NOTES AND PROBLEMS

ASYMPTOTIC BEHAVIOR OF THE CUSUM OF SQUARES TEST UNDER STOCHASTIC AND DETERMINISTIC TIME TRENDS

Bent Nielsen and Jouni S. Sohkanen
University of Oxford

Abstract

We generalize the cumulative sum of squares (CUSQ) test to the case of nonstationary autoregressive distributed lag models with deterministic time trends. The test may be implemented with either ordinary least squares residuals or standardized forecast errors. In explosive cases the asymptotic theory applies more generally for the least squares residuals-based test. Preliminary simulations of the tests suggest a very modest difference between the tests and a very modest variation with nuisance parameters. This supports the use of the tests in explorative analysis.

1. INTRODUCTION

Cumulative sum of squares (CUSQ) tests are used for testing constancy of the variance of regression errors. The tests were proposed for the fixed regressor case by Brown, Durbin, and Evans (1975). The CUSQ test may be implemented with either least squares residuals or forecast residuals. Here we investigate the behavior of both CUSQ tests when applied to autoregressive distributed lag models, possibly with deterministic trends and unit root and explosive stochastic trends.

We show that the usual asymptotic distribution applies quite generally for the least squares test. This is important in applications as the question of variance constancy can be addressed without having to locate the characteristic roots. For the forecast test the usual asymptotic distribution applies in nonexplosive and purely explosive cases, but nuisance terms may arise in explosive cases. The results generalize work for stationary cases by Ploberger and Krämer (1986) and Deng and Perron (2008a). Lee et al. (2003) considered the least squares test for a unit root autoregression without deterministic terms. The present analysis is based on the results of Lai and Wei (1985) and Nielsen (2005), and is easiest for the least squares test.

[^0]A small-scale simulation study indicates that there is not much diffence in the finite sample distribution of the two test statistics. This adheres to the findings of Deng and Perron (2008a) that, in the context of stationary models, there is not much difference in size or power when applying the statistics to test for changes in the residual variance. Moreover, the finite sample distributions vary very little with nuisance parameters, indicating that the tests are approximately similar.

The paper is organized so that the two test statistics are presented in $\S 2$ while the model assumptions are presented in Section 3. The asymptotic results for the least squares test and the forecast test are presented in Sections 4 and 5, respectively. Section 6 contains a simulation study involving first-order autoregressions. The proofs are given in the Appendix. We refer to Nielsen and Sohkanen (2009) for an empirical illustration.

2. THE TEST STATISTICS

The forecast residual-based test statistic was suggested along with exact distribution results by Brown et al. (1975) for the classical linear regression
$y_{t}=\beta^{\prime} x_{t}+\varepsilon_{t} \quad$ for $t=1, \ldots, T$,
where y_{t} is a scalar, x_{t} is an M-dimensional regressor, and the errors are independently normal, $\mathrm{N}\left(0, \sigma^{2}\right)$-distributed. Computing recursive least squares estimators as
$\hat{\beta}_{t}=\left(\sum_{s=1}^{t} x_{s} x_{s}^{\prime}\right)^{-1} \sum_{s=1}^{t} x_{s} y_{s} \quad$ for $t=M, \ldots, T$,
along with the recursive forecast residuals
$\tilde{\varepsilon}_{t}=\left\{1+x_{t}^{\prime}\left(\sum_{s=1}^{t-1} x_{s} x_{s}^{\prime}\right)^{-1} x_{t}\right\}^{-1 / 2}\left(y_{t}-\hat{\beta}_{t-1}^{\prime} x_{t}\right) \quad$ for $t>M$,
the CUSQ plot with recursive residuals is defined as
$\operatorname{CUSQ}_{t, T}^{R E C}=\sqrt{T}\left(\frac{\sum_{s=M}^{t} \tilde{\varepsilon}_{s}^{2}}{\sum_{s=M}^{T} \tilde{\varepsilon}_{s}^{2}}-\frac{t-M}{T-M}\right) \quad$ for $t \geq M$.
The alternative least squares residual-based test statistic was mentioned in passing by Brown et al. (1975) and analyzed in detail by McCabe and Harrison (1980). Computing recursive residual variances
$\hat{\sigma}_{t}^{2}=t^{-1} \sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{2} \quad$ for $M \leq t$,
based on the least squares residuals
$\hat{\varepsilon}_{s, t}=y_{s}-\hat{\beta}_{t}^{\prime} x_{s} \quad$ for $M \leq t$,
the CUSQ plot with least squares residuals is defined as
$\operatorname{CUSQ}_{t, T}^{O L S}=t / \sqrt{T}\left(\frac{\hat{\sigma}_{t}^{2}}{\hat{\sigma}_{T}^{2}}-1\right)=\sqrt{T}\left(\frac{\sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{2}}{\sum_{s=1}^{T} \hat{\varepsilon}_{s, T}^{2}}-\frac{t}{T}\right) \quad$ for $t>M$.

3. MODEL AND ASSUMPTIONS

To facilitate an analysis of trending time series we focus on autoregressive distributed lag regressions and assume vector autoregressive behavior for the variables involved.

Suppose a p-dimensional time series $X_{1-k}, \ldots, X_{0}, \ldots, X_{T}$ is observed and that X_{t} is partitioned as $\left(Y_{t}, Z_{t}^{\prime}\right)^{\prime}$ where Y_{t} is univariate and Z_{t} is of dimension $p-1 \geq 0$. The autoregressive distributed lag regression of order k is given by

$$
\begin{equation*}
Y_{t}=\rho Z_{t}+\sum_{j=1}^{k} \alpha_{j} Y_{t-j}+\sum_{j=1}^{k} \beta_{j}^{\prime} Z_{t-j}+\nu D_{t-1}+\varepsilon_{t}, \quad t=1, \ldots T \tag{3.1}
\end{equation*}
$$

where D_{t} is a deterministic term. When the time series is univariate so $p=1$ and $X_{t}=Y_{t}$, the regression reduces to a univariate autoregression. A variant of the regression omits the contemporaneous regressor Z_{t}, giving the regression

$$
\begin{equation*}
Y_{t}=\sum_{j=1}^{k} \alpha_{j} Y_{t-j}+\sum_{j=1}^{k} \beta_{j}^{\prime} Z_{t-j}+\nu D_{t-1}+\varepsilon_{t}, \quad t=1, \ldots T . \tag{3.2}
\end{equation*}
$$

In order to characterize the asymptotic distribution of our test statistics, the joint distribution of the time series $X_{t}=\left(Y_{t}, Z_{t}^{\prime}\right)^{\prime}$ needs to be specified. We will assume that X_{t} and D_{t} satisfy the vector autoregressions

$$
\begin{align*}
X_{t} & =\sum_{j=1}^{k} A_{j} X_{t-j}+\mu D_{t-1}+\xi_{t}, \quad t=1, \ldots T \tag{3.3}\\
D_{t} & =\mathbf{D} D_{t-1} \tag{3.4}
\end{align*}
$$

where \mathbf{D} is a deterministic matrix with properties to be given below. The innovations ξ_{t} satisfy a martingale difference assumption.

Assumption A. Assume $\left(\xi_{t}, \mathcal{F}_{t}\right)$ is a martingale difference sequence, so $\mathrm{E}\left(\xi_{t} \mid \mathcal{F}_{t-1}\right)=0$. The initial values X_{0}, \ldots, X_{1-k} are \mathcal{F}_{0}-measurable and $\sup _{t} \mathrm{E}\left\{\left(\xi_{t}^{\prime} \xi_{t}\right)^{\lambda / 2} \mid \mathcal{F}_{t-1}\right\} \lll$ for some $\lambda>4$, $\mathrm{E}\left(\xi_{t} \xi_{t}^{\prime} \mid \mathcal{F}_{t-1}\right) \stackrel{\text { a.s. }}{=} \Omega \quad$ where Ω is positive definite.

