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Chapter 1

Newton’s laws

It is quite difficult to present the
introduction to mechanics to an
intelligent audience without some
embarrassment, without the
feeling that one should apologize
here and there, without the wish
to pass quickly over the
beginnings. (Hertz, 1894)

Sir Isaac Newton, 1642–1726/27

Sir Isaac Newton—the great man himself—was born in 1642, and died in
1726 or 1727. ...What? How can there be any ambiguity over something so
straightforward as the year of Newton’s death? In the 1600s, two calendars
were in use in Europe: the Julian ‘old style’ calendar (originally introduced
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8 CHAPTER 1. NEWTON’S LAWS

by Julius Caesar in 46 BC), and the Gregorian ‘new style’ calendar (originally
introduced by Pope Gregory XIII in October 1582). While the Julian calendar
counts the length of a year as exactly 3651⁄4 days long, meaning that a leap year
should occur ever four years, the Gregorian calendar has a more sophisticated
prescription for the occurrence of leap years. Here’s how the United States
Naval Observatory puts it:

Every year that is exactly divisible by four is a leap year, except
for years that are exactly divisible by 100, but these centurial years
are leap years if they are exactly divisible by 400. For example, the
years 1700, 1800, and 1900 are not leap years, but the year 2000 is.
[160]

The Gregorian calendar is now the calendar most widely used across the globe.
Unlike the Julian calendar, it makes the average calendar year 365.2425 days
long, thereby more closely approximating the 365.2422-day ‘solar’ year that
is determined by the Earth’s revolution around the Sun. The merit of the
Gregorian over the Julian calendar is that the latter ‘drifts’ with respect to the
solar year (because it does not as accurately line up with the latter): given
enough time, Christmas in the Northern hemisphere would occur in summer
according to the latter! One does not face these same issues with the Gregorian
calendar: in a sense, it’s better ‘adapted’ to salient physical events (in this case,
the Earth’s going around the sun); in turn, this often renders its descriptions of
physical goings-on simpler (for example, the Earth will be at the same point in
its orbit around the sun every year according to the Gregorian calendar, but not
according to the Julian calendar). To anticipate some terminology which I will
use later in this chapter: there is a sense in which the Gregorian calendar better
approximates an ‘inertial frame’—a coordinatisation of the world such that our
description of physical dynamics is simplest—than does the Julian calendar.1

In fact, a central question in the philosophy of spacetime physics has to do
precisely with the above issues: what does it mean for our physical descrip-
tions to be ‘well-adapted’ to nature? Is it indeed appropriate (as assumed in
the above) to regard ‘inertial frames’ as those in which physical dynamics sim-
plifies maximally, or is there some other, superior way of understanding such
structures—perhaps in terms of the structures of space and time themselves?
These are pressing questions, to which I will return throughout this book. But
they are also tangible questions: the entire set of ideas underlying them is en-
capsulated in the ambiguity over Newton’s death year.

My purpose in this chapter is to expand upon these central themes in the
foundations of spacetime theories, as they constitute essential bedrock upon
which I will build my philosophical analysis of special relativity in later chapters.
In order to proceed, I’ll turn again to Newton—this time not to his death date,
but rather to his laws. As the quote from Heinrich Hertz (1857–1894, famous
for his demonstration of the existence of electromagnetic waves) indicates, these

1Of course, the Gregorian calendar isn’t perfect either: this is why we must introduce ‘leap
seconds’ and other gadgetry in order to forestall ‘drift’ against the solar year.
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turn out to be a conceptual minefield. Grappling with how to understand the
content of these laws will, however, afford exactly the right toolkit with which
to address the philosophy of special relativity in later chapters.

1.1 Newton’s laws

Let me begin by stating Newton’s laws in what I hope is an entirely uncontro-
versial form. These should be familiar to anyone who has studied high school
physics:

N1L: Force-free bodies travel with uniform velocity.

N2L: The total force on a body is equal to the product of that body’s mass
and its acceleration. (F = ma.)

N3L: Action and reaction are equal in magnitude and opposite in direction—
i.e., if one body exerts a force F on a second body, then the second exerts
a force −F on the first.

I’ll bet that many readers are so familiar with these laws that they won’t even
have read the above. But I’ll invite all readers to stare at these three laws for
just a minute—after doing so, inevitably, a range of conceptual questions will
arise. For example:

1. What does ‘force-free’ mean?

2. Isn’t N1L a special case of N2L? So why state it as a separate law?

3. (Relatedly:) Is N1L supposed to be a definition, or something else?

