBE.

(c) We need a separate discussion of whether the Minkowski metric is
more, or less, fundamental than the Lorentz covariance of the dy-
namical laws.

5 Explanationism vs codificationism

5.1 Against explanationism: Brown’s objections (in ‘Phys-
ical relativity’, chapter 8)

1. Objection 1: The explanation of Lorentz covariance in terms of Minkowski
geometry is ‘wholly unclear’ (Brown, ibid., p.134)

(a) Reply: No, it isn’t . . .

2. Objection 2: Spacetime structure in SR violates the action-reaction prin-
ciple (Brown, ibid., section 8.3.1)

(a) Reply: The action-reaction principle is neither an [ontological] crite-
rion of reality, nor an [epistemological] criterion of legitimate postu-
lation.
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3. Objection 3: Geometry doesn’t always explain. Why would the present
case be any different? (Brown, ibid., sections 8.2.1–8.2.3)

(a) Short reply: Well, why would the present case be the same?

5.1.1 Against codificationism/in favour of explanationism

1. Science (according to the scientific realist) normally proceeds by postulat-
ing more fundamental entities behind the appearances, and taking those
entities to be (i) real and (ii) explanatory.

2. Applying this general strategy to the present case seems to lead straight-
forwardly to explanationism concerning the Minkowski metric.

3. Hence a codificationist must specify in what relevant respect(s) the case of
the Minkowski metric is unlike other cases of postulation in science. Oth-
erwise codificationism about Minkowski geometry seems no better (and
no better motivated) than codificationism about electrons, planets, cats,
the external world . . . ??

6 Claim 2: ‘Saying that the Minkowski struc-
ture is geometrical/spatiotemporal/etc does
not explain (as opposed to codify) anything.’

1. Consider ‘bimetric’ theories (Cf. Brown, ibid., section 9.5.2):

(a) In certain alternatives to GR, there are two fields that, mathemati-
cally, could be regarded as ‘metric fields’. But rods and clocks ‘sur-
vey’ only one of them — the other plays a more theoretically buried
role in the theory.

(b) Question: Is the non-surveyed field ‘geometrical’?

2. An analogy:

(a) Q: Can I identify an arbitrary collection of particles in Newtonian
mechanics, and postulate that they compose a billiard ball?

(b) A: Of course not: they have to behave like a billiard ball in order to
deserve the name.

(c) Q: Can I explain why they behave like a billiard ball by saying that
they are one?

(d) A: Of course not. (That would be like explaining why opium makes
one sleepy by saying that it has a dormitive virtue.)

3. Suggested methodology: postulate the physical reality of certain mathe-
matically specified structures; then argue, on the basis of how they behave,
that they deserve certain names.

6



4. But this must sharply be separated from the issue of whether or not the
Lorentz covariance of the dynamical laws gives us reason to believe in the
Minkowski tensor field, specified via its mathematical structure.
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CL 120 Intermediate philosophy of physics: Philosophy of special relativity

Dr Hilary Greaves, Hilary Term 2011

Friday week 7: Relationism in special relativity

Tim Maudlin, ‘Buckets of water and waves of space’, Philosophy of Science 60
(1993), pp. 183–203. Available from Weblearn.

1 Relationism vs substantivalism, in general

Substantivalism is roughly the thesis that

1. Points of space/instants of time/points of spacetime exist, independently
of any material objects (or fields etc) that may occupy them;

2. Spatial/temporal/distance relations hold most fundamentally between these
points of space/instants of time/etc;

3. Distances between material objects are derivative on (i) facts about which
points of space (etc) those material objects (etc) occupy, and (ii) distances
between points of space (etc).

Relationism, in contrast to this, holds roughly that

• points of space/instants of time/points of spacetime do not fundamentally
exist (talk of space is in some sense a mere facon de parler);

• in place of spatial/temporal/spatiotemporal relations between such points
of space/instants of time/points of spacetime, we can make do with an
ontology of material objects/material points/similar, and spatial/etc dis-
tance relations holding directly between those.

2 Leibnizian relationism

The original relationist was ‘Leibnizian’: he took the relational facts to be in-
stantaneous spatial distances, and temporal distances, between ‘material points’
[i.e., in modern parlance, points on the worldlines of material particles]. (Cf.
‘Leibnizian spacetime’, from lecture 7.)

Newton’s famous two-globes thought experiment generates an argument
against Leibnizian relationism:

1. Consider the following two scenarios:

• Scenario 1: A pair of iron spheres, joined to one another by a string
that is just pulled tight, floating at rest in space.

• Scenario 2: as before, but the whole configuration is spinning about
the halfway point along the string.
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2. Clearly there is a physical difference between Scenarios 1 and 2: for in-
stance,

(a) in Scenario 2 the string will be under tension, but in Scenario 1 it
will not;

(b) if the string is cut, in Scenario 2 the distance between the two spheres
will steadily increase, whereas in Scenario 1 it will not.

3. But spinning an object makes no difference to the Leibnizian relations
between its parts . . .

4. Why this is a problem for the Leibnizian relationist:

(a) Maudlin’s account: the Leibnizian relationist ‘lacks the explanatory
resources to account for the variation in the tension of the cord’.

(b) Huggett’s account: given the additional assumption that ‘inertial
effects’ supervene on a scenario’s Leibnizian relations, the Leibnizian
relationist cannot agree with the standard Newtonian theorist about
the dynamically possible histories of Leibnizian relations.

3 Newtonian relationism

But perhaps it is unsurprising that Leibnizian relationism is empirically in-
equivalent to Newtonian substantivalism! If we want a relationist counterpart
to Newtonian substantivalism, we should instead consider Newtonian relation-
ism.

• A Newtonian relationist admits relations between material points cor-
responding to Newtonian (rather than Leibnizian) spacetime structure.
That is, she admits a spatial distance and a temporal displacement be-
tween every pair of material points (i.e. including spatial distances be-
tween non-simultaneous material points.)

• The Newtonian relationist can account for the two-globe phenomenon:
spinning an object does change the Newtonian relations between its (non-
simultaneous) parts.

• This suggests that the two-globes-based objection is actually an objection
to Leibnizian structure (whether relationistically or substantivalistically
conceived), not to relationism.

4 Minkowskian relationism

1. Our question: What form of relationism is appropriate in the context of
special relativity?
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2. Obvious answer: Admit material points (as before), but replace the New-
tonian’s separate spatial and temporal distance relations with a single
Minkowski spatiotemporal-distance relation, holding between pairs of such
material points.

3. This ‘Minkowskian relationist’ can successfully account for the two-globe
phenomenon, just as the Newtonian relationist can.

This is perhaps the most obvious way to be a relationist in the context
of special relativity. Pooley thinks that the ‘dynamical approach’ suggests a
different sort of special-relativistic relationism:

[Huggett] sees Newton’s globes thought experiment as illustrating
that no theory has the following three characteristics. (i) Its spa-
tiotemporal ideology is restricted to Leibnizian relations; (ii) its dy-
namically allowed histories of such relations are exactly those pre-
dicted by Newtonian theory; (iii) inertial effects supervene on the
specified spatiotemporal relations between bodies. (Pooley, 2011)

The above sort of relationism amounts to dropping (i). But one could main-
tain relationism by dropping instead (ii) or (iii). In particular, ‘the dynamical
approach to special relativity, defended [in various joint papers by Brown and
Pooley, and by Brown in Physical Relativity ]’ can be seen as relationism-by-
dropping-(iii) . . .
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