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NOTES AND PROBLEMS

ASYMPTOTIC BEHAVIOR OF THE
CUSUM OF SQUARES TEST UNDER
STOCHASTIC AND DETERMINISTIC

TIME TRENDS

BENT NIELSEN AND JOUNI S. SOHKANEN
University of Oxford

We generalize the cumulative sum of squares (CUSQ) test to the case of nonstation-
ary autoregressive distributed lag models with deterministic time trends. The test
may be implemented with either ordinary least squares residuals or standardized
forecast errors. In explosive cases the asymptotic theory applies more generally for
the least squares residuals-based test. Preliminary simulations of the tests suggest a
very modest difference between the tests and a very modest variation with nuisance
parameters. This supports the use of the tests in explorative analysis.

1. INTRODUCTION

Cumulative sum of squares (CUSQ) tests are used for testing constancy of the
variance of regression errors. The tests were proposed for the fixed regressor case
by Brown, Durbin, and Evans (1975). The CUSQ test may be implemented with
either least squares residuals or forecast residuals. Here we investigate the behav-
ior of both CUSQ tests when applied to autoregressive distributed lag models,
possibly with deterministic trends and unit root and explosive stochastic trends.

We show that the usual asymptotic distribution applies quite generally for the
least squares test. This is important in applications as the question of variance con-
stancy can be addressed without having to locate the characteristic roots. For the
forecast test the usual asymptotic distribution applies in nonexplosive and purely
explosive cases, but nuisance terms may arise in explosive cases. The results gen-
eralize work for stationary cases by Ploberger and Krämer (1986) and Deng and
Perron (2008a). Lee et al. (2003) considered the least squares test for a unit root
autoregression without deterministic terms. The present analysis is based on the
results of Lai and Wei (1985) and Nielsen (2005), and is easiest for the least
squares test.
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A small-scale simulation study indicates that there is not much diffence in the
finite sample distribution of the two test statistics. This adheres to the findings of
Deng and Perron (2008a) that, in the context of stationary models, there is not
much difference in size or power when applying the statistics to test for changes
in the residual variance. Moreover, the finite sample distributions vary very little
with nuisance parameters, indicating that the tests are approximately similar.

The paper is organized so that the two test statistics are presented in §2 while
the model assumptions are presented in Section 3. The asymptotic results for the
least squares test and the forecast test are presented in Sections 4 and 5, respec-
tively. Section 6 contains a simulation study involving first-order autoregressions.
The proofs are given in the Appendix. We refer to Nielsen and Sohkanen (2009)
for an empirical illustration.

2. THE TEST STATISTICS

The forecast residual-based test statistic was suggested along with exact distribu-
tion results by Brown et al. (1975) for the classical linear regression

yt = β ′xt + εt for t = 1, . . . ,T, (2.1)

where yt is a scalar, xt is an M-dimensional regressor, and the errors are indepen-
dently normal,N(0,σ 2)-distributed. Computing recursive least squares estimators
as

β̂t =
(

t

∑
s=1

xs x ′
s

)−1 t

∑
s=1

xs ys for t = M, . . . ,T, (2.2)

along with the recursive forecast residuals

ε̃t =
⎧⎨
⎩1+ x ′

t

(
t−1

∑
s=1

xs x ′
s

)−1

xt

⎫⎬
⎭

−1/2

(yt − β̂ ′
t−1xt ) for t > M, (2.3)

the CUSQ plot with recursive residuals is defined as

CUSQREC
t,T = √

T

(
∑t

s=M ε̃2
s

∑T
s=M ε̃2

s

− t − M

T − M

)
for t ≥ M. (2.4)

The alternative least squares residual-based test statistic was mentioned in pass-
ing by Brown et al. (1975) and analyzed in detail by McCabe and Harrison (1980).
Computing recursive residual variances

σ̂ 2
t = t−1

t

∑
s=1

ε̂2
s,t for M ≤ t, (2.5)
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based on the least squares residuals

ε̂s,t = ys − β̂ ′
t xs for M ≤ t, (2.6)

the CUSQ plot with least squares residuals is defined as

CUSQOLS
t,T = t/

√
T

(
σ̂ 2

t

σ̂ 2
T

−1

)
= √

T

(
∑t

s=1 ε̂2
s,t

∑T
s=1 ε̂2

s,T

− t

T

)
for t > M. (2.7)

3. MODEL AND ASSUMPTIONS

To facilitate an analysis of trending time series we focus on autoregressive dis-
tributed lag regressions and assume vector autoregressive behavior for the vari-
ables involved.