The deterministic term D_{t} is a vector of polynomial, periodic terms. For example,
$\mathbf{D}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right) \quad$ with $\quad D_{0}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
generates a linear trend, a constant, and a biannual dummy. Specifically, the deterministic term satisfies the following assumption.

Assumption B. $|\operatorname{eigen}(\mathbf{D})|=1$ and $\operatorname{rank}\left(D_{1}, \ldots, D_{\operatorname{dim} \mathbf{D}}\right)=\operatorname{dim} \mathbf{D}$.
Nearly all values of autoregressive parameters A_{j} are allowed in the vector autoregression (3.3), including stationary roots, roots on the unit circle, and a range of explosive roots. The only exception is the case of singular explosive roots that can arise for vector autoregressions where $p \geq 2$ with more than one explosive root; see Anderson (1959), Duflo et al. (1991), Phillips and Magdalinos (2008), and Nielsen (2008) for further discussion. Thus, define the companion matrices
$\mathbf{B}=\left\{\begin{array}{cc}\left(A_{1}, \ldots, A_{k-1}\right) & A_{k} \\ I_{p(k-1)} & 0\end{array}\right\}, \quad \mu=\left\{\begin{array}{c}\mu \\ 0\end{array}\right\}, \quad \mathbf{S}=\left\{\begin{array}{cc}\mathrm{B} & \mu \\ 0 & \mathrm{D}\end{array}\right\}$.
Assumption C. All explosive roots of \mathbf{B} have geometric multiplicity of unity. That is, for all complex λ so $|\lambda|>1$ then $\operatorname{rank}\left(\mathbf{B}-\lambda I_{p k}\right) \geq p k-1$.

The parameters and innovations of the regressions (3.1) and (3.2) can be linked to the vector autoregression (3.3) through the limits of the least squares estimators arising from (3.1) and (3.2). For this purpose define
$\xi_{t}=\binom{\xi_{t}^{(1)}}{\xi_{t}^{(2)}}, \quad \Omega=\left(\begin{array}{ll}\Omega_{y y} & \Omega_{y z} \\ \Omega_{z y} & \Omega_{z z}\end{array}\right)$,
conformably with $X_{t}=\left(Y_{t}, Z_{t}^{\prime}\right)^{\prime}$. It then holds for equation (3.1) that
$\rho=\Omega_{y z} \Omega_{z z}^{-1}, \quad \varepsilon_{t}=(1,-\rho) \xi_{t}, \quad\left(\alpha_{j}, \beta_{j}^{\prime}\right)=(1,-\rho) A_{j}$,
$\sigma^{2}=\Omega_{y y}-\Omega_{y z} \Omega_{z z}^{-1} \Omega_{z y}$,
where σ^{2} is the variance of the innovation ε_{t}. Similarly, for equation (3.2) it holds that
$\left(\alpha_{j}, \beta_{j}^{\prime}\right)=(1,0) A_{j}, \quad \varepsilon_{t}=(1,0) \xi_{t}, \quad \sigma^{2}=\Omega_{y y}$.
In addition an invariance principle for the partial sums of squared innovations $\sum_{s=1}^{t} \varepsilon_{s}^{2}$ and a law of large numbers for $\sum_{s=1}^{t} \varepsilon_{s}^{4}$ are needed. Such results could be assumed. To be more explicit we assume a martingale structure for ε_{t}^{2}.

Assumption D. For the regression (3.1), \mathcal{G}_{t-1} is the σ-field generated by Z_{t} and \mathcal{F}_{t-1}, while $\mathcal{G}_{t}=\mathcal{F}_{t}$ for the regression (3.2). Suppose $\left(\varepsilon_{t}^{2}-\sigma^{2}, \mathcal{G}_{t}\right)$ is a martingale difference sequence satisfying $\operatorname{Var}\left(\varepsilon_{t}^{2}-\sigma^{2} \mid \mathcal{G}_{t-1}\right)=\varphi^{2}$ a.s. for some $\varphi>0$ and $\sup _{t} \mathrm{E}\left(\left|\varepsilon_{t}\right|^{\lambda} \mid \mathcal{G}_{t-1}\right)<\infty$ a.s. for some $\lambda>4$.

4. ASYMPTOTIC ANALYSIS OF THE CUSQ ${ }^{O L S} \boldsymbol{S}_{-S T A T I S T I C}$

 residuals of (3.1) or (3.2). The key to the asymptotic analysis is to generalize Deng and Perron (2008a, Lem. 2) showing that the sum of squared residuals is close to the sum of squared innovations. A first step is the following lemma.

LEMMA 4.1. Assume A, B, C. Then $t^{-1 / 2} \sum_{s=1}^{t}\left(\hat{\varepsilon}_{s, t}^{2}-\varepsilon_{s}^{2}\right) \rightarrow 0$ a.s.
The next step is to turn this into a result about $x_{t}=T^{-1 / 2} \sum_{s=1}^{t}\left(\hat{\varepsilon}_{s, t}^{2}-\varepsilon_{s}^{2}\right)$. Due to the next lemma then $\sup _{t \leq T}\left(\left|x_{t}\right|\right) \rightarrow 0$ a.s., so $x_{\text {int }(T u)}$ vanishes on $D[0,1]$, the space of right-continuous functions on $[0,1]$ with left limits.

LEMMA 4.2. Let x_{t} be a sequence so $t^{-1 / 2} x_{t} \rightarrow 0$. Then $\sup _{t \leq T} T^{-1 / 2}$ $\left|x_{t}\right| \rightarrow 0$.

The normalized partial sums of squared innovations are asymptotically Brownian. This follows through a direct application of Chan and Wei (1988, Thm. 2.2).

LEMMA 4.3. Assume D. Let \mathcal{B} be a standard Brownian motion. Then, for $u \in$ $[0,1]$, it holds that $T^{-1 / 2} \sum_{s=1}^{\text {int }(T u)}\left(\varepsilon_{s}^{2}-\sigma^{2}\right) \rightarrow \varphi \mathcal{B}_{u}$ in distribution on $D[0,1]$.

The main result concerning the $\mathrm{CUSQ}^{O L S}$-statistic now follows.
THEOREM 4.4. Assume A, B, C, D. Let \mathcal{B}° be a standard Brownian bridge. Then
(i) $\operatorname{CUSQ}_{i n t(T u), T}^{O L S} \rightarrow \sigma^{-2} \varphi \mathcal{B}_{u}^{\circ}$ in distribution on $D[0,1]$.
(ii) $\sup _{t \leq T}\left|C U S Q_{t, T}^{O L S}\right| \rightarrow \sigma^{-2} \varphi \sup _{u \leq 1}\left|\mathcal{B}_{u}^{\circ}\right|$ in distribution on \mathbb{R}.

The above result involves a nuisance parameter φ. For normal innovations it holds that $\sigma^{-2} \varphi=\sqrt{2}$. In general, σ^{2} is estimated consistently by the sample variance due to Lemma 4.1, whereas φ is estimated consistently by a fourthmoment estimator as shown next.

THEOREM 4.5. Assume A, B, C, D. Then $\hat{\varphi}_{t}^{2}=t^{-1} \sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{4}-\left(t^{-1} \sum_{s=1}^{t}\right.$ $\left.\hat{\varepsilon}_{s, t}^{2}\right)^{2} \xrightarrow{P} \varphi^{2}$.

Remark 4.6. The convergence in Theorem 4.5 could be strengthened to almost sure convergence if it were assumed that ε_{t}^{3} is a martingale difference.

A convergence result for φ_{t} as a process on $D[0,1]$ could then be deduced. The proof would follow by combining the presented proof with Theorem 2.4 of Nielsen (2005).

5. ASYMPTOTIC BEHAVIOR OF THE CUSQ ${ }^{\text {REC }}$-TEST

Consider now the CUSQ ${ }^{R E C}$-statistic (2.4) applied to regressions (3.1) and (3.2). This statistic is more complicated to describe than the CUSQ ${ }^{O L S}$-statistic. A nuisance term arises in special cases.