4. In which frames of reference are these laws supposed to hold?

5. Does N1L presuppose N3L?

It’s only by answering such questions that we can secure a full and clear under-
standing of the content of Newton’s laws. But doing so has long been recognised
as no easy business. To complement the quote from Hertz which I’ve already
mentioned, here’s the physicist Rigden, writing in 1987:

The first law ... is a logician’s nightmare. ... To teach Newton’s
laws so that we prompt no questions of substance is to be unfaithful
to the discipline itself. [143]

As foreboding as the challenge of making sense of Newton’s laws might
seem, an honest philosopher of physics must try to make progress here—and,
indeed, philosophers have engaged with these questions in a surprisingly diverse
range of manners. In my view, in order to appreciate the range of options
which are available in answering the above questions, it’s helpful to present two
approaches to Newton’s laws which, in many respects, are polar opposites: these
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are the ‘dynamics first’ approach of Harvey Brown [14], and the ‘geometry first’
approach of Michael Friedman [60]. Indeed, I’ll use these two authors (and their
respective allies) as poles for navigation not just through this chapter, but over
the course of the entirety of this book.2

1.2 Inertial frames

I’ll begin with the fourth of the five questions listed above: in which frames of
reference are Newton’s laws supposed to hold?3 Focusing on N1L, it’s transpar-
ent that this law can’t hold in all frames of reference, for envisage a force-free
body moving with uniform velocity according to some temporal and spatial co-
ordinates, then move to a coordinate system accelerating with respect to the
first. In this new coordinate system, the force-free body no longer moves with
uniform velocity! Thus, Newton’s laws obtain only in particular frames of ref-
erence.

We can make these points more quantitative in the following way. In a given
coordinate system xµ (µ = 0, . . . , 3),4 suppose that the path of any free particle
can be expressed as

d2xµ

dτ2
= 0, (1.1)

where τ is a monotonic parameter on the path in question. Integration yields

xµ (τ) = xµ (0) + τvµ (0) , (1.2)

where vµ (0) = dxµ

dτ at τ = 0, so we obtain straight-line motion in the four-
dimensional manifold. This is the property which N1L tells us holds of force-

free particles—so in the frames in which N1L holds, we have d2xµ

dτ2 = 0.

Now perform an arbitrary coordinate transformation xµ → x′µ (xν), along
with an arbitrary parameter transformation τ → λ (τ). Our simple force law
d2xµ

dτ2 = 0 becomes, in the new frame, (cf. [14, p. 17])

d2x′µ

dλ2
− ∂2x′µ

∂xρ∂xγ

∂xρ

∂x′ν
∂xγ

∂xσ

dx′ν

dλ

dx′σ

dλ
=

d2τ

dλ2

dλ

dτ

dx′µ

dλ
. (1.3)

2One small aside before I proceed further. In presenting the above views, I make no claim
that either accurately maps onto what Newton himself would have thought on his laws—which
is to say, I make no attempt to engage in Newton exegesis. For some penetrating discussions
on how Newton’s own views align with these contemporary positions, see [128, ch. 2].

3For the time being, I make no distinction between a frame of reference and a coordinate
system. Some authors regard the former as consisting in ‘extra structure’—I’ll return to this
idea of ‘extra structure’ in chapters 5-7, but for the time being I set it aside. (For more on
the difference between frames and coordinate systems, see [37].)

4It’s standard practice in physics to use Greek indices (µ, ν, . . .) to range over the four
coordinates of space and time (where the 0 coordinate is the time coordinate), and to use
Latin indices i, j, . . . to range over the three spatial coordinates. I’ll follow suit in this book.
(Note that, up to this point, I’ve introduced neither the Einstein summation convention nor
the notion of an ‘abstract’ index; I’ll come to these later.)
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So force-free particles accelerate in arbitrary frames (the acceleration is quan-
tified by the two extra terms which have been introduced in this frame: some-
times, these are called ‘fictitious force’ terms)—they only move on straight lines
in the inertial frames.

What’s crucial to note in the above is that the frames in whichN1L holds are
the frames in which the very same dynamics takes a particularly simple form.
Recalling our discussion of the calendar systems from earlier, let us call the
frames of reference in which Newton’s laws hold the inertial frames of reference.
Knox, indeed, gives the following very sensible definition of inertial frames:

In Newtonian theories, and in special relativity, inertial frames have
at least the following three features:

1. Inertial frames are frames with respect to which force free bod-
ies move with constant velocities.

2. The laws of physics take the same form (a particularly simple
one) in all inertial frames.

3. All bodies and physical laws pick out the same equivalence class
of inertial frames (universality). [85, p. 348]

So, Newton’s laws hold in the inertial frames of reference, which are those
coordinate systems in which the dynamical simplify maximally, and in which
force-free bodies move with uniform velocities. It’s important to note, though,
that the above definition of an inertial frame is what’s known as a functional def-
inition: it tells us the properties which we expect (or, indeed, demand) that the
objects in question (here, inertial frames) possess, but it does not (as yet) afford
us any independent means of identifying those objects (again, here frames), or
knowing whether they exist. Indeed, it is exactly at this juncture that authors
such as Brown and Friedman begin to follow different courses. Beginning with
the existence question, Brown maintains that inertial frames do exist in nature:

A kind of highly non-trivial pre-established harmony is being postu-
lated, and it takes the form of the claim that there exists a coordinate

system xµ and parameters τ such that [d
2xµ

dτ2 = 0] holds for each and
every free particle in the universe. [14, p. 17]

On the other hand, Friedman denies the existence of inertial frames:

Newtonian physics is (would be) true even if there are (were) no
inertial frames. The First Law deals with the existence of inertial
frames only counterfactually: if there were inertial frames (for exam-
ple, if there were no gravitational forces), free particles would satisfy

[d
2xµ

dτ2 = 0] in them. [60, p. 118]

The difference between our two authors amounts to this. Friedman’s point is
that no particle is actually force-free, so inertial frames in the strict sense do not
actually exist. Brown, on the other hand, would reply that inertial frames at
least approximately exist. In fact, though, Friedman anticipates this response
on behalf of Brown, when he writes:
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This reply is inadequate. Newtonian physics is only approximately
true, but not because of the existence of gravity [i.e., some universal
physical force]. [60, p. 118]

The reader would be forgiven for finding this passage from Friedman puzzling
at this stage. It will make more sense once we understand in more detail the
differing theoretical commitments of the parties involved—for this reason, I’ll
defer a detailed discussion of this response until the end of the following section.
For the time being, we need only note this: for Brown, N1L is a claim about the
existence of (approximate) inertial frames in the real world; for Friedman, by
contrast, N1L is a counterfactual statement, since in fact there are no inertial
frames in the actual world. So much for the existence question. But the question
of what the inertial frames are also remains to be addressed. To make progress
here, we must turn now to the first of the question in our above list: what is
the meaning of ‘force-free’?

1.3 Force-free bodies

To get a better handle on what it means for a particle to be force-free, we must
turn to N2L, which (recall) says that the total force on a body is equal to
the product of that body’s (inertial) mass and its acceleration. With N2L in
mind, a natural further conceptual puzzle arises: isn’t N1L just a special case
of N2L, given that the former (it seems) reduces to the latter in the case F = 0?
Friedman straightforwardly gives an affirmative answer to this question. On the
other hand, Brown gives a negative answer:

It will be recalled that the acceleration ẍ of the body is defined
relative to the inertial frame arising out of the first law of motion. It
is for this reason that the first law is not a special case of the second
for F = 0. [14, p. 37, fn. 9]

In other words, for Brown, N1L plays the crucial role of telling us what the
inertial frames are; for this reason, and in this sense, N1L is not merely a
special case of N2L. I’ll come back to this, but before doing so let me explain
why Friedman does think that N2L is a special case of N1L.

For Friedman, notions of acceleration, and of force, are to be defined in
terms of a background spatiotemporal structure. (For the time being, I’ll not
address the question of the metaphysical status of this spatiotemporal structure,
and its relation to material bodies—that is, I’ll not address the substantival-
ism/relationalism debate (on which see [127]); I’ll have more to say on this in
later chapters, in particular Chapter 10.) In Newtonian mechanics, for Fried-
man, a particle is genuinely accelerating just in case it follows a curved path
with respect to the standard of straightness of paths across time given by (neo-
)Newtonian spacetime.5 A particle is force-free just in case it does not follow a

5I will explain the ‘neo-’ prefix here, as well as the general notion of spacetime in Newtonian
mechanics, in Chapters 5 and 6. I hope that nevertheless the points which I’m making here
are tolerably clear.
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curved path with respect to that standard of straightness.6 This gives us a defi-
nition of force-freeness, and makes clear that N1L is just a special case of N2L.
Thus, helping oneself to a background spatiotemporal structure as does Fried-
man affords elegant and simple answers to the questions of what it means for a
body to genuinely accelerate, and what it means for a particle to be force-free.
Indeed, this approach also affords a very straightforward independent definition
of an inertial frame: the inertial frames are those at rest or moving uniformly
with respect to Newtonian absolute space.7