Suppose a p-dimensional time series X1−k, . . . , X0, . . . , XT is observed and
that Xt is partitioned as

(
Yt , Z ′

t

)′ where Yt is univariate and Zt is of dimension
p −1 ≥ 0. The autoregressive distributed lag regression of order k is given by

Yt = ρZt +
k

∑
j=1

αj Yt− j +
k

∑
j=1

β ′
j Zt− j +νDt−1 + εt , t = 1, . . .T, (3.1)

where Dt is a deterministic term. When the time series is univariate so p = 1 and
Xt = Yt , the regression reduces to a univariate autoregression. A variant of the
regression omits the contemporaneous regressor Zt , giving the regression

Yt =
k

∑
j=1

αj Yt− j +
k

∑
j=1

β ′
j Zt− j +νDt−1 + εt , t = 1, . . .T . (3.2)

In order to characterize the asymptotic distribution of our test statistics, the
joint distribution of the time series Xt = (

Yt , Z ′
t

)′ needs to be specified. We will
assume that Xt and Dt satisfy the vector autoregressions

Xt =
k

∑
j=1

Aj Xt− j +μDt−1 + ξt , t = 1, . . .T, (3.3)

Dt =DDt−1, (3.4)

whereD is a deterministic matrix with properties to be given below. The innova-
tions ξt satisfy a martingale difference assumption.

Assumption A. Assume (ξt ,Ft ) is a martingale difference sequence, so
E(ξt |Ft−1) = 0. The initial values X0, . . . , X1−k are F0-measurable and

sup
t
E{(ξ ′

t ξt )
λ/2|Ft−1} a.s.

< ∞ for some λ > 4, (3.5)

E(ξtξ
′
t |Ft−1)

a.s.= 
 where 
 is positive definite. (3.6)
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The deterministic term Dt is a vector of polynomial, periodic terms. For
example,

D=
⎛
⎝1 1 0

0 1 0
0 0 −1

⎞
⎠ with D0 =

⎛
⎝0

1
1

⎞
⎠

generates a linear trend, a constant, and a biannual dummy. Specifically, the de-
terministic term satisfies the following assumption.

Assumption B. |eigen(D)| = 1 and rank(D1, . . . , DdimD) = dimD.

Nearly all values of autoregressive parameters Aj are allowed in the vector
autoregression (3.3), including stationary roots, roots on the unit circle, and a
range of explosive roots. The only exception is the case of singular explosive
roots that can arise for vector autoregressions where p ≥ 2 with more than one
explosive root; see Anderson (1959), Duflo et al. (1991), Phillips and Magdalinos
(2008), and Nielsen (2008) for further discussion. Thus, define the companion
matrices

B=
{

(A1, . . . , Ak−1) Ak

Ip(k−1) 0

}
, μ =

{
μ
0

}
, S=

{
B μ
0 D

}
. (3.7)

Assumption C. All explosive roots of B have geometric multiplicity of unity.
That is, for all complex λ so |λ| > 1 then rank(B−λIpk) ≥ pk −1.

The parameters and innovations of the regressions (3.1) and (3.2) can be linked
to the vector autoregression (3.3) through the limits of the least squares estimators
arising from (3.1) and (3.2). For this purpose define

ξt =
(

ξ
(1)
t

ξ
(2)
t

)
, 
 =

(

yy 
yz


zy 
zz

)
,

conformably with Xt = (Yt , Z ′
t )

′. It then holds for equation (3.1) that

ρ = 
yz

−1
zz , εt = (1,−ρ)ξt , (αj ,β

′
j ) = (1,−ρ)Aj ,

σ 2 = 
yy −
yz

−1
zz 
zy,

where σ 2 is the variance of the innovation εt . Similarly, for equation (3.2) it holds
that

(αj ,β
′
j ) = (1,0)Aj , εt = (1,0)ξt , σ 2 = 
yy .

In addition an invariance principle for the partial sums of squared innovations
∑t

s=1 ε2
s and a law of large numbers for ∑t

s=1 ε4
s are needed. Such results could be

assumed. To be more explicit we assume a martingale structure for ε2
t .
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Assumption D. For the regression (3.1), Gt−1 is the σ -field generated by Zt

and Ft−1, while Gt = Ft for the regression (3.2). Suppose (ε2
t −σ 2,Gt ) is a mar-

tingale difference sequence satisfying Var(ε2
t −σ 2|Gt−1) = ϕ2 a.s. for some ϕ > 0

and supt E(|εt |λ|Gt−1) < ∞ a.s. for some λ > 4.

4. ASYMPTOTIC ANALYSIS OF THE CUSQOLS-STATISTIC

Consider the CUSQOLS-statistic (2.7) based on the autoregressive distributed lags
residuals of (3.1) or (3.2). The key to the asymptotic analysis is to generalize Deng
and Perron (2008a, Lem. 2) showing that the sum of squared residuals is close to
the sum of squared innovations. A first step is the following lemma.

LEMMA 4.1. Assume A, B, C. Then t−1/2 ∑t
s=1(ε̂

2
s,t − ε2

s ) → 0 a.s.

The next step is to turn this into a result about xt = T −1/2 ∑t
s=1(ε̂

2
s,t −ε2

s ). Due
to the next lemma then supt≤T (|xt |) → 0 a.s., so xint(T u) vanishes on D[0,1], the
space of right-continuous functions on [0,1] with left limits.

LEMMA 4.2. Let xt be a sequence so t−1/2xt → 0. Then supt≤T T −1/2

|xt | → 0.