In order to generalize Deng and Perron (2008a, Lem. 2) decompose the vector autoregression into its nonexplosive and explosive parts. Thus, define the companion vector $S_{t-1}=\left(X_{t-1}^{\prime}, \ldots X_{t-k}^{\prime}, D_{t-1}^{\prime}\right)$ and the selection matrix $t=$ $\left(I_{p}, 0_{(p k-p+\operatorname{dim} \mathbf{D}) \times p}\right)^{\prime}$. Recalling the companion matrix \mathbf{S} defined in (3.7), the vector autoregression satisfies a first-order vector autoregression $S_{t}=\mathbf{S} S_{t-1}+l \xi_{t}$. As noted in, for instance, Nielsen (2005, Sect. 3), there exists a real matrix M so $M S M^{-1}$ is block diagonal and
$M S_{t}=\binom{R_{t}}{W_{t}}=\left(\begin{array}{cc}\mathbf{R} & 0 \\ 0 & \mathbf{W}\end{array}\right)\binom{R_{t-1}}{W_{t-1}}+\binom{e_{R, t}}{e_{W, t}}$,
where the absolute values of the eigenvalues of \mathbf{R} and \mathbf{W} are at most one and greater than one, respectively. Deterministic components are subsumed into the R_{t}-process.

The difference between the sum of squared forecast residuals and the sum of squared innovations will in general involve a nuisance term.

LEMMA 5.1. Assume A, B, C and that either $\operatorname{dim} \mathbf{R}=0$ or $\operatorname{dim} \mathbf{W}=0$. Then $\sum_{s=1}^{t}\left(\tilde{\varepsilon}_{s}^{2}-\varepsilon_{s}^{2}\right)=\mathrm{o}\left(t^{1 / 2}\right)$ a.s.

Remark 5.2. If the process is mixed so that $\operatorname{dim} \mathbf{R}>0$ and $\operatorname{dim} \mathbf{W}>0$ then several nonnegligible nuisance terms will appear in Lemma 5.1. It is not immediately clear if these nuisance terms will cancel each other.

A limiting result for the CUSQ ${ }^{R E C}$ then follows by exactly the same argument as that of Theorem 4.4, replacing Lemma 4.1 by Lemma 5.1.

THEOREM 5.3. Assume A, B, C, D and that either $\operatorname{dim} \mathbf{R}=0$ or $\operatorname{dim} \mathbf{W}=0$. Then
(i) $\operatorname{CUSQ}_{i n t(T u), T}^{R E C} \rightarrow \sigma^{-2} \varphi \mathcal{B}_{u}^{\circ}$ in distribution on $D[0,1]$,
(ii) $\sup _{t \leq T}\left|C U S Q_{t, T}^{R E C}\right| \rightarrow \sigma^{-2} \varphi \sup _{u \leq 1}\left|\mathcal{B}_{u}^{\circ}\right|$ in distribution on \mathbb{R}.

6. SIMULATION STUDY

Theorems 4.4 and 5.3 show that the two types of CUSQ-statistics have the usual limit distribution in many situations. This leaves the questions of whether the

Table 1. Simulated means and medians of the CUSQ tests for different values of α. The Monte Carlo standard error is 2.5×10^{-4}. The slight variation in the reported figures is therefore significant.

	$S^{\text {OLS }}$			$S^{\text {REC }}$	
α		Median		Mean	Median
-1.2	0.790	0.750		0.797	0.758
-1.0	0.789	0.749		0.796	0.757
-0.9	0.789	0.748	0.795	0.756	
0.0	0.788	0.748		0.795	0.756
0.9	0.789	0.748		0.795	0.756
1.0	0.789	0.749		0.796	0.757
1.2	0.790	0.749	0.797	0.758	

finite sample distributions are different for the two statistics and whether they depend on the autoregressive parameters. These questions are addressed through a small-scale Monte Carlo study. For the important question of the power of these tests, we refer to Deng and Perron (2008a, 2008b).

The data generating process is a univariate autoregression, $X_{t}=\alpha X_{t-1}+\varepsilon_{t}$ for $t=1, \ldots, T=100$ with initial value $X_{0}=0$, standard normal innovations, and a range of autoregressive parameters α. The number of repetitions was 10^{6}. Due to the normality $\sigma^{-2} \varphi=\sqrt{2}$, so the statistics of interest are $S^{O L S}=\max _{M \leq t \leq T}\left|\operatorname{CUSQ}_{t, T}^{O L S}\right| / \sqrt{2}$ and $S^{R E C}=\max _{M \leq t \leq T}\left|\mathrm{CUSQ}_{t, T}^{R E C}\right| / \sqrt{2}$; see (2.5). Theorems 4.4 and 5.3 show that their limit distribution is the supremum of a Brownian bridge. Billingsley (1999, pp. 101-104) gives an analytic expression for the distribution function. In particular, the 95% quantile is 1.36 ; see Schumacher (1984, Tab. 9)

Table 1 reports the mean and median of the two statistics as a function of α. The variation of the distribution for the two supremum statistics is very small but significant when taking the Monte Carlo precision into account. This impression was confirmed when looking at other descriptives such as standard deviation, 95% quantile, and p-value of the asymptotic 95% quantile when $\alpha=0$.

Two conclusions emerge from this small-scale Monte Carlo study. First, there is not much difference in finite sample distribution for the two statistics. Second, there is very little variation in the finite sample distribution with the unknown parameter. This suggests that very simple finite sample corrections could be used.

REFERENCES

Anderson, T.W. (1959) On asymptotic distributions of estimates of parameters of stochastic difference equations. Annals of Mathematical Statistics 30, 676-687.
Billingsley, P. (1999) Convergence of Probability Measures. Wiley Series in Probability and Statistics. Wiley.

Brown, R., J. Durbin, \& J. Evans (1975) Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society. Series B (Methodological) 37, 149-192.
Chan, N.H. \& C.Z. Wei (1988) Limiting distributions of least squares estimates of unstable autoregressive processes. Annals of Statistics 16, 367-401.
Deng, A. \& P. Perron (2008a) The limit distribution of the CUSUM of squares test under general mixing conditions. Econometric Theory 24, 809-822.
Deng, A. \& P. Perron (2008b) A non-local perspective on the power properties of the CUSUM and CUSUM of squares tests for structural change. Journal of Econometrics 142, 212-240.
Duflo, M., R. Senoussi, \& R. Touati (1991) Propriétés asymptotiques presque sûre de l'estimateur des moindres carrés d'un modèle autorégressif vectoriel. Annales de l'Institut Henri Poincaré Probabilités et Statistiques 27, 1-25.
Hall, P. \& C. Heyde (1980) Martingale Limit Theory and Its Application (Probability and Mathematical Statistics). Academic Press.
Lai, T.L. \& C.Z. Wei (1982) Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Annals of Statistics 10, 154-166.
Lai, T.L. \& C.Z. Wei (1985) Asymptotic properties of multivariate weighted sums with applications to stochastic regression in linear dynamic systems. In P. Krishnaiah (ed.), Multivariate Analysis VI, pp. 375-393. Elsevier Science.
Lee, S., O. Na, \& S. Na (2003) On the CUSUM of squares test for variance change in non-stationary and non-parametric time series models. Annals of the Institute of Statistical Mathematics 55, 467-485.
McCabe, B.P.M. \& M.J. Harrison (1980) Testing the constancy of regression relationships over time using least squares residuals. Applied Statistics 29, 142-148.
Nielsen, B. (2005) Strong consistency results for least squares estimators in general vector autoregressions with deterministic terms. Econometric Theory 21, 534-561.
Nielsen, B. (2008) Singular Vector Autoregressions with Deterministic Terms: Strong Consistency and Lag Order Determination. Discussion paper, Nuffield College.
Nielsen, B. \& J.S. Sohkanen (2009) Asymptotic Behaviour of the CUSUM of Squares Test under Stochastic and Deterministic Time Trends. Discussion paper, Nuffield College.
Phillips, P. \& T. Magdalinos (2008) Limit theory for explosively cointegrated systems. Econometric Theory 24, 865-887.
Ploberger, W. \& W. Krämer (1986) On studentizing a test for structural change. Economics Letters 20, 341-344.
Schumacher, M. (1984) Two-sample tests of Cramer-von Mises and Kolmogorov-Smirnov type for randomly censored data. International Statistical Review 52, 263-281.