Brown rejects Friedman’s spacetime-based answers to the above questions,
for in his view such explanations are either opaque (what exactly is the relation
between spacetime structure and the motions of material bodies?) or in fact
not explanations at all (if spacetime—as is the case for Brown, as we’ll see—is
ultimately to be reduced to the motions of material bodies and the dynamical
laws governing those bodies, then ultimately I need a way of understanding
notions of e.g. force-freeness with reference to material bodies only). In a sense,
Brown’s philosophical attitude is more empiricist than that of Friedman: he
seeks an understanding of the notion of an inertial frame (say) directly in terms
of material entities, rather than in terms of the (for him) more ethereal notion of
spacetime. In fact, there’s a long tradition, going back to Lange, Lord Kelvin,
Tait, and others, of attempting to empirically ground the notions of inertial
motion, force-freeness, etc. (see [4, ch. 12] for an excellent overview); Brown
certainly can be situated as an ally of this tradition.

There are, indeed, a few different ways in which one might seek to define
notions of force-freeness etc. in an empiricist manner, à la Brown. The approach
which Brown favours is to take force-free bodies to be those which are sufficiently
isolated with respect to all other bodies in the universe; one defines such bodies
to be force-free, and defines inertial frames as those in which such bodies move
with uniform velocities (recalling the above quote from Brown, we can now see
why the fact that there exists a single frame in which all such bodies move with
uniform velocities is “[a] kind of highly non-trivial pre-established harmony”
[14, p. 17]) [14, p. 16]. Brown takes N1L to offer this prescription implicitly;
any particle accelerating in such frame is then to be regarded as being subject
to a genuine force, as per N2L. Note that, if such an approach is successful,
no appeal to spacetime structure was needed to afford meaning to the relevant
terms under consideration.

Brown’s own preferred approach is, however, not the only means by which
one might seek an empiricist grounding of the notions of inertial frame, force-
freeness, etc. Another option is to be found in what’s known as the ‘regularity
relationalism’ of Huggett [76]. I don’t need to get into the details of this view
here; rather, a sanitised presentation of the prescription will suffice:8

6Again, more on what this standard of straightness amounts to in Chapters 5 and 6.
7I don’t mean to suggest that this definition is devoid of problems: there remain open

questions regarding why such frames are those in which the motions of material bodies should
simplify maximally: recall again our discussion of Newton’s death date. I’ll return to this issue
later.

8I should be clear that the following is only inspired by Huggett’s work; I don’t mean to
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1. Find the frame in which the dynamical equations governing the greatest
number of bodies simplify.

2. By definition, these are the inertial frames.

3. Any body which follows a straight trajectory in these frames is force-free,
by definition.

4. (It is a conspiracy—the conspiracy of inertia—that these force-free bodies
all follow straight-line trajectories in these frames.)

5. Any body which does not follow a straight-line trajectory in these frames
is subject to a genuine force.

6. N1L is not a special case of N2L, because the accelerations in the latter
are with respect to the internal structure picked out in the former.

7. Extra forces in non-inertial frames are to be classified as ‘fictitious’.

What are the relative merits of the ‘Brown-style’ prescription over the ‘Huggett-
style’ prescription, or vice versa? One advantage of the latter is that it makes
no initial assumption about the nature of forces in the universe—by contrast,
Brown assumes that forces fall off with distances. On the other hand, Huggett’s
approach assumes that one must have a ‘God’s eye view’ of the entire material
content of the universe—Brown, by contrast, does not do this.

For my purposes, it doesn’t matter which of these approaches one prefers.
(To anticipate, there are also other empiricist approaches to the meaning of
‘force-free’: for example, Torretti [159] seeks to identify the inertial frames with
those frames of reference in which N3L holds: I’ll get back to this shortly.)
The central point is that none of these approaches (seem to) require recourse to
spatiotemporal structure in order to afford meaning to the terms under consid-
eration.

Question: Which empiricist approach to the content of Newton’s laws
do you think is superior, and why?

Having now better understood the differences between Brown and Friedman
with respect to the notions of inertial frames and force-free bodies, let me now
return to the quote from Friedman which I presented at the end of the previous
section. This quote, I claim, is best understood in the following way. Friedman
supposes initially that Newton’s laws are true, where the relevant terms are to
be cashed out in terms of the structure of (neo-)Newtonian spacetime, as we’ve
already seen. He also supposes that material bodies interact with one another
via the gravitational force. In a universe of sufficient complexity (such as the ac-
tual world, at least when appropriately idealised) the nature of the gravitational
interaction will mean that no body is truly force-free, in the sense of moving on

claim that he would actually endorse it.
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a uniform trajectory with respect to the standard of straightness given by the
background spacetime. For Friedman, the nature of the gravitational force does
not mean that Newtonian mechanics is in fact false (which would render the
theory, in a certain sense, self-undermining), but rather that there simply are
no inertial frames embodied as the rest frames of observers in the actual world.

