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1. Introduction

Parisian options are barrier options for which the knock-in/knock-out feature is
only activated after the price process has spent a certain prescribed, consecutive
time beyond the barrier. This speci…cation is motivated by the need to make
the option more robust against short-term movements of the share price, a sin-
gle outlier cannot trigger the barrier. In particular, it is far harder to a¤ect the
triggering of the barrier by manipulation of the underlying (see Taleb [4]). Clas-
sical barrier options present hedging problems close to the barrier because their
Gamma becomes very large. To some extent, these problems are reduced, or at
least ‘smoothed’, in the Parisian contract.

We present a ‡exible approach to valuing such options using the numerical
solution of a partial di¤erential equation. This approach can price a variety of
modi…cations of the basic Parisian contract including Parasian options (activation
of the barrier conditional on the total time spent above the barrier), American
early exercise rights and general payo¤s. The approach readily accommodates
features, such as early exercise, that render the traditional Monte Carlo approach
impractical. To demonstrate the ‡exibility of this method we have written a
program for valuing many types of Parisian contract. This program may be
downloaded free of charge from http://www.oxford…nancial.co.uk/oxford.



In January 1997 Risk Magazine published an article by Chesney, et al.[1] on
the pricing of Parisian contracts by Laplace transform methods. That article
provided the motivation for the present work since we believe our method to be
superior for at least four reasons:

² It is relatively simple to understand, requiring no more than a knowledge of
elementary partial di¤erential equations.

² It is ‡exible, and can be extended to price many more general contracts.

² It is easy to program. Great care is needed with the numerical inversion of
the Laplace transform but the …nite di¤erence method is robust.

² It is fast.

2. The State Space

The crucial point to note about Parisian options is that they are strongly path
dependent; not only does the payo¤ depend on the value of the underlying at
expiry but also on the path taken to get there. Yet this path dependence is
perfectly manageable within the partial di¤erential equation framework: we do
not need to know all the details of the path taken. The only further information
we require is the value of the new state variable ¿ , de…ned as the length of time
the asset price has been beyond the barrier,

¿ := t¡ sup
n
t0 · t j S(t0) · S

o
; (2.2.1)

for the case of an ‘up’ barrier, where S is the barrier level. The analogous expres-
sion for a ‘down’ barrier is obtained by reversing the second inequality in relation
(2.2.1). The dynamics of ¿ , for the ‘up’ barrier, are given by the simple expression

d¿ =

8
><
>:

dt if S > S;
¡¿¡ if S = S;
0 if S < S;

(2.2.2)

where ¿¡ is the value of ¿ before it jumps to zero. ¿ increases at the same rate as t
if the share price S is beyond the ‘up’ barrier S > S, it is reset to zero if the share
price hits the barrier S = S, and it does not change if the share price is below
the barrier S < S. The new state variable ¿ can be viewed as a clock that starts
ticking as soon as the share price crosses the barrier level, S, and is immediately
reset when the share price returns below S. The knock-in/knock-out feature is
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only activated if ¿ ¸ T , where T is the barrier-time triggering parameter. This
speci…cation exactly covers the covenants in the Parisian option’s payo¤.

The other two state variables needed are the share price S, and time t. We
assume that the share pays dividends at rate D, and its price follows a lognormal
Brownian motion given by

dS = ¹S dt+ ¾S dW (2.2.3)

where dW denotes the increment of a standard Brownian motion. A typical
sample path of the state vector in the state space for an ‘up’ option is shown in
…gure 2.

In terms of the state variables, the speci…cation of a Parisian option with a
knockout is as follows. The option has a payo¤ F (S) at expiry T , unless at some
time before T the state variable ¿ reaches an upper barrier T , in which case the
option expires worthless.