APPENDIX: Proofs

Notation: For a matrix m, let $\|m\|^{2}=\lambda_{\max }\left(\mathrm{mm}^{\prime}\right)$, where $\lambda_{\text {max }}$ gives the greatest eigenvalue of the matrix.

A.1. The Case of Least Squares Residuals

Proof of Lemma 4.1. Partition ξ_{t} as $\left(\xi_{t}^{(1)}, \xi_{t}^{(2) \prime}\right)^{\prime}$ and partition the least squares residuals, $\hat{\xi}_{s, t}$, of X_{t} on $X_{t-1}, \ldots X_{t-k}$ and D_{t-1} conformably. We start by arguing
$\frac{1}{t} \sum_{s=1}^{t}\left(\hat{\varepsilon}_{S, t}^{2}-\varepsilon_{S}^{2}\right) \stackrel{\text { a.s. }}{=} \mathrm{o}\left(t^{-1 / 2}\right)$.
First, if Z_{t} is excluded as regressor as in (3.2) then $\sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{2}=\sum_{s=1}^{t}\left(\hat{\xi}_{s, t}^{(1)}\right)^{2}$. Combine this with Nielsen (2005, Cor. 2.6) to see that $t^{-1} \sum_{s=1}^{t}\left(\hat{\xi}_{s, t} \hat{\xi}_{s, t}^{\prime}-\xi_{s} \xi_{s}^{\prime}\right)=\mathrm{o}\left(t^{-1 / 2}\right)$ a.s., assuming Assumptions A, B, C. The result (A.1) then follows.

Second, if Z_{t} is included as regressor as in (3.1), then
$\sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{2}=\sum_{s=1}^{t}\left(\hat{\xi}_{s, t}^{(1)}\right)^{2}-\sum_{s=1}^{t} \hat{\xi}_{s, t}^{(1)} \hat{\xi}_{s, t}^{(2) \prime}\left\{\sum_{s=1}^{t} \hat{\xi}_{s, t}^{(2)} \hat{\xi}_{s, t}^{(2) \prime}\right\}^{-1} \sum_{s=1}^{t} \hat{\xi}_{s, t}^{(2)} \hat{\xi}_{s, t}^{(1)}$.
By Nielsen (2005, Cor. 2.6) then
$\sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{2} \stackrel{\text { a.s. }}{=}\left[\sum_{s=1}^{t}\left(\xi_{s}^{(1)}\right)^{2}-\sum_{s=1}^{t} \xi_{s}^{(1)} \xi_{s}^{(2) \prime}\left\{\sum_{s=1}^{t} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right\}^{-1} \sum_{s=1}^{t} \xi_{s}^{(2)} \xi_{s}^{(1)}\right]\left\{1+\mathrm{o}\left(t^{-1 / 2}\right)\right\}$.
Since $\xi_{s}^{(1)}=\varepsilon_{s}+\rho \xi_{s}^{(2)}$ then
$\sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{2} \stackrel{\text { a.s. }}{=}\left[\sum_{s=1}^{t} \varepsilon_{s}^{2}-\sum_{s=1}^{t} \varepsilon_{s} \xi_{s}^{(2) \prime}\left\{\sum_{s=1}^{t} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right\}^{-1} \sum_{s=1}^{t} \xi_{s}^{(2)} \varepsilon_{s}\right]\left\{1+\mathrm{o}\left(t^{-1 / 2}\right)\right\}$.
Using that $\mathrm{E}\left(\varepsilon_{s} \xi_{s}^{(2) \prime}\right)=(1,-\rho) \Omega(0, I)^{\prime}=0$ along with Nielsen (2005, Thm. 2.8) shows that $t^{-1} \sum_{s=1}^{t} \varepsilon_{s} \xi_{s}^{(2) \prime}=\mathrm{o}\left(t^{-1 / 4}\right)$ a.s. so that (A.1) follows.

Proof of Lemma 4.2. Since $t^{-1 / 2} x_{t} \rightarrow 0$ then a finite t_{0} exists such that $t^{-1 / 2}\left|x_{t}\right|<\epsilon$ for all $t>t_{0}$. Since $t \leq T$, then $T^{-1 / 2} \leq t^{-1 / 2}$ so $T^{-1 / 2}\left|x_{t}\right|<\epsilon$ for all $t>t_{0}$. It follows that $\sup _{t>t_{0}} T^{-1 / 2}\left|x_{t}\right|<\epsilon$. Moreover, since t_{0} is finite, then $\max _{t \leq t_{0}}\left|x_{t}\right|$ is finite and we also have $\sup _{t \leq t_{0}} T^{-1 / 2}\left|x_{t}\right|<\epsilon$. In combination we have that for T sufficiently large then $\sup _{t \leq T} T^{-1 / 2}\left|x_{t}\right|<\epsilon$. The desired result follows since ϵ was arbitrary.

Proof of Theorem 4.4.

(i) Lemmas 4.1, 4.2, and 4.3 imply

$$
\begin{aligned}
& T^{-1 / 2} \sum_{s=1}^{\operatorname{int}(T u)}\left(\hat{\varepsilon}_{s, \operatorname{int}(T u)}^{2}-\sigma^{2}\right) \\
& \quad=T^{-1 / 2} \sum_{s=1}^{\operatorname{int}(T u)}\left(\hat{\varepsilon}_{s, \operatorname{int}(T u)}^{2}-\varepsilon_{s}^{2}\right)+T^{-1 / 2} \sum_{s=1}^{\operatorname{int}(T u)}\left(\varepsilon_{s}^{2}-\sigma^{2}\right) \xrightarrow{\mathrm{D}} \varphi \mathcal{B}_{u}
\end{aligned}
$$

on $D[0,1]$. Next, rewrite the CUSQ-statistic as

$$
\mathrm{CUSQ}_{\mathrm{int}(T u), T}^{O L S}=\frac{T^{-1 / 2}\left\{\sum_{s=1}^{\operatorname{int}(T u)}\left(\hat{\varepsilon}_{s, \operatorname{int}(T u)}^{2}-\sigma^{2}\right)-T^{-1} t \sum_{s=1}^{T}\left(\hat{\varepsilon}_{s, T}^{2}-\sigma^{2}\right)\right\}}{T^{-1} \sum_{s=1}^{T} \hat{\varepsilon}_{s, T}^{2}},
$$

and insert the above convergence result.
(ii) Taking supremum entails taking a continuous mapping on $D[0,1]$.

A.2. Consistency of $\hat{\varphi}_{t}$

Proof of Theorem 4.5. The result is proved for the regression (3.1) including Z_{t} as regressor. The argument for the regression (3.2) can be made in a similar way.

Due to Lemma 4.1, $t^{-1} \sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{2}$ and $t^{-1} \sum_{s=1}^{t} \varepsilon_{s}^{2}$ have the same limit. If the same is shown for $t^{-1} \sum_{s=1}^{t} \hat{\varepsilon}_{s, t}^{4}$ and $t^{-1} \sum_{s=1}^{t} \varepsilon_{s}^{4}$, then the desired result follows from a law of large numbers applied to $t^{-1} \sum_{s=1}^{t} \varepsilon_{s}^{2}$ and $t^{-1} \sum_{s=1}^{t} \varepsilon_{s}^{4}$, assuming A and D.