The normalized partial sums of squared innovations are asymptotically
Brownian. This follows through a direct application of Chan and Wei (1988,
Thm. 2.2).

LEMMA 4.3. Assume D. Let B be a standard Brownian motion. Then, for u ∈
[0,1], it holds that T −1/2 ∑int(T u)

s=1 (ε2
s −σ 2) → ϕBu in distribution on D[0,1].

The main result concerning the CUSQOLS-statistic now follows.

THEOREM 4.4. Assume A, B, C, D. Let B◦ be a standard Brownian bridge.
Then

(i) CUSQOLS
int(T u),T → σ−2ϕB◦

u in distribution on D[0,1].

(ii) supt≤T |CUSQOLS
t,T | → σ−2ϕ supu≤1 |B◦

u | in distribution on R.

The above result involves a nuisance parameter ϕ. For normal innovations it
holds that σ−2ϕ = √

2. In general, σ 2 is estimated consistently by the sample
variance due to Lemma 4.1, whereas ϕ is estimated consistently by a fourth-
moment estimator as shown next.

THEOREM 4.5. Assume A, B, C, D. Then ϕ̂2
t = t−1 ∑t

s=1 ε̂4
s,t − (t−1 ∑t

s=1

ε̂2
s,t )

2 P→ ϕ2.

Remark 4.6. The convergence in Theorem 4.5 could be strengthened to
almost sure convergence if it were assumed that ε3

t is a martingale difference.
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A convergence result for ϕt as a process on D[0,1] could then be deduced.
The proof would follow by combining the presented proof with Theorem 2.4 of
Nielsen (2005).

5. ASYMPTOTIC BEHAVIOR OF THE CUSQREC-TEST

Consider now the CUSQREC-statistic (2.4) applied to regressions (3.1) and (3.2).
This statistic is more complicated to describe than the CUSQOLS-statistic. A nui-
sance term arises in special cases.

In order to generalize Deng and Perron (2008a, Lem. 2) decompose the vec-
tor autoregression into its nonexplosive and explosive parts. Thus, define the
companion vector St−1 = (X ′

t−1, . . . X ′
t−k, D′

t−1) and the selection matrix ι =
(Ip,0(pk−p+dimD)×p)

′. Recalling the companion matrix S defined in (3.7), the
vector autoregression satisfies a first-order vector autoregression St =SSt−1 + ιξt .
As noted in, for instance, Nielsen (2005, Sect. 3), there exists a real matrix M so
MSM−1 is block diagonal and

M St =
(

Rt

Wt

)
=
(
R 0

0 W

)(
Rt−1

Wt−1

)
+
(

eR,t

eW,t

)
, (5.1)

where the absolute values of the eigenvalues of R and W are at most one and
greater than one, respectively. Deterministic components are subsumed into the
Rt -process.

The difference between the sum of squared forecast residuals and the sum of
squared innovations will in general involve a nuisance term.

LEMMA 5.1. Assume A, B, C and that either dimR= 0 or dimW = 0. Then
∑t

s=1(ε̃
2
s − ε2

s ) = o(t1/2) a.s.

Remark 5.2. If the process is mixed so that dimR > 0 and dimW > 0 then
several nonnegligible nuisance terms will appear in Lemma 5.1. It is not immedi-
ately clear if these nuisance terms will cancel each other.

A limiting result for the CUSQREC then follows by exactly the same argument
as that of Theorem 4.4, replacing Lemma 4.1 by Lemma 5.1.

THEOREM 5.3. Assume A, B, C, D and that either dimR= 0 or dimW = 0.
Then

(i) CUSQREC
int(T u),T → σ−2ϕB◦

u in distribution on D[0,1],

(ii) supt≤T |CUSQREC
t,T | → σ−2ϕ supu≤1 |B◦

u | in distribution on R.

6. SIMULATION STUDY

Theorems 4.4 and 5.3 show that the two types of CUSQ-statistics have the usual
limit distribution in many situations. This leaves the questions of whether the
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TABLE 1. Simulated means and medians of the CUSQ tests for different values
of α. The Monte Carlo standard error is 2.5 × 10−4. The slight variation in the
reported figures is therefore significant.

SOLS SREC

α Mean Median Mean Median

−1.2 0.790 0.750 0.797 0.758
−1.0 0.789 0.749 0.796 0.757
−0.9 0.789 0.748 0.795 0.756

0.0 0.788 0.748 0.795 0.756
0.9 0.789 0.748 0.795 0.756
1.0 0.789 0.749 0.796 0.757
1.2 0.790 0.749 0.797 0.758

finite sample distributions are different for the two statistics and whether they
depend on the autoregressive parameters. These questions are addressed through
a small-scale Monte Carlo study. For the important question of the power of these
tests, we refer to Deng and Perron (2008a, 2008b).