Given this setup we can write the value of a Parisian option V as a function of
the three state variables S, t and ¿ as V (S; t; ¿ ). The governing equation can be
derived formally but here we will just state it and give an intuitive justi…cation.
There are two distinct situations to consider. The …rst is when the asset is below
the barrier, S < S. In this case the variable ¿ remains unchanged and we must
solve the basic Black–Scholes equation with a continuous dividend rate D

@V

@t
+
¾2S2

2

@2V

@S2
+ (r ¡D)S@V

@S
¡ rV = 0: (2.2.4)

The second case occurs when the asset rises above the barrier, S > S, and so
the clock, ¿ , is ticking. Here we must solve

@V

@t
+
¾2S2

2

@2V

@S2
+ (r ¡D)S@V

@S
¡ rV + @V

@¿
= 0; (2.2.5)

where the new state variable ¿ gives rise to a modi…ed form of the Black–Scholes
equation. We will show below how the solutions are linked in these two regions.
Both regions are shown in …gure 1.

3. Parisians and Parasians

In a standard Parisian option the clock variable ¿ is reset to zero once the share
price moves below S. This will be the case even if the excursion lasts for a very
short time. For example, in the case of an ‘up’ barrier the share price can reside
above the barrier for almost the entire time without triggering the option, provided
that it returns below S often enough. However, the constraint on the time ¿ being
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consecutive may defeat one of the original intentions of the Parisian option which
was to make the triggering of the knock-in/knock-out less susceptible to one-o¤
outliers and very short-term movements of the share price (or even manipulation).
With the given speci…cation the triggering of the barrier is fairly robust, but the
resetting of ¿ is still very much subject to short-term price movements.

In the light of this it seems natural to introduce a variation of the Parisian
contract, an option where ¿ is not reset and where the knock-in/knock-out feature
is only activated if the cumulative time spent beyond S exceeds some prescribed
value. This aggregation feature resembles closely the averaging feature of an Asian
option which is why we call this contract the Parasian option. Note that in all
cases that the Parasian contract knocks in/out, the equivalent Parisian will have
done so too.

This variation requires only a minor modi…cation in the model, we just have
to change the de…nition (2.2.2) of the dynamics of ¿ so that it does not reset at
the boundary S = S:

d¿ a =

(
dt if S ¸ S;
0 if S < S:

(3.3.1)

where we have called the non-reset clock ¿a.
It is easy to imagine many other possible speci…cations of the clock ¿ . There

could be another, lower barrier S and the time S spent below S would be sub-
tracted from ¿ , or the speed with which ¿ changes could be proportional to the
distance the share price S is beyond the barrier (thus weighting large deviations
beyond the barrier more strongly). We invite the reader to …nd other variations
himself and to …nd the appropriate speci…cation of d¿ .

4. Boundary Conditions

At S = S we have to impose pathwise continuity of V , which will mean for
Parisians (where ¿ is reset to zero at S = S)

V (S; t; ¿ ) = V (S; t; 0): (4.4.1)

However, in the case of a Parasian option V does not jump at ¹S, thus invalidating
condition (4.4.1).

The exact speci…cation of the option enters our model via the boundary con-
ditions that we specify. These conditions are to be applied at the boundaries of
the state space, t = T , S = 0, S ! 1, and ¿ = T (see Figure 4.1). In its most
general form a Parisian-type option is speci…ed as follows:
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² If the knock-in/knock-out has not been triggered by expiry T , then the
option has the share price contingent payo¤ F (S) at expiry. This payo¤
might also depend on ¿ and would then be given by F (S; ¿ ). For example, a
boost option is an option whose payo¤ is proportional to the time the share
price spent beyond the barrier. This option would then have a payo¤ of
F (S; ¿ ) = c¿ .

² If the knock-in/knock-out has been triggered during the lifetime of the op-
tion, the option pays o¤ G(S) at expiry.

All common variations of the option can be accommodated within this frame-
work, e.g.

1. ‘In’ Boundaries: One gets a European Call of maturity T and exercise
price E as soon as the knock-in is triggered. Set F (S) = 0 and G(S) =
(S ¡ E)+.

2. ‘Out’ Boundaries: One gets a European Call of maturity T and exercise
price E unless the knock-out is triggered. Set F (S) = (S ¡ E)+ and
G(S) = 0.

In this framework ‘ins’ and ‘outs’ are treated the same. The boundary condi-
tions to specify are

V (S; T; ¿ ) = F (S; ¿ ) 0 · ¿ < T ; (4.4.2)

V (S; T; ¹T ) = G(S):

5. An American in Paris

The pricing of American-style options in the pde framework could not be simpler,
either conceptually or from a numerical analysis point of view.