Since $Z_{t}=\theta S_{t-1}+\xi_{t}^{(2)}$ for some θ (see (3.3)), regression on regressors Z_{t}, S_{t-1} and on regressors $x_{t}=\left(\xi_{t}^{(2) \prime}, S_{t-1}^{\prime}\right)^{\prime}$ is equivalent. Define
$P_{t}=\sum_{s=1}^{t} \varepsilon_{s} x_{s}^{\prime}\left(\sum_{s=1}^{t} x_{s} x_{s}^{\prime}\right)^{-1 / 2}, \quad Q_{s, t}=\left(\sum_{s=1}^{t} x_{s} x_{s}^{\prime}\right)^{-1 / 2} x_{s}$,
so $\hat{\varepsilon}_{s, t}=\varepsilon_{t}-P_{t} Q_{s, t}$. To prove $\sum_{s=1}^{t}\left(\hat{\varepsilon}_{s, t}^{4}-\varepsilon_{s}^{4}\right)=\mathrm{o}(t)$, apply a binomial expansion to $\hat{\varepsilon}_{s, t}^{4}$ so it suffices to prove $\mathcal{I}_{m}=\sum_{s=1}^{t}\left(P_{t} Q_{s, t}\right)^{m} \varepsilon_{s}^{4-m}=\mathrm{o}_{P}(t)$ for $m=1, \ldots, 4$.

First, argue that $P_{t}=\mathrm{o}\left(t^{1 / 4}\right)$ a.s. The series $\xi_{s}^{(2)}$ and S_{s-1} are asymptotically uncorrelated due to Nielsen (2005, Thm. 2.4) given Assumptions A, B, C, and D. Thus
$P_{t} \stackrel{\text { a.s. }}{=}\left\{\sum_{s=1}^{t} \varepsilon_{s} \xi_{s}^{(2) \prime}\left(\sum_{s=1}^{t} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right)^{-1 / 2}+\sum_{s=1}^{t} \varepsilon_{s} S_{s-1}^{\prime}\left(\sum_{s=1}^{t} S_{s-1} S_{s-1}^{\prime}\right)^{-1 / 2}\right\}\{1+\mathrm{o}(1)\}$.
This is of the desired order due to Nielsen (2005, Thms. 2.4, 2.8, Cor. 2.6) given Assumptions A, B, C, and the construction $\mathrm{E}\left(\varepsilon_{s} \xi_{s}^{(2) \prime}\right)=0$.

Second, consider $\mathcal{I}_{1}=P_{t}\left(\sum_{s=1}^{t} x_{s} x_{s}^{\prime}\right)^{-1 / 2} \sum_{s=1}^{t} x_{s} \varepsilon_{t}^{3}$. As in (5.1) we can decompose S_{t-1} into autoregressions $U_{t-1}, V_{t-1}, W_{t-1}$ with stationary, unit and explosive roots. The components $\dot{\xi}_{t}^{(2)}, U_{t-1}, V_{t-1}, W_{t-1}$ are asymptotically uncorrelated due to Nielsen (2005, Thms. 2.4, 9.1, 9.2, 9.4) given Assumptions A, B, C. Thus, as above,

$$
\begin{aligned}
\mathcal{I}_{1} \stackrel{\text { a.s. }}{=} P_{t} & {\left[\left\{\sum_{s=1}^{t} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right\}^{-1 / 2} \sum_{s=1}^{t} \xi_{s}^{(2)} \varepsilon_{t}^{3}+\left\{\sum_{s=1}^{t} U_{s-1} U_{s-1}^{\prime}\right\}^{-1 / 2} \sum_{s=1}^{t} U_{s-1} \varepsilon_{t}^{3}\right.} \\
& \left.+\left\{\sum_{s=1}^{t} V_{s-1} V_{s-1}^{\prime}\right\}^{-1 / 2} \sum_{s=1}^{t} V_{s-1} \varepsilon_{t}^{3}+\left\{\sum_{s=1}^{t} W_{s-1} W_{s-1}^{\prime}\right\}^{-1 / 2} \sum_{s=1}^{t} W_{s-1} \varepsilon_{t}^{3}\right]
\end{aligned}
$$

$$
\begin{equation*}
\{1+o(1)\} . \tag{A.2}
\end{equation*}
$$

The first term of (A.2) involving $\xi_{s}^{(2)}$ is bounded by

$$
\left|P_{t}\left(\sum_{s=1}^{t} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right)^{-1 / 2} \sum_{s=1}^{t} \xi_{s}^{(2)} \varepsilon_{t}^{3}\right| \leq\left|P_{t}\right|\left\{\max _{s \leq t}\left|\left(\sum_{s=1}^{t} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right)^{-1 / 2} \xi_{s}^{(2)}\right|\right\} \sum_{s=1}^{t}\left|\varepsilon_{s}^{3}\right| .
$$

Here $P_{t}=\mathrm{o}\left(t^{1 / 4}\right)$ a.s given Assumption A. The second term is $\mathrm{o}\left(t^{-1 / 4-\eta}\right)$ a.s. for some $\eta>0$ since $t^{-1} \sum_{s=1}^{t} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}$ is convergent and $\xi_{s}^{(2)}=\mathrm{o}\left(t^{-1 / 4-\eta}\right)$ a.s. for all $\eta>0$; see Nielsen (2005, Thms. 5.1, 6.1)). The third term is $\sum_{s=1}^{t}\left|\varepsilon_{s}^{3}\right|=\mathrm{o}\left(t^{1+\eta}\right)$ a.s. for all $\eta>0$; see Nielsen (2005 Thm. 7.3). Overall, the first term of (A.2) is o (t).

The second term of (A.2) involving U_{s-1} is analyzed the same way.
The third term of (A.2) involving V_{s-1} is bounded by

$$
\left|P_{t}\left(\sum_{s=1}^{t} V_{s} V_{s}^{\prime}\right)^{-1 / 2}\left(\sum_{s=1}^{t} V_{s}\right) \varepsilon_{t}^{3}\right| \leq\left|P_{t}\right|\left\{\max _{s \leq t}\left|\left(\sum_{s=1}^{t} V_{s} V_{s}^{\prime}\right)^{-1 / 2} V_{s}\right|\right\} \sum_{s=1}^{t}\left|\varepsilon_{s}^{3}\right| .
$$

Introduce normalizations for the unit root process V_{s-1} as in Chan and Wei (1988) to see that the second term is $\mathrm{O}_{p}\left(t^{-1 / 2}\right)$ assuming A, B. The last term is $\mathrm{o}\left(t^{1+\eta}\right)$ for all $\eta>0$; see Nielsen (2005, Thm. 7.3). Overall, the bound is $\mathrm{o}\left(t^{3 / 4+\eta}\right)$.

The fourth term of (A.2) involving W_{s-1} is bounded by

$$
\left\|\sum_{s=1}^{t} \mathbf{W}^{-t} W_{s-1} W_{s-1}^{\prime}\left(\mathbf{W}^{\prime}\right)^{-t}\right\|^{-1 / 2}\left(\sum_{s=1}^{t}\left\|\mathbf{W}^{-t} W_{s-1}\right\|\right) \max _{s \leq t}\left\|\varepsilon_{s}\right\|^{3}
$$

The first two terms are convergent, while the last term is $\mathrm{o}\left(t^{3 / 4}\right)$ since $\varepsilon_{t}=\mathrm{o}\left(t^{1 / 4}\right)$; see Nielsen (2005, Cors. 5.3, 7.2, Thm. 5.1) assuming A, C.