The data generating process is a univariate autoregression, Xt = αXt−1 + εt

for t = 1, . . . ,T = 100 with initial value X0 = 0, standard normal innova-
tions, and a range of autoregressive parameters α. The number of repetitions
was 106. Due to the normality σ−2ϕ = √

2, so the statistics of interest are
SOLS = maxM≤t≤T |CUSQOLS

t,T |/√2 and SREC = maxM≤t≤T |CUSQREC
t,T |/√2;

see (2.5). Theorems 4.4 and 5.3 show that their limit distribution is the supre-
mum of a Brownian bridge. Billingsley (1999, pp. 101–104) gives an analytic
expression for the distribution function. In particular, the 95% quantile is 1.36;
see Schumacher (1984, Tab. 9)

Table 1 reports the mean and median of the two statistics as a function of α.
The variation of the distribution for the two supremum statistics is very small but
significant when taking the Monte Carlo precision into account. This impression
was confirmed when looking at other descriptives such as standard deviation, 95%
quantile, and p-value of the asymptotic 95% quantile when α = 0.

Two conclusions emerge from this small-scale Monte Carlo study. First, there
is not much difference in finite sample distribution for the two statistics. Second,
there is very little variation in the finite sample distribution with the unknown
parameter. This suggests that very simple finite sample corrections could be used.
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APPENDIX: Proofs

Notation: For a matrix m, let ‖m‖2 = λmax
(
mm′), where λmax gives the greatest eigen-

value of the matrix.

A.1. The Case of Least Squares Residuals
Proof of Lemma 4.1. Partition ξt as (ξ

(1)
t ,ξ

(2)′
t )′ and partition the least squares resid-

uals, ξ̂s,t , of Xt on Xt−1, . . . Xt−k and Dt−1 conformably. We start by arguing

1

t

t

∑
s=1

(ε̂2
s,t − ε2

s )
a.s.= o(t−1/2). (A.1)

First, if Zt is excluded as regressor as in (3.2) then ∑t
s=1 ε̂2

s,t = ∑t
s=1(ξ̂

(1)
s,t )2. Combine

this with Nielsen (2005, Cor. 2.6) to see that t−1 ∑t
s=1(ξ̂s,t ξ̂

′
s,t − ξsξ

′
s) = o(t−1/2) a.s.,

assuming Assumptions A, B, C. The result (A.1) then follows.
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Second, if Zt is included as regressor as in (3.1), then

t

∑
s=1

ε̂2
s,t =

t

∑
s=1

(ξ̂
(1)
s,t )2 −

t

∑
s=1

ξ̂
(1)
s,t ξ̂

(2)′
s,t

{
t

∑
s=1

ξ̂
(2)
s,t ξ̂

(2)′
s,t

}−1 t

∑
s=1

ξ̂
(2)
s,t ξ̂

(1)
s,t .

By Nielsen (2005, Cor. 2.6) then

t

∑
s=1

ε̂2
s,t

a.s.=
⎡
⎣ t

∑
s=1

(ξ
(1)
s )2 −

t

∑
s=1

ξ
(1)
s ξ

(2)′
s

{
t

∑
s=1

ξ
(2)
s ξ

(2)′
s

}−1 t

∑
s=1

ξ
(2)
s ξ

(1)
s

⎤
⎦{1+o(t−1/2)}.

Since ξ
(1)
s = εs +ρξ

(2)
s then

t

∑
s=1

ε̂2
s,t

a.s.=
⎡
⎣ t

∑
s=1

ε2
s −

t

∑
s=1

εsξ
(2)′
s

{
t

∑
s=1

ξ
(2)
s ξ

(2)′
s

}−1 t

∑
s=1

ξ
(2)
s εs

⎤
⎦{1+o(t−1/2)}.

Using that E(εsξ
(2)′
s ) = (1,−ρ)
(0, I )′ = 0 along with Nielsen (2005, Thm. 2.8) shows

that t−1 ∑t
s=1 εsξ

(2)′
s = o(t−1/4) a.s. so that (A.1) follows. n

Proof of Lemma 4.2. Since t−1/2xt → 0 then a finite t0 exists such that t−1/2|xt | < ε
for all t > t0. Since t ≤ T , then T −1/2 ≤ t−1/2 so T −1/2|xt | < ε for all t > t0. It follows
that supt>t0 T −1/2|xt | < ε. Moreover, since t0 is finite, then maxt≤t0 |xt | is finite and we

also have supt≤t0 T −1/2|xt | < ε. In combination we have that for T sufficiently large then

supt≤T T −1/2|xt | < ε. The desired result follows since ε was arbitrary. n

Proof of Theorem 4.4.

(i) Lemmas 4.1, 4.2, and 4.3 imply

T −1/2
int(T u)

∑
s=1

(ε̂2
s,int(T u) −σ 2)

= T −1/2
int(T u)

∑
s=1

(ε̂2
s,int(T u) − ε2

s )+ T −1/2
int(T u)

∑
s=1

(ε2
s −σ 2)

D→ ϕBu

on D[0,1]. Next, rewrite the CUSQ-statistic as

CUSQOLS
int(T u),T = T −1/2{∑int(T u)

s=1 (ε̂2
s,int(T u) −σ 2)− T −1t ∑T

s=1(ε̂2
s,T −σ 2)}

T −1 ∑T
s=1 ε̂2

s,T

,

and insert the above convergence result.