This all makes sense. But the perspective of Brown is very different: he
does not begin by countenancing entire universes in which such-and-such laws
(in this case, Newtonian gravity) obtain; rather, his concern is to afford meaning
to notions to certain terms (in this case e.g. ‘inertial frame’) such that one may
then proceed to build up one’s theoretical commitments. For Brown, a defini-
tion of inertial frames (say) which obtains only approximately is still sufficient
to build up, in a useful way, the machinery of Newton’s laws. In this sense, while
Friedman’s critique makes sense in the context of his own theoretical commit-
ments, it misfires against the very different methodology of Brown, who has not
even constructed the notion of the gravitational interaction at the point when
he seeks to define an operationalised notion of inertial frames.

There are various different ways of putting the differences between the two
parties here. For ‘geometrical’ authors such as Friedman, it is quite common
to take a ‘transcendent’ conception of physics (in the Kantian sense of ‘step-
ping outside of the world’), and to account for physical phenomena from that
perspective, with all of the metaphysics which it entails (in particular, the meta-
physics of particular physical theories, e.g. Newtonian gravity) as inputs. For
‘dynamical’ authors such as Brown, by contrast, it is more common to take an
‘immanent’ conception of physics (in the Kantian sense of being ‘embedded in
the world’), and to construct the relevant metaphysical and physical notions on
the basis of empirical studies in the world. This is vague, but I think useful to
keep in mind when one reads debates between the relevant authors: failure to
keep track of these different attitudes can often lead to individuals talking past
one another, as the above passage from Friedman already indicates.9

Question: Do you think that Brown’s ‘dynamics first’ approach to the
content of Newton’s laws to be preferred over Friedman’s ‘geometry-first’
approach, or vice versa? Why?

The question of whether one should have a ‘dynamics first’ or ‘geometry
first’ approach to the foundations of spacetime will loom large in this book; at
this stage, I don’t mean to favour one over the other. That said, it might be
helpful to present here some further quotes from Brown and his allies, exhibiting
both their suspicion towards the latter, as well as the ways in which they view
their own positive proposals. First, here’s Brown:

9When put in this way, it’s not completely obvious that the two views are incompatible: one
begins with empirical data, ‘ascends’ (via the ‘dynamical’ approach) to a set of metaphysical
commitments, which one then uses to ‘descend’ (via the ‘geometrical’ approach) to explain
further data. This tale of ascent and descent is a familiar one in philosophy, going back to
Plato’s analogy of the cave [124]. (My thanks to Niels Linnemann for discussions here.)
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What is geometry doing here—codifying the behaviour of free bodies
in elegant mathematical language or actually explaining it?

... In what sense then is the postulation of the absolute space-
time structure doing more explanatory work than Molière’s famous
dormative virtue in opium? [14, pp. 23-24]

And here’s DiSalle:10

When we say that a free particle follows, while a particle experi-
encing a force deviates from, a geodesic of spacetime, we are not
explaining the cause of the difference between two states or explain-
ing ‘relative to what’ such a difference holds. Instead, we are giving
the physical definition of a spacetime geodesic. To say that space-
time has the affine structure thus defined is not to postulate some
hidden entity to explain the appearances, but rather to say that
empirical facts support a system of physical laws that incorporates
such a definition. [33, p. 327]

Finally, here are Vassallo and Esfeld:

Note that we do not presuppose the existence of a spacetime struc-
ture ... that defines what it is for a motion to be geodesic, but,
rather, the other way round: we define geodesic motion as a partic-
ularly simple pattern in the entire history of relational change. [162,
p. 106]

1.4 Summary of the views

Let’s return to our list of conceptual questions regarding Newton’s laws, and
consider how both Brown and Friedman would answer these questions. (For the
time being I omit the fifth question; I’ll discuss that in the following section.)
First Brown:

1. Bodies are to be designated ‘force-free’ on the basis of some to-be-articulated
operational procedure.

2. N1L isn’t a case of N2L, because N1L allows to identify the inertial
frames (those in which force-free bodies move with uniform velocities);
having fixed such frames, N2L then allows us to identify the particles
subject to genuine forces (and what the magnitudes of those forces are).