Third, consider \mathcal{I}_{m} for $m \geq 2$. The following bound holds:
$\mathcal{I}_{m} \leq\left\|P_{t}\right\|^{m} \max _{s \leq t}\left\|\varepsilon_{s}\right\|^{4-m} \sum_{s=1}^{t}\left(P_{s, t}^{\prime} P_{s, t}\right)^{m / 2}$.
The first two terms are $\mathrm{o}(t)$ by the arguments above. For the latter term, note that $P_{s, t}^{\prime} P_{s, t} \leq$ 1. Thus, for $m / 2 \geq 1$,
$\sum_{s=1}^{t}\left(P_{s, t}^{\prime} P_{s, t}\right)^{m / 2} \leq \sum_{s=1}^{t} P_{s, t}^{\prime} P_{s, t}=\sum_{s=1}^{t} \operatorname{tr}\left(P_{s, t} P_{s, t}^{\prime}\right)=\operatorname{tr}\left(I_{p k}\right)=p k$,
so the last term is bounded.
A.3. The Case of Recursive Residuals. Lemma 5.1 is proved in three steps. Only the regression (3.1) including Z_{t} as a regressor is considered. As in the proof of Theorem 4.5, the regressor can be taken as $x_{t}=\left(\xi_{t}^{(2) \prime}, R_{t-1}^{\prime}, W_{t-1}^{\prime}\right)^{\prime}$ where $\xi_{t}^{(2)}$ is the Z_{t}-innovation while R_{t} and W_{t} are the nonexplosive and explosive components. Define

$$
\begin{aligned}
& a_{t}=\varepsilon_{t}-\sum_{s=1}^{t-1} \varepsilon_{s} W_{s-1}^{\prime}\left(\sum_{s=1}^{t-1} W_{s-1} W_{s-1}^{\prime}\right)^{-1} W_{t-1}, \\
& A_{t}=W_{t-1}^{\prime}\left(\sum_{s=1}^{t-1} W_{s-1} W_{s-1}^{\prime}\right)^{-1} W_{t-1}, \\
& b_{t}=\sum_{s=1}^{t-1} \varepsilon_{s} \xi_{s}^{(2) \prime}\left(\sum_{s=1}^{t-1} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right)^{-1} \xi_{t}^{(2)}, \quad B_{t}=\xi_{t}^{(2) \prime}\left(\sum_{s=1}^{t-1} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right)^{-1} \xi_{t}^{(2)}, \\
& c_{t}=\sum_{s=1}^{t-1} \varepsilon_{s} R_{s-1}^{\prime}\left(\sum_{s=1}^{t-1} R_{s-1} R_{s-1}^{\prime}\right)^{-1} R_{t-1}, \quad C_{t}=R_{t-1}^{\prime}\left(\sum_{s=1}^{t-1} R_{s-1} R_{s-1}^{\prime}\right)^{-1} R_{t-1}, \\
& d_{t}=\sum_{s=1}^{t-1} \varepsilon_{s} x_{s}^{\prime}\left(\sum_{s=1}^{t-1} x_{s} x_{s}^{\prime}\right)^{-1} x_{t}, \quad D_{t}=x_{t}^{\prime}\left(\sum_{s=1}^{t-1} x_{s} x_{s}^{\prime}\right)^{-1} x_{t} \\
& f_{t}^{2}=1+D_{t}, \quad \quad \mathcal{I}_{y z}=\sum_{s=1}^{t} \frac{y_{s} z_{s}}{f_{s}^{2}}, y_{s}, z_{s} \in\left(a_{s}, b_{s}, c_{s}, d_{s}, \varepsilon_{s}\right) .
\end{aligned}
$$

LEMMA A.1. Assume A, B, C and that $\operatorname{dim} \mathbf{W}=0$. Then

$$
\begin{aligned}
\sum_{s=1}^{t}\left(\tilde{\varepsilon}_{s}^{2}-\frac{\varepsilon_{s}^{2}}{f_{s}^{2}}\right) & =\left\{\mathcal{I}_{b b}+2 \mathcal{I}_{b c}+\mathcal{I}_{c c}-2\left(\mathcal{I}_{\varepsilon b}+\mathcal{I}_{\varepsilon c}\right)\right\}\{1+\mathrm{o}(1)\} \quad \text { a.s. } \\
f_{t}^{2} & =\left(1+B_{t}+C_{t}\right)\{1+\mathrm{o}(1)\} \quad \text { a.s. }
\end{aligned}
$$

Proof of Lemma A.1. Since $\tilde{\varepsilon}_{t} f_{t}=\varepsilon_{t}-d_{t}$ then
$\sum_{s=1}^{t}\left(\tilde{\varepsilon}_{s}^{2}-\frac{\varepsilon_{s}^{2}}{f_{s}^{2}}\right)=\sum_{s=1}^{t} \frac{1}{f_{s}^{2}}\left(d_{s}^{2}-2 \varepsilon_{s} d_{s}\right)=\mathcal{I}_{d d}-2 \mathcal{I}_{\varepsilon d}$.
The components of x_{t} are asymptotically uncorrelated due to Nielsen (2005, Thm. 2.4) given Assumptions A, B, C and $\operatorname{dim} \mathbf{W}=0$. It then holds that $d_{t}=\left(b_{t}+c_{t}\right)\{1+\mathrm{o}(1)\}$ a.s. and the first result follows. The second result follows by a similar argument.

LEMMA A.2. Assume Assumption A and that $\operatorname{dim} \mathbf{W}=0$. Then $\mathcal{I}_{\varepsilon b}=\mathrm{o}\left(t^{1 / 2}\right)$ a.s.
Proof of Lemma A.2. The term $\mathcal{I}_{\varepsilon b}$ is a \mathcal{G}_{t}-martingale since b_{s} / f_{s}^{2} is \mathcal{G}_{s-1}-measurable. Therefore, by Hall and Heyde (1980, Thm. 2.18), $\mathcal{I}_{\varepsilon b}=\mathrm{o}\left(t^{1 / 2}\right)$ a.s. on the set where
$\mathcal{S}=\sum_{s=1}^{\infty} \mathrm{E}\left(s^{-1} \varepsilon_{s}^{2} b_{s}^{2} / f_{s}^{4} \mid \mathcal{G}_{s-1}\right)=\sum_{s=1}^{\infty} s^{-1} b_{s}^{2} f_{s}^{-4} \mathrm{E}\left(\varepsilon_{s}^{2} \mid \mathcal{G}_{s-1}\right)<\infty$.
It suffices to show that $\mathcal{S}=\mathrm{O}\left(\sum_{s=1}^{\infty} s^{-3 / 2} \log \log s\right)=\mathrm{O}(1)$ a.s. Note that $f_{s}^{2} \geq 1$, and $\sup _{s} \mathrm{E}\left(\varepsilon_{s}^{2} \mid \mathcal{G}_{s-1}\right)<\infty$ given Assumption A. Further, $b_{s}=\mathrm{o}\left\{\left(s^{-1 / 2} \log \log s\right)^{1 / 2}\right\}$ since
$\sum_{u=1}^{s-1} \varepsilon_{u} \xi_{u}^{(2) \prime}=\mathrm{O}\left\{(s \log \log s)^{1 / 2}\right\}, \quad\left(\sum_{u=1}^{s-1} \xi_{u}^{(2)} \xi_{u}^{(2) \prime}\right)^{-1}=\mathrm{O}\left(s^{-1}\right), \quad \xi_{s}^{(2)}=\mathrm{o}\left(s^{1 / 4}\right)$,
a.s. by Nielsen (2005, Thms. 2.4, 5.1, 6.1) assuming A.

LEMMA A.3. Assume A, B, C. Then $\mathcal{I}_{b b}, \mathcal{I}_{c c}, \mathcal{I}_{b c}=o\left(t^{1 / 2}\right)$ a.s.
Proof of Lemma A.3. Apply the expansion of f_{t}^{2} in Lemma A. 1 as $1+B_{t}+C_{t}$ while ignoring the $\mathrm{o}(1)$ remainder term for notational simplicity.