(ii) Taking supremum entails taking a continuous mapping on D[0,1]. n

A.2. Consistency of ϕ̂ϕt
Proof of Theorem 4.5. The result is proved for the regression (3.1) including Zt as

regressor. The argument for the regression (3.2) can be made in a similar way.
Due to Lemma 4.1, t−1 ∑t

s=1 ε̂2
s,t and t−1 ∑t

s=1 ε2
s have the same limit. If the same is

shown for t−1 ∑t
s=1 ε̂4

s,t and t−1 ∑t
s=1 ε4

s , then the desired result follows from a law of

large numbers applied to t−1 ∑t
s=1 ε2

s and t−1 ∑t
s=1 ε4

s , assuming A and D.
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Since Zt = θ St−1 + ξ
(2)
t for some θ (see (3.3)), regression on regressors Zt , St−1 and

on regressors xt = (ξ
(2)′
t , S′

t−1)′ is equivalent. Define

Pt =
t

∑
s=1

εs x ′
s

(
t

∑
s=1

xs x ′
s

)−1/2

, Qs,t =
(

t

∑
s=1

xs x ′
s

)−1/2

xs ,

so ε̂s,t = εt − Pt Qs,t . To prove ∑t
s=1(ε̂4

s,t −ε4
s ) = o(t), apply a binomial expansion to ε̂4

s,t

so it suffices to prove Im = ∑t
s=1(Pt Qs,t )

mε4−m
s = oP (t) for m = 1, . . . ,4.

First, argue that Pt = o(t1/4) a.s. The series ξ
(2)
s and Ss−1 are asymptotically uncorre-

lated due to Nielsen (2005, Thm. 2.4) given Assumptions A, B, C, and D. Thus

Pt
a.s.=

⎧⎨
⎩

t

∑
s=1

εsξ
(2)′
s

(
t

∑
s=1

ξ
(2)
s ξ

(2)′
s

)−1/2

+
t

∑
s=1

εs S′
s−1

(
t

∑
s=1

Ss−1S′
s−1

)−1/2
⎫⎬
⎭{1+o(1)}.

This is of the desired order due to Nielsen (2005, Thms. 2.4, 2.8, Cor. 2.6) given

Assumptions A, B, C, and the construction E(εsξ
(2)′
s ) = 0.

Second, consider I1 = Pt (∑t
s=1 xs x ′

s)
−1/2 ∑t

s=1 xsε
3
t . As in (5.1) we can decompose

St−1 into autoregressions Ut−1,Vt−1,Wt−1 with stationary, unit and explosive roots. The

components ξ
(2)
t ,Ut−1,Vt−1,Wt−1 are asymptotically uncorrelated due to Nielsen (2005,

Thms. 2.4, 9.1, 9.2, 9.4) given Assumptions A, B, C. Thus, as above,

I1
a.s.= Pt

⎡
⎣{ t

∑
s=1

ξ
(2)
s ξ

(2)′
s

}−1/2 t

∑
s=1

ξ
(2)
s ε3

t +
{

t

∑
s=1

Us−1U ′
s−1

}−1/2 t

∑
s=1

Us−1ε3
t

+
{

t

∑
s=1

Vs−1V ′
s−1

}−1/2 t

∑
s=1

Vs−1ε3
t +

{
t

∑
s=1

Ws−1W ′
s−1

}−1/2 t

∑
s=1

Ws−1ε3
t

⎤
⎦

{1+o(1)}. (A.2)

The first term of (A.2) involving ξ
(2)
s is bounded by∣∣∣∣∣∣Pt

(
t

∑
s=1

ξ
(2)
s ξ

(2)′
s

)−1/2 t

∑
s=1

ξ
(2)
s ε3

t

∣∣∣∣∣∣≤ |Pt |
⎧⎨
⎩max

s≤t

∣∣∣∣∣∣
(

t

∑
s=1

ξ
(2)
s ξ

(2)′
s

)−1/2

ξ
(2)
s

∣∣∣∣∣∣
⎫⎬
⎭∑t

s=1 |ε3
s |.

Here Pt = o(t1/4) a.s given Assumption A. The second term is o(t−1/4−η) a.s. for some

η > 0 since t−1 ∑t
s=1 ξ

(2)
s ξ

(2)′
s is convergent and ξ

(2)
s = o(t−1/4−η) a.s. for all η > 0; see

Nielsen (2005, Thms. 5.1, 6.1)). The third term is ∑t
s=1 |ε3

s | = o(t1+η) a.s. for all η > 0;
see Nielsen (2005 Thm. 7.3). Overall, the first term of (A.2) is o(t).