3. N1L isn’t a definition—force-free particles aren’t defined to be those mov-
ing with uniform velocity.

4. Newton’s laws are supposed to hold in the inertial frames of reference.

10For a comparison of the outlooks of Brown and DiSalle, see [77]. In the following quote
a ‘geodesic’ means a straight line in spacetime, according to the standard of straightness of
that spacetime: I’ll discuss the notion more in Chapters 5 and 6.
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As we know by now, the answers which Friedman would give to these four
questions are very different:

1. ‘Force-free’ means moving uniformly with respect to the standard of straight-
ness given by (neo-)Newtonian spacetime.

2. N1L is a special case of N2L.

3. N1L isn’t a definition—in fact, it is redundant.

4. As stated in a coordinate-based description, Newton’s laws are supposed
to hold in the inertial frames, which are the frames ‘adapted’ to (neo-
)Newtonian spacetime (i.e., are the frames at rest or moving uniformly
with respect to Newtonian absolute spacetime). Insofar as a world (e.g. an
idealised version of the acutal world) may in fact contain no bodies which
are truly force-free, N1L cannot be operationalised in that world (in this
sense, N1L obtains only counterfactually).

The reader will notice that, up to this point, I haven’t mentioned N3L, and
haven’t addressed the associated question (5), of whether N1L is a special case
of N3L. This is the final piece of the puzzle regarding Newton’s laws which it
was my allotted task in this chapter to address; I turn now to this issue.

1.5 Newton’s third law

What is the conceptual relation between N3L and N1L and N2L? One of the
few authors to address this question in any detail is Torretti, who writes:

[T]he Third Law of Motion furnishes a Newtonian physicist with all
he needs for distinguishing, in principle, between a particle acted
on by a true force of nature and a free particle accelerating in a
particular—necessarily non-inertial—frame. If a material particle α
of mass m experiences acceleration a in an inertial frame F , it will
instantaneously react with force −ma on the material source of its
acceleration. There must exist therefore a material system β, of mass
m/k, whose centre of mass experiences in F the acceleration −ka.
On the other hand, if a particle α accelerates in a non-inertial frame,
its acceleration must include a component that is not matched by
the acceleration of another material system, in direction opposite to
the said component, caused by the action of α on that system. [159,
pp. 19-20]

Torretti continues in an endnote:

The criterion furnished by the Third Law does not, of course, amount
to an “operational definition” of a freely moving particle and an
inertial frame. In the above example, the acceleration of β by α’s
reaction will generally be only a component of β’s total acceleration
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and it might not be easy to discern it. But the criterion surely
bestows a definite, intelligible meaning on the italicised expressions.
[159, p. 287, n. 16]

Torretti’s claim here is that a frame in which N1L is satisfied is one in which
N3L is satisfied, and vice versa. Moreover, one can thereby in principle—if not
in practice—check whether N3L is satisfied in a given frame, and (if so) use
this fact to identify operationally/empirically what the force-free particles are
(thus, this constitutes a third possible approach to the operational identification
of force-free particles, alongside the Brown-style and Huggett-style approaches
already discussed above).

Let’s focus first on the claim that N1L implies N3L—equivalently, that
N3L is presupposed by N1L. At least in the context of special relativity, this
claim is not correct, for, as Griffiths writes,

Unlike the first two, Newton’s third law does not, in general, extend
to the relativistic domain. Indeed, if the two objects in question are
separated in space, the third law is incompatible with the relativity
of simultaneity. For suppose the force of A on B at some instant t
is F (t), and the force of B on A at the same instant is −F (t); then
the third law applies in this reference frame. But a moving observer
will report that these equal and opposite forces occurred at different
times; in his system, therefore, the third law is violated. Only in
the case of contact interactions, where the two forces are applied at
the same physical point (and in the trivial case where the forces are
constant) can the third law be retained. [68, p. 544]

Although Griffths puts the point in terms of an incompatibility between N3L
and the relativity of simultaneity (see Chapter 7), the fundamental tension is
between N3L and the relativity principle (see Chapter 2): in cases such as
the above example, in which the forces between the bodies in question (in that
example, α and β) are not mediated by contact interactions, if N3L holds in one
frame of reference F , then it will not hold in a frame F ′ in uniform motion with
respect to F—that is, N3L will not hold in another inertial frame of reference,
in violation of the relativity principle.

In response to this, one might reasonably complain that, at least within the
context of Newtonian forces, there’s no reason to doubt this claim. Moreover,
recall from the foregoing discussion that the point of the dynamics-first, more
‘operational’ outlook of authors such as Brown was to build up one’s theoretical
commitments on the basis of empirical data, without making theoretical as-
sumptions ab initio. Therefore, to make appeals to relativity theory may be to
make a petitio principii against such authors, who could simply define the force-
free bodies to be those moving on uniform trajectories in the N3L-satisfying
frames.