Consider $\mathcal{I}_{b b}$. The denominator satisfies $f_{s}^{2} \geq 1+B_{s}$. Further, $\mathcal{S}_{1}=\sum_{s=1}^{t-1} \varepsilon_{s} \xi_{s}^{(2) \prime}$ $\left(\sum_{s=1}^{t-1} \xi_{s}^{(2)} \xi_{s}^{(2) \prime}\right)^{-1 / 2}=\mathrm{O}\left\{(\log \log t)^{1 / 2}\right\}$ by Nielsen (2005, Thm. 2.4). Thus, for almost every outcome and $\epsilon>0$ then for large t and $s \leq t$, it holds that $\mathcal{S}_{1}^{2} \leq t^{\eta} \epsilon$ for all $\eta>0$. This implies that for large t

$$
\mathcal{I}_{b b} \leq t^{\eta} \epsilon \sum_{s=1}^{t}\left\{\xi_{s}^{(2) \prime}\left(\sum_{v=1}^{s-1} \xi_{v}^{(2)} \xi_{v}^{(2) \prime}\right)^{-1} \xi_{s}^{(2)}\right\} /\left\{1+\xi_{s}^{(2) \prime}\left(\sum_{v=1}^{s-1} \xi_{v}^{(2)} \xi_{v}^{(2) \prime}\right)^{-1} \xi_{s}^{(2)}\right\}
$$

Due to the partitioned inversion formula

$$
\begin{align*}
A_{12} A_{22}^{-1} A_{21}\left(1+A_{12} A_{22}^{-1} A_{21}\right)^{-1} & =1-(1,0)\left(\begin{array}{cc}
1 & A_{12} \\
A_{21} & A_{22}
\end{array}\right)^{-1}\binom{0}{1} \\
& =A_{12}\left(A_{22}+A_{21} A_{12}\right)^{-1} A_{21}, \tag{A.4}
\end{align*}
$$

it holds that $\mathcal{I}_{b b} \leq t^{\eta} \epsilon \sum_{s=1}^{t} \xi_{s}^{(2) \prime}\left(\sum_{v=1}^{s} \xi_{v}^{(2)} \xi_{v}^{(2) \prime}\right)^{-1} \xi_{s}^{(2)}$. The sum is of order $\mathrm{O}(\log t)$ due to Nielsen (2005, Lem. 8.6) assuming A, implying that $\mathcal{I}_{b b}$ is $\mathrm{o}\left(t^{\eta}\right)=\mathrm{o}\left(t^{1 / 2}\right)$ a.s.

Consider $\mathcal{I}_{c c}$. A similar argument shows $\mathcal{I}_{c c}=\mathrm{o}\left(t^{1 / 2}\right)$ a.s. The only slight difference is the bound for $\mathcal{S}_{2}=\sum_{s=1}^{t-1} \varepsilon_{s} R_{s-1}^{\prime}\left(\sum_{s=1}^{t-1} R_{s-1} R_{s-1}^{\prime}\right)^{-1 / 2}$. By Nielsen (2005, Thm. 2.4), assuming A, B, C, this bound is $\mathcal{S}_{2}^{2}=\mathrm{O}(\log t)$, which is still $\mathrm{o}\left(t^{\eta}\right)$ for all $\eta>0$.

Consider $\mathcal{I}_{b c}$. The Hölder inequality implies $\mathcal{I}_{b c}=\mathrm{o}\left(t^{1 / 2}\right)$ a.s.
A modified version of Lemma 2 of Lai and Wei (1982) is needed.
LEMMA A.4. Let h_{1}, h_{2}, \ldots be p-dimensional vectors and let $H_{T}=\sum_{t=1}^{T} h_{t} h_{t}^{\prime}$. Assume H_{T} is nonsingular for some T_{0}. Let λ_{T}^{*} be the maximal eigenvalue of H_{T}. Then
(i) $\sum_{t=T_{0}}^{T} h_{t}^{\prime} H_{t}^{-1} h_{t}=O\left(\log \lambda_{T}^{*}\right)$,
(ii) $h_{t}^{\prime} H_{t-1}^{-1} h_{t}=h_{t}^{\prime} H_{t}^{-1} h_{t} /\left(1-h_{t}^{\prime} H_{t}^{-1} h_{t}\right)$,
(iii) $\sum_{t=T_{0}+1}^{T} h_{t}^{\prime} H_{t-1}^{-1} h_{t}=O\left(\log \lambda_{T}^{*}\right)$.

Proof of Lemma A.4.

(i) This is the statement of Lai and Wei (1982, Lem. 2.ii).
(ii) This follows by (A.4).
(iii) By Lai and Wei (1982, Lem. 2.i) then $h_{t}^{\prime} H_{t}^{-1} h_{t}=1-\operatorname{det} H_{t} / \operatorname{det} H_{t-1}$. Combine this and (ii) to get $\sum_{t=T_{0}+1}^{T} h_{t}^{\prime} H_{t-1}^{-1} h_{t}=\sum_{t=T_{0}+1}^{T}\left(\operatorname{det} H_{t}-\operatorname{det} H_{t-1}\right) / \operatorname{det} H_{t-1}$. Then complete the argument as in the proof of Lai and Wei (1982, Lem. 2.ii).

LEMMA A.5. Assume A, B. Then, $\mathcal{I}_{\varepsilon c}=o\left(t^{1 / 2}\right)$ a.s.
Proof of Lemma A.5. Note that $\mathcal{I}_{\varepsilon c}$ is a \mathcal{G}_{t}-martingale. As in the proof of Lemma A. 2 argue that $\sum_{t=1}^{\infty} t^{-1} c_{t}^{2} / f_{t}^{4}<\infty$. Since $f_{t} \geq 1$ it suffices that $c_{t}=\mathrm{o}\left(t^{-\eta}\right)$ for some $\eta>0$. The similarity transformation M in (5.1) can be chosen so that \mathbf{R} is block diagonal with elements \mathbf{U} and \mathbf{V} with eigenvalues inside and on the complex unit circle, respectively; see Nielsen (2005, Sect. 3). These cases can be studied separately.

If $\mathbf{R}=\mathbf{U}$, apply Nielsen (2005, Thms. 2.4, 5.1, 6.2) to see that $c_{t}=\mathrm{o}\left(t^{-1 / 4}\right)$.
If $\mathbf{R}=\mathbf{V}$ then apply Lemma A.4(ii) in combination with Nielsen (2005, Thms. 2.4, 8.4) to see that $c_{t}=\mathrm{o}\left(t^{-\eta}\right)$ for some $\eta>0$.

LEMMA A.6. Assume A, B, C and that $\operatorname{dim} \mathbf{W}=0$. Then $\sum_{s=1}^{t}\left(\varepsilon_{s}^{2}-\varepsilon_{s}^{2} / f_{s}^{2}\right)=\mathrm{o}\left(t^{1 / 2}\right)$ a.s.

Proof of Lemma A.6. The expression of interest satisfies
$\sum_{s=1}^{t} \varepsilon_{s}^{2}\left(1-\frac{1}{f_{s}^{2}}\right)=\sum_{s=1}^{t} \frac{\varepsilon_{s}^{2} D_{s}}{f_{s}^{2}} \leq\left(\max _{s \leq t} \varepsilon_{s}^{2}\right) \sum_{s=1}^{t} D_{s}$,
where the inequality follows since $D_{s} \geq 0$. By Lemmas A.1, A.4(iii), and Nielsen (2005, Thm. 7.1) then $\sum_{s=1}^{t} D_{s}=\mathrm{O}(\log t)$ a.s. Moreover, $\varepsilon_{t}=\mathrm{o}\left(t^{1 / 2-\eta}\right)$ a.s. for some $\eta>0$ by Nielsen (2005, Thm. 5.1) assuming A, B, C.

LEMMA A.7. Assume A, B, C. Then $\sum_{s=1}^{t}\left\{\varepsilon_{s}^{2}-a_{s}^{2} /\left(1+A_{s}\right)\right\}=o\left(t^{1 / 2}\right)$ a.s.