The second term of (A.2) involving Us−1 is analyzed the same way.
The third term of (A.2) involving Vs−1 is bounded by∣∣∣∣∣∣Pt

(
t

∑
s=1

Vs V ′
s

)−1/2( t

∑
s=1

Vs

)
ε3

t

∣∣∣∣∣∣≤ |Pt |
⎧⎨
⎩max

s≤t

∣∣∣∣∣∣
(

t

∑
s=1

Vs V ′
s

)−1/2

Vs

∣∣∣∣∣∣
⎫⎬
⎭

t

∑
s=1

|ε3
s |.
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Introduce normalizations for the unit root process Vs−1 as in Chan and Wei (1988) to see
that the second term is Op(t−1/2) assuming A, B. The last term is o(t1+η) for all η > 0;
see Nielsen (2005, Thm. 7.3). Overall, the bound is o(t3/4+η).

The fourth term of (A.2) involving Ws−1 is bounded by

∥∥∥∥∥
t

∑
s=1
W−t Ws−1W ′

s−1(W′)−t

∥∥∥∥∥
−1/2( t

∑
s=1

∥∥W−t Ws−1
∥∥)max

s≤t
‖εs‖3.

The first two terms are convergent, while the last term is o(t3/4) since εt = o(t1/4); see
Nielsen (2005, Cors. 5.3, 7.2, Thm. 5.1) assuming A, C.

Third, consider Im for m ≥ 2. The following bound holds:

Im ≤ ‖Pt‖m max
s≤t

‖εs‖4−m
t

∑
s=1

(P ′
s,t Ps,t )

m/2.

The first two terms are o(t) by the arguments above. For the latter term, note that P ′
s,t Ps,t ≤

1. Thus, for m/2 ≥ 1,

t

∑
s=1

(P ′
s,t Ps,t )

m/2 ≤
t

∑
s=1

P ′
s,t Ps,t =

t

∑
s=1

tr(Ps,t P ′
s,t ) = tr(Ipk) = pk,

so the last term is bounded. n

A.3. The Case of Recursive Residuals. Lemma 5.1 is proved in three steps. Only the
regression (3.1) including Zt as a regressor is considered. As in the proof of Theorem 4.5,

the regressor can be taken as xt = (ξ
(2)′
t , R′

t−1,W ′
t−1)′ where ξ

(2)
t is the Zt -innovation

while Rt and Wt are the nonexplosive and explosive components. Define

at = εt −
t−1

∑
s=1

εs W ′
s−1

(
t−1

∑
s=1

Ws−1W ′
s−1

)−1

Wt−1,

At = W ′
t−1

(
t−1

∑
s=1

Ws−1W ′
s−1

)−1

Wt−1,

bt =
t−1

∑
s=1

εsξ
(2)′
s

(
t−1

∑
s=1

ξ
(2)
s ξ

(2)′
s

)−1

ξ
(2)
t , Bt = ξ

(2)′
t

(
t−1

∑
s=1

ξ
(2)
s ξ

(2)′
s

)−1

ξ
(2)
t ,

ct =
t−1

∑
s=1

εs R′
s−1

(
t−1

∑
s=1

Rs−1 R′
s−1

)−1

Rt−1, Ct = R′
t−1

(
t−1

∑
s=1

Rs−1 R′
s−1

)−1

Rt−1,

dt =
t−1

∑
s=1

εs x ′
s

(
t−1

∑
s=1

xs x ′
s

)−1

xt , Dt = x ′
t

(
t−1

∑
s=1

xs x ′
s

)−1

xt

f 2
t = 1+ Dt , Iyz =

t

∑
s=1

ys zs

f 2
s

, ys , zs ∈ (as ,bs ,cs ,ds ,εs).
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LEMMA A.1. Assume A, B, C and that dimW = 0. Then

t

∑
s=1

(
ε̃2

s − ε2
s

f 2
s

)
= {Ibb +2Ibc +Icc −2(Iεb +Iεc)

}{
1+o(1)

}
a.s.

f 2
t = (1+ Bt +Ct ){1+o(1)} a.s.

Proof of Lemma A.1. Since ε̃t ft = εt −dt then

t

∑
s=1

(
ε̃2

s − ε2
s

f 2
s

)
=

t

∑
s=1

1

f 2
s

(d2
s −2εsds) = Idd −2Iεd .

The components of xt are asymptotically uncorrelated due to Nielsen (2005, Thm. 2.4)
given Assumptions A, B, C and dimW= 0. It then holds that dt = (bt +ct ){1+o(1)} a.s.
and the first result follows. The second result follows by a similar argument. n

LEMMA A.2. Assume Assumption A and that dimW = 0. Then Iεb = o(t1/2) a.s.

Proof of Lemma A.2. The term Iεb is a Gt -martingale since bs/ f 2
s is Gs−1-measurable.

Therefore, by Hall and Heyde (1980, Thm. 2.18), Iεb = o(t1/2) a.s. on the set where

S =
∞
∑

s=1
E(s−1ε2

s b2
s / f 4

s |Gs−1) =
∞
∑

s=1
s−1b2

s f −4
s E(ε2

s |Gs−1) < ∞.