In any case, let’s turn now to the other professed direction of implication—
that N3L implies N1L—equivalently, that N1L is presupposed by N3L. Here,
there seem to be counterexamples coming from within the context of Newtonian
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mechanics. For example, consider a Newtonian universe consisting of one single
binary astronomical system, in which two bodies α and β of equal mass rotate
about a common centre of mass. Consider a frame rotating about said centre
of mass: the force on α will be equal and opposite to the force on β—in spite
of the fact that these two bodies will be subject to (equal and opposite) inertial
effects. This frame is non-inertial, but N3L is satisfied. Thus, any claim that
the satisfaction of N3L implies that the system in question is being described
in an inertial frame of reference is incorrect; rather, the inertial systems are (at
best) a subclass of the N3L-satisfying systems.

The existence of examples like this seem to imply that one cannot invariably
use N3L as a means of operationally identifying the inertial frames—indeed,
one can make this point without having to worry about the reverse direction
of implication. As before, however, it’s not obvious that these concerns need
animate those who situate themselves in the ‘dynamical’ camp.

Question: How general and how serious are problem cases of the kind
introduced above? In light of this, to what extent can something of
Torretti’s claim be salvaged?

1.6 Summary

I don’t deny that this has been a difficult first chapter. But, by proceeding from
Newton’s laws, I hope to have illustrated that one encounters deep, profound,
and unresolved questions in the foundations of spacetime theories from the very
outset. Proceeding in this way also has the merit of introducing at the begin-
ning a number of crucial concepts which will animate us over the course of the
remainder of this book: concepts such as inertial frames, force-free motion, and
dynamical versus geometrical understandings of physics. I will, indeed, return
to all of these issues in the context of special relativity quite shortly. Before
doing so, however, it’s necessary to introduce some further concepts—in partic-
ular, the concept of a symmetry of a physical theory. I turn to this task in the
next chapter.
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Chapter 2

Symmetries and invariance

The formulation of these laws
requires the use of the
mathematics of transformations.
The important things in the
world appear as the invariants (or
more generally the nearly
invariants, or quantities with
simple transformation properties)
of these transformations. The
things we are immediately aware
of are the relations of these nearly
invariants to a certain frame of
reference, usually one chosen so
as to introduce special simplifying
features which are unimportant
from the point of view of the
general theory. (Dirac, 1930)

My goals in this chapter are threefold: (i) to introduce the notion of a
symmetry of a physical theory, (ii) to explore how such symmetries might be
identified, and (iii) to convince the reader of the significance of symmetry-based
reasoning in physics.

2.1 The relativity principle

Suppose you decide to take the sleeper train from Euston to Fort William; out-
side, it’s pitch black—you can’t see a thing. Ignoring the mild jostling from
side to side which inevitably one experiences on a train, can you tell the speed
at which your train is moving? If the train is moving uniformly at 100mph, is
there any empirical difference to the situation in which it’s at rest in Waverley?

21
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The answer, of course, is no—and this is one illustration of what’s known as
the relativity principle: for a subsystem appropriately isolated from the envi-
ronment, the laws of physics inside the system are exactly the same, whatever
the uniform velocity of that system might be. Galileo was one of the first to
present the relativity principle in this form; his writings and examples are so
elegant that it’s worth quoting him at length:

Shut yourself up with some friend in the main cabin below decks on
some large ship, and have with you there some flies, butterflies, and
other small flying animals. Have a large bowl of water with some
fish in it; hang up a bottle that empties drop by drop into a wide
vessel beneath it. With the ship standing still, observe carefully
how the little animals fly with equal speed to all sides of the cabin.
The fish swim indifferently in all directions; the drops fall into the
vessel beneath; and in throwing something to your friend, you need
to throw it no more strongly in one direction than another, the
distances being equal; jumping with your feet together, you pass
equal space in every direction.

When you have observed all these things carefully, have the ship
proceed with any speed you like, so long as the motion is uniform
and not fluctuating this way and that. You will discover not the
least change in all the effects named, nor could you tell from any of
them whether the ship was moving or standing still. In jumping you
will pass on the floor the same spaces as before, nor will you make
larger jumps toward the stern than toward the prow even though the
ship is moving quite rapidly. The droplets will fall as before into the
vessel beneath without dropping toward the stern, although while
the drops are in the air the ship runs many spans. The fish in the
water will swim toward the front of the bowl with no more effort
than toward the back, and will go with equal ease to bait placed
anywhere around the edges of the bowl. Finally the butterflies will
continue their flights indifferently toward every side, nor will it ever
happen that they are concentrated toward the stern, as if tired out
from keeping up with the course of the ship, from which they will
have been separated during long intervals in keeping themselves in
the air. [61, pp. 186-187]

We saw in the previous chapter that the inertial frames are those frames in
which the dynamical equations governing matter take their simplest form, and
in which force-free bodies move with uniform velocity. When combined with
the relativity principle, we arrive at the conclusion that the laws of physics take
their simplest in all of a class of inertial frames, which are related by uniform
velocity transformations.