Proof of Lemma A.7. Define $K_{s}=\sum_{u=1}^{s} W_{u-1} W_{u-1}^{\prime}, g_{s}=\sum_{h=1}^{s} G_{s-h, s} \varepsilon_{h}$, where $G_{s-h, s}=\left\{\begin{array}{r}-W_{s-1}^{\prime} K_{s-1}^{-1} W_{h-1}\left(1+W_{s-1}^{\prime} K_{s-1}^{-1} W_{s-1}\right)^{-1 / 2} \text { for } h<s, \\ \left(1+W_{s-1}^{\prime} K_{s-1}^{-1} W_{s-1}\right)^{-1 / 2} \text { for } h=s .\end{array}\right.$

With this definition and a change of summation order it holds that

$$
\begin{aligned}
\sum_{s=1}^{t} g_{s}^{2} & =\sum_{s=1}^{t} \sum_{h=1}^{s} G_{s-h, s}^{2} \varepsilon_{h}^{2}+2 \sum_{s=1}^{t} \sum_{h=1}^{s} G_{s-h, s} \varepsilon_{h} \sum_{\ell=1}^{h-1} G_{s-h+\ell, s} \varepsilon_{h-\ell} \\
& =\sum_{h=1}^{t} \varepsilon_{h}^{2}+\sum_{h=1}^{t}\left\{\left(\sum_{s=h}^{t} G_{s-h, s}^{2}\right)-1\right\} \varepsilon_{h}^{2}+2 \sum_{h=1}^{t} \sum_{\ell=1}^{h-1}\left(\sum_{s=h}^{t} G_{s-h, s} G_{s-h+\ell, s}\right) \varepsilon_{h} \varepsilon_{h-\ell} .
\end{aligned}
$$

It has to be argued that the sums in s are close to zero. Define

$$
\begin{aligned}
& Z_{h}=\mathbf{W}^{1-h} W_{h-1}=W_{0}+\sum_{s=1}^{h-1} \mathbf{W}^{-s} e_{W, s} \\
& F_{s}=\sum_{u=1}^{s-1} \mathbf{W}^{1-s} W_{u-1} W_{u-1}^{\prime}\left(\mathbf{W}^{\prime}\right)^{1-s}=\sum_{u=1}^{s-1} \mathbf{W}^{u-s} Z_{u} Z_{u}^{\prime}\left(\mathbf{W}^{\prime}\right)^{u-s}
\end{aligned}
$$

the coefficients $G_{s-h, s}$ can be rewritten as
$G_{s-h, s}=\left\{\begin{array}{r}-Z_{s}^{\prime} F_{s}^{-1} \mathbf{W}^{h-s} Z_{h}\left\{1+Z_{s}^{\prime} F_{s}^{-1} Z_{s}\right\}^{-1 / 2} \text { for } h<s, \\ \left\{1+Z_{s}^{\prime} F_{s}^{-1} Z_{s}\right\}^{-1 / 2} \text { for } h=s .\end{array}\right.$
Lai and Wei (1985, Lem. 2, Cor. 2) give the convergence results
$Z_{h} \xrightarrow{\text { a.s. }} Z=W_{0}+\sum_{s=1}^{\infty} \mathbf{W}^{-s} e_{W, s}, \quad F_{h} \xrightarrow{\text { a.s. }} F=\sum_{u=1}^{\infty} \mathbf{W}^{-u} Z Z^{\prime}\left(\mathbf{W}^{\prime}\right)^{-u}$.
The limiting matrix F is positive definite a.s. under Assumption C, see Lai and Wei (1985, Cor. 2), Nielsen (2008, Rem. 2.3). Thus introduce the coefficients
$\tilde{G}_{s-h}=\left\{\begin{array}{r}-Z^{\prime} F^{-1} W^{h-s} Z\left(1+Z^{\prime} F^{-1} Z\right)^{-1 / 2} \text { for } s>h, \\ \left(1+Z^{\prime} F^{-1} Z\right)^{-1 / 2} \text { for } s=h,\end{array}\right.$
and approximate the sums of the coefficients $G_{s-h, s}$ by

$$
\begin{equation*}
\sum_{s=h}^{t} G_{s-h, s}^{2} \approx \sum_{s-h=0}^{\infty} \tilde{G}_{s-h}^{2}, \quad \sum_{s=h}^{t} G_{s-h, s} G_{s-h+\ell, s} \approx \sum_{s-h=0}^{\infty} \tilde{G}_{s-h} \tilde{G}_{s-h+\ell} \tag{A.6}
\end{equation*}
$$

The approximating sums with \tilde{G}_{s-h} are identical to one and zero, respectively, since

$$
\begin{aligned}
\sum_{s-h=0}^{\infty} \tilde{G}_{s-h}^{2} & =\left(1+Z^{\prime} F^{-1} Z\right)^{-1}\left\{1+Z^{\prime} F^{-1} \sum_{s-h=0}^{\infty} \mathbf{W}^{h-s} Z Z^{\prime}\left(\mathbf{W}^{\prime}\right)^{h-s} F^{-1} Z\right\} \\
& =\left(1+Z^{\prime} F^{-1} Z\right)^{-1}\left(1+Z^{\prime} F^{-1} F F^{-1} Z\right)=1
\end{aligned}
$$

whereas the sum of cross products satisfies

$$
\begin{aligned}
& \sum_{s-h=0}^{\infty} \tilde{G}_{s-h} \tilde{G}_{s-h+\ell} . \\
&=\left(1+Z^{\prime} F^{-1} Z\right)^{-1}\{ -Z^{\prime} F^{-1} \mathbf{W}^{\ell} Z+Z^{\prime} F^{-1} \\
&\left.\times \sum_{s-h=0}^{\infty} \mathbf{W}^{h-s} Z Z^{\prime}\left(\mathbf{W}^{\prime}\right)^{h-s}\left(\mathbf{W}^{\prime}\right)^{\ell} F^{-1} Z\right\} \\
&=\left(1+Z^{\prime} F^{-1} Z\right)^{-1}\left\{-Z^{\prime} F^{-1} \mathbf{W}^{\ell} Z+Z^{\prime} F^{-1} F\left(\mathbf{W}^{\prime}\right)^{\ell} F^{-1} Z\right\}=0,
\end{aligned}
$$

where the last identity follows since the scalar $Z^{\prime} F^{-1} \mathbf{W}^{\ell} Z$ is equal to $Z^{\prime}\left(\mathbf{W}^{\prime}\right)^{\ell} F^{-1} Z$.
Two observations are needed to justify the approximation (A.6). First, the tail sums $\sum_{s-h=t+1}^{\infty} \tilde{C}_{s-h}^{2}$ and $\sum_{s-h=t+1}^{\infty} \tilde{G}_{s-h} \tilde{G}_{s-h+\ell}$ vanish exponentially with \mathbf{W}^{s-h}. Second, the convergence results in (A.5) also have an exponential rate. This means that if $h>H$ where $H \rightarrow \infty$ at $\log T$-rate then the difference $G_{s-h, s}-\tilde{G}_{s-h}=\mathrm{o}\left(T^{-n}\right)$ for any integer n. Then, apply Lemma 4.2.

Proof of Lemma 5.1. If $\operatorname{dim} \mathbf{W}=0$ combine Lemmas A.1-A.6. If $\operatorname{dim} \mathbf{R}=0$ apply Lemma A.7.

[^0]: The authors received support from the ESRC (RES-000-27-0179 and PTA-031-2006-00174), the Open Society Institute and the Oxford Martin School. Comments from Andrew Whitby are gratefully acknowledged. Address correspondence to Bent Nielsen, Nuffield College, Oxford OX1 1NF, UK; e-mail: bent.nielsen@nuffield.ox.ac.uk.