It suffices to show that S = O(∑∞
s=1 s−3/2 loglogs) = O(1) a.s. Note that f 2

s ≥ 1, and

sups E(ε
2
s |Gs−1) < ∞ given Assumption A. Further, bs = o{(s−1/2 loglogs)1/2} since

s−1

∑
u=1

εuξ
(2)′
u = O{(s log logs)1/2},

(
s−1

∑
u=1

ξ
(2)
u ξ

(2)′
u

)−1

= O(s−1), ξ
(2)
s = o(s1/4),

(A.3)

a.s. by Nielsen (2005, Thms. 2.4, 5.1, 6.1) assuming A. n

LEMMA A.3. Assume A, B, C. Then Ibb,Icc,Ibc = o(t1/2) a.s.

Proof of Lemma A.3. Apply the expansion of f 2
t in Lemma A.1 as 1+ Bt +Ct while

ignoring the o(1) remainder term for notational simplicity.

Consider Ibb. The denominator satisfies f 2
s ≥ 1 + Bs . Further, S1 = ∑t−1

s=1 εsξ
(2)′
s

(∑t−1
s=1 ξ

(2)
s ξ

(2)′
s )−1/2 = O{(log log t)1/2} by Nielsen (2005, Thm. 2.4). Thus, for almost

every outcome and ε > 0 then for large t and s ≤ t , it holds that S2
1 ≤ tηε for all η > 0.

This implies that for large t

Ibb ≤ tηε
t

∑
s=1

⎧⎨
⎩ξ

(2)′
s

(
s−1

∑
v=1

ξ(2)
v ξ (2)′

v

)−1

ξ
(2)
s

⎫⎬
⎭
/⎧⎨
⎩1+ ξ

(2)′
s

(
s−1

∑
v=1

ξ(2)
v ξ (2)′

v

)−1

ξ
(2)
s

⎫⎬
⎭ .

Due to the partitioned inversion formula

A12 A−1
22 A21(1+ A12 A−1

22 A21)−1 = 1− (1,0)

(
1 A12

A21 A22

)−1(0
1

)

= A12(A22 + A21 A12)−1 A21, (A.4)
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it holds that Ibb ≤ tηε ∑t
s=1 ξ

(2)′
s (∑s

v=1 ξ
(2)
v ξ

(2)′
v )−1ξ

(2)
s . The sum is of order O(log t) due

to Nielsen (2005, Lem. 8.6) assuming A, implying that Ibb is o(tη) = o(t1/2) a.s.
Consider Icc. A similar argument shows Icc = o(t1/2) a.s. The only slight difference

is the bound for S2 = ∑t−1
s=1 εs R′

s−1(∑t−1
s=1 Rs−1 R′

s−1)−1/2. By Nielsen (2005, Thm. 2.4),

assuming A, B, C, this bound is S2
2 = O(log t), which is still o(tη) for all η > 0.

Consider Ibc. The Hölder inequality implies Ibc = o(t1/2) a.s. n

A modified version of Lemma 2 of Lai and Wei (1982) is needed.

LEMMA A.4. Let h1,h2, . . . be p-dimensional vectors and let HT = ∑T
t=1 ht h′

t .
Assume HT is nonsingular for some T0. Let λ∗

T be the maximal eigenvalue of HT . Then

(i) ∑T
t=T0

h′
t H−1

t ht = O(logλ∗
T ),

(ii) h′
t H−1

t−1ht = h′
t H−1

t ht/(1−h′
t H−1

t ht ),

(iii) ∑T
t=T0+1 h′

t H−1
t−1ht = O(logλ∗

T ).

Proof of Lemma A.4.

(i) This is the statement of Lai and Wei (1982, Lem. 2.ii).

(ii) This follows by (A.4).

(iii) By Lai and Wei (1982, Lem. 2.i) then h′
t H−1

t ht = 1−det Ht/det Ht−1. Combine

this and (ii) to get ∑T
t=T0+1 h′

t H−1
t−1ht = ∑T

t=T0+1(det Ht − det Ht−1)/det Ht−1.
Then complete the argument as in the proof of Lai and Wei (1982, Lem. 2.ii). n

LEMMA A.5. Assume A, B. Then, Iεc = o(t1/2) a.s.

Proof of Lemma A.5. Note that Iεc is a Gt -martingale. As in the proof of Lemma A.2
argue that ∑∞

t=1 t−1c2
t / f 4

t < ∞. Since ft ≥ 1 it suffices that ct = o(t−η) for some η > 0.
The similarity transformation M in (5.1) can be chosen so that R is block diagonal with
elements U and V with eigenvalues inside and on the complex unit circle, respectively;
see Nielsen (2005, Sect. 3). These cases can be studied separately.

IfR=U, apply Nielsen (2005, Thms. 2.4, 5.1, 6.2) to see that ct = o(t−1/4).
IfR=V then apply Lemma A.4(ii) in combination with Nielsen (2005, Thms. 2.4, 8.4)

to see that ct = o(t−η) for some η > 0. n

LEMMA A.6. Assume A, B, C and that dimW= 0. Then ∑t
s=1(ε2

s −ε2
s / f 2

s ) = o(t1/2)
a.s.