But what exactly are these ‘uniform velocity transformations’ in Newtonian
mechanics, and are they the same transformations which take us between inertial
frames in special relativity? (Spoiler: no!) To answer the first question, we need
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to investigate the invariance properties of Newtonian theories. Before doing so,
however, there is one other important conceptual distinction to clear up: that
between active and passive coordinate transformations.

2.2 Active versus passive transformations

There’s an important distinction between active and passive transformations,
the prescriptions for which can be put as follows:

Active transformations: Transform physical system; leave coordinate sys-
tem unchanged.

Passive transformations: Transform coordinate system; leave physical sys-
tem unchanged.

The transformations considered in this chapter can be understood either actively
or passively; more generally, over the course of this book, I will be explicit about
whether a transformation is intended in the active or a passive sense. Although
mathematically active and passive transformations have the same net result,
conceptually they are clearly very different; these differences have turned out
to have quite serious ramifications for various debates in the foundations of
spacetime theories.1

With the distinction between active and passive transformations in hand,
we’re in a better position to understand what’s going on in case of Galileo’s
ship (or, equivalently, our original train example). Suppose that we apply an
active transformation to a subsystem of the universe (e.g. Galileo’s ship). Then,
assuming:

1. the relativity principle holds, and

2. the physics within the subsystem is isolated from that of the environment...

...the physics within the subsystem will be unchanged between the pre- and post-
transformed cases. This—an active boost applied to a subsystem, assuming the
relativity principle and dynamical isolation—is what’s going on in Galileo’s ship.

2.3 Galilean transformations

Let’s now return to the main project in this chapter: to introduce, and provide
some means of ascertaining, the symmetries of Newtonian physical theories.
For Newtonian theories, I’ll begin by giving the game away: their symmetries
at least include (but do not necessarily exhaust : this will be of significance
later) the Galilean transformations. AGalilean transformation is any coordinate
transformation that can be expressed as the composition of a rigid spacetime
translation, a rigid rotation, and a Galilean boost:

1The most famous example is the infamous ‘hole problem’ of general relativity—for surveys
on this, see e.g. [116, 129].
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Spatial translation ga
(
a ∈ R3

)
: ga (t,x) = (t,x+ a) .

Time translation gb (b ∈ R) : gb (t,x) = (t+ b,x) .
Spatial rotation gR (R ∈ SO (3)) : gR (t,x) = (t,Rx) .
Galilean boost gv

(
v ∈ R3

)
: gv (t,x) = (t,x− vt) .

How do I show that a given set of physical laws has (say) the Galilean
transformations as its symmetries? There are two ways of defining what it
means for a given set of laws to be invariant under a given set of transformations:
what I’ll call the ‘space-of-solutions approach’, and what I’ll call the ‘form-of-
equations approach’. I’ll illustrate both, beginning with the space-of-solutions
approach.

Consider the equation of motion

dr

dt
= −kr. (2.1)

This has general solution

r (t) = Ae−kt, A ∈ R. (2.2)

For any such r and any time translation gb, we can form the transformed struc-
ture gbr:

(gbr) (t) = r (t− b)

= Ae−k(t−b)

=
(
Ae+kb

)
e−kt. (2.3)

This is another solution of the same equation, so we say that our equation is
time-translation invariant.

More generally, the space-of-solutions approach takes the following form:

Space-of-solutions approach:

1. Identify the set Θ of equations to be investigated.

2. Identify a set S of structures for Θ; i.e., identify the type of object
that is mathematically appropriate to be a candidate solution to
Θ.

3. Identify the group G of transformations whose effects on Θ we will
be interested in investigating.

4. For general g ∈ G, identify the action of g on S.

5. Ask whether this action of G preserves the subset D ⊂ S of solu-
tions to Θ.
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It’s also worth considering the case of a demonstration of non-invariance, on
the space-of-solutions approach. Let the equation of motion (and hence Θ and
S) be as before. Let G be the group B1 of one-dimensional boosts gv : x 7→ x−vt.
The action of any such gv on S is:

(gvr) (t) = r (t)− vt. (2.4)

For the general solution r (t) = Ae−kt, the transformed structure is given by

(gvr) (t) = Ae−kt − vt, (2.5)

which is not identical