We shall be very general in setting an American-style Parisian option, simply
stating that the option gives its holder the additional right to exercise the option
at any time prior to expiry and thereby receive an amount A(S; t; ¿). From the
simplest of arbitrage considerations we must have

V (S; t; ¿) ¸ A(S; t; ¿ ): (5.5.1)

Since we can exercise whenever we want, we should act to maximise the value
of the contract to us. This optimality amounts to insisting that @V=@S, the option
delta, is continuous. In solving the US-style contract numerically by an explicit
…nite-di¤erence scheme, discussed below, all we need do is to add to our code a
line representing (5.5.1)
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6. Numerical Algorithm

The numerical solution to equations (2.2.4) and (2.2.5) is implemented using an
explicit …nite di¤erence scheme. For simplicity we choose to only discuss the case
of an ‘up’ barrier.

The share price S, time t and barrier time ¿ are discretised1 as ¢S, ¢t and
¢¿ , respectively, where for convenience we set ¢¿ = ¢t. We denote with V ni;j the
numerical approximation to the option value V (S; t; ¿ ) at share price S = i¢S,
time from expiry T ¡t = n¢t; and time from the knockin/knockout ¹T ¡¿ = j¢¿ .
We call ¹i the discrete barrier in the share price (i.e. ¹i¢S = S) and ¹j is the value
of the clock if ¿ is at zero(i.e. ¹j¢¿ = ¹T ).

The explicit …nite di¤erence approximation to the spacial part of the Black-
Scholes equation (2.2.4) is de…ned for …xed times n; j by the operator L as

Lni;j =
i2¾2

2

³
V ni+1;j ¡ 2V ni;j + V ni¡1;j

´
+
i(r ¡D)

2

³
V ni+1;j ¡ V ni¡1;j

´
¡ rV nij :

(6.6.1)

There are two regions to consider (see Figure 6.1): The area where the ‘clock’
¿ is running (i.e. beyond the barrier) and the area where the ‘clock’ ¿ stands
still. For an up barrier the domain is de…ned by i > ¹i and the time stepping is
accomplished by the di¤erence equation

V n+1i;j+1 = V
n
i;j +¢t ¢ Lni;j 8i > ¹i: (6.6.2)

Note that in equation (6.6.2) we had to increase j since the ‘clock’ ¿ is ticking.
The system can be visualized as di¤usively propagating in time along a diagonal
plane, with normal vector (0;

p
2
2
;¡

p
2
2
) in (S; t; ¿) space, as shown in Figure 6.1.

In the second region, i < ¹i, the ‘clock’ ¿ does not change. Hence the system
evolves along the vertical plane, with normal vector (0; 0; 1), in accordance to the
time-stepping scheme

V n+1i;j = V ni;j +¢t ¢ Lni;j 8i < ¹i: (6.6.3)

Until now we have neglected the dynamics at the the boundary i = ¹i which
link the upper and lower regions of the state space. In fact, it is this condition
that di¤erentiates between the Parisian and Parasian option. A Parisian options
require the resetting of the ‘clock’ at i = ¹i. Thus we …rst use (6.6.3) to calculate
V n+1
i;¹j

for i · ¹i and then set the remaining boundary values, at time step n+1, for

all j < j to the former (i.e. V n+1
i;j

= V n+1
i;¹j

, j < j): Next we proceed to calculate

V n+1i;j for i > ¹i according to the scheme (6.6.2). In contrast, for a Parasian option

1For stability of the scheme ¢t has to be chosen small enough.
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we simply apply (6.6.3) over the domain i · ¹i, and then use (6.6.2) for i > ¹i
without resetting the values at the boundary.