Proof of Lemma A.6. The expression of interest satisfies

t

∑
s=1

ε2
s

(
1− 1

f 2
s

)
=

t

∑
s=1

ε2
s Ds

f 2
s

≤
(

max
s≤t

ε2
s

) t

∑
s=1

Ds ,

where the inequality follows since Ds ≥ 0. By Lemmas A.1, A.4(iii), and Nielsen (2005,
Thm. 7.1) then ∑t

s=1 Ds = O(log t) a.s. Moreover, εt = o(t1/2−η) a.s. for some η > 0 by
Nielsen (2005, Thm. 5.1) assuming A, B, C. n

LEMMA A.7. Assume A, B, C. Then ∑t
s=1{ε2

s −a2
s /(1+ As)} = o(t1/2) a.s.
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Proof of Lemma A.7. Define Ks = ∑s
u=1 Wu−1W ′

u−1, gs = ∑s
h=1 Gs−h,sεh , where

Gs−h,s =
{

−W ′
s−1 K −1

s−1Wh−1(1+ W ′
s−1 K −1

s−1Ws−1)−1/2 for h < s,

(1+ W ′
s−1 K −1

s−1Ws−1)−1/2 for h = s.

With this definition and a change of summation order it holds that

t

∑
s=1

g2
s =

t

∑
s=1

s

∑
h=1

G2
s−h,sε

2
h +2

t

∑
s=1

s

∑
h=1

Gs−h,sεh

h−1

∑
�=1

Gs−h+�,sεh−�

=
t

∑
h=1

ε2
h +

t

∑
h=1

{(
t

∑
s=h

G2
s−h,s

)
−1

}
ε2

h +2
t

∑
h=1

h−1

∑
�=1

(
t

∑
s=h

Gs−h,s Gs−h+�,s

)
εhεh−�.

It has to be argued that the sums in s are close to zero. Define

Zh =W1−h Wh−1 = W0 +
h−1

∑
s=1
W−seW,s ,

Fs =
s−1

∑
u=1
W1−s Wu−1W ′

u−1(W′)1−s =
s−1

∑
u=1
Wu−s Zu Z ′

u(W′)u−s ;

the coefficients Gs−h,s can be rewritten as

Gs−h,s =
{−Z ′

s F−1
s W

h−s Zh{1+ Z ′
s F−1

s Zs}−1/2 for h < s,
{1+ Z ′

s F−1
s Zs}−1/2 for h = s.

Lai and Wei (1985, Lem. 2, Cor. 2) give the convergence results

Zh
a.s.→ Z = W0 +

∞
∑

s=1
W−seW,s , Fh

a.s.→ F =
∞
∑

u=1
W−u Z Z ′(W′)−u . (A.5)

The limiting matrix F is positive definite a.s. under Assumption C, see Lai and Wei (1985,
Cor. 2), Nielsen (2008, Rem. 2.3). Thus introduce the coefficients

G̃s−h =
{−Z ′F−1Wh−s Z(1+ Z ′F−1 Z)−1/2 for s > h,

(1+ Z ′F−1 Z)−1/2 for s = h,

and approximate the sums of the coefficients Gs−h,s by

t

∑
s=h

G2
s−h,s ≈

∞
∑

s−h=0
G̃2

s−h,
t

∑
s=h

Gs−h,s Gs−h+�,s ≈
∞
∑

s−h=0
G̃s−h G̃s−h+�. (A.6)

The approximating sums with G̃s−h are identical to one and zero, respectively, since

∞
∑

s−h=0
G̃2

s−h = (1+ Z ′F−1 Z)−1

{
1+ Z ′F−1

∞
∑

s−h=0
Wh−s Z Z ′(W′)h−s F−1 Z

}

= (1+ Z ′F−1 Z)−1(1+ Z ′F−1 F F−1 Z) = 1,
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whereas the sum of cross products satisfies

∞
∑

s−h=0
G̃s−h G̃s−h+�.

= (1+ Z ′F−1 Z)−1

{
−Z ′F−1W�Z + Z ′F−1

×
∞
∑

s−h=0
Wh−s Z Z ′(W′)h−s(W′)�F−1 Z

}

= (1+ Z ′F−1 Z)−1
{
−Z ′F−1W�Z + Z ′F−1 F(W′)�F−1 Z

}
= 0,

where the last identity follows since the scalar Z ′F−1W�Z is equal to Z ′(W′)�F−1 Z .
Two observations are needed to justify the approximation (A.6). First, the tail sums

∑∞
s−h=t+1 C̃2

s−h and ∑∞
s−h=t+1 G̃s−h G̃s−h+� vanish exponentially withWs−h . Second,

the convergence results in (A.5) also have an exponential rate. This means that if h > H
where H → ∞ at log T -rate then the difference Gs−h,s − G̃s−h = o(T −n) for any integer
n. Then, apply Lemma 4.2. n

Proof of Lemma 5.1. If dimW = 0 combine Lemmas A.1–A.6. If dimR = 0 apply
Lemma A.7. n