The payo¤ at knockin or knockout enters the scheme through the speci…cation
of the value of the payo¤ at j = 0 , ¿ = ¹T by way of boundary condition

V ni;0 = Ĝ(i¢S; T ¡ n¢t) 8i; (6.6.4)

where Ĝ(S; t) is the (time t)-value of receiving G(S) at time T .
The …nal payo¤ is included in the scheme by starting it o¤ with

V 0i;j = F (i¢S; ¹T ¡ j¢t) 8i; j > 0: (6.6.5)

Finally, for the case of an American exercise feature we have to check, before
updating V n+1i;j , to determine if the newly determined value is larger than the US
exercise payo¤ A(i¢S; T ¡ (n + 1)¢t; ¹T ¡ j¢t). If not, we simply set the two
equal by way of the conditional relation V n+1i;j = A(i¢S; T ¡ (n+1)¢t; ¹T ¡ j¢t).

The program, which may be downloaded from www.oxford…nancial.co.uk/oxford,
solves for the price and hedging variables by way of the aforementioned explicit
…nite-di¤erence scheme. Although Explicit …nite-di¤erence schemes are similar
in spirit to the binomial numerical method they are more general and thus ‡exi-
ble. The dowloadable program is fast but certainly not optimal. Had speed had
been our prime concern we would have used an implicit method such as Crank-
Nicolson. This, along with other methods, is discussed by Dewynne & Wilmott in
Risk, March 1993[3] and in great depth (with sample code) in Wilmott et al. [5].
The …nite-di¤erence solution of …nancial partial di¤erential equations is …nally
becoming accepted as the most time-e¢cient method of pricing and hedging cer-
tain types of contract. The method is time e¢cient because it is extremely easy to
program and the programs run very quickly. It is suitable for many types of con-
tract including most common path-dependent derivatives and is trivially—with
one extra line of code—extended to American-style exercise. It easily outperforms
Monte Carlo simulation, the other popular choice for path-dependent contracts.
The downloadable program has the following inputs and outputs

Inputs Outputs
Underlying Barrier type
Spot In/Out Option value
Volatility Call/Put Delta
Dividend yield Strike Gamma
Interest rate Expiry Theta

Reset (Y/N)
Trigger time

The outputs are arrays (against the underlying).
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7. Results and Discussion

We will …rst consider the simple case of a Parisian, European, down-and-in put
on an asset with no dividends, an expiration time of T = 0:25 years, a volatility of
¾ = 0:20, an interest rate of r = 0:08; strike E = 10:0; barrier S = 8:0, and barrier
time T = 0:05. Figure 3 depicts the option value V versus price S and time t for
the previously de…ned parameter values. As expected, the option is worthless for
values of time less than the barrier time T . However for time greater than the
barrier time the function appears quite smooth. This is validated by examining
the hedge value ¢ versus price S and time t, as seen in Figure 4. In essence,
the di¤usion, prior to the barrier time, act to smooth the data such that the
hedge ratio remains reasonably manageable, compared to a traditional knock-out
barrier.

Next we consider the more sophisticated example of a Parisian, American,
up-and-out call with dividend rate D = 0:04; an expiration time of T = 0:25
years, a volatility of ¾ = 0:20, an interest rate of r = 0:08; strike E = 8:0; barrier
S = 10:0, and barrier time T = 0:05. The resulting plots of option value V and
hedge ratio ¢ of this more complicated example are shown in Figures 5 and 6,
respectively.

Finally, we contrast the results of a Parisian option and a Parasian option
for both an ‘in’ and ‘out’ barriers with European exercise, zero dividends, an
expiration time of T = 0:25 years, a volatility of ¾ = 0:20, an interest rate of
r = 0:08; strike E = 10:0; barrier S = 8:0, and barrier time T = 0:10. Figure 7
presents the results of value V versus price S for a down-and-out put at time t = 0.
The Parisian option retains a higher premium for all values of S but particularly
dominates its Parasian counterpart for values near the barrier S: Intuitively this
makes goods sense since the cumulative e¤ect on ¿ of the Parasian ampli…es the
‘out’ feature of the option. Similarly, as seen in Figure 8, for a down-and-in put
the Parisian becomes worthless near the barrier value because of the resetting
feature of ¿ :

In conclusion, out method provides an extremely ‡exible, fast, easy to pro-
gram method for evaluating more sophisticated variations of traditional barrier
options such as the Parisian and Parasian options under various exercise and pay-
o¤ structures. This work clearly demonstrates the versatility and ease of utilizing
the pde framework for the practical implementation of exotic option pricing.
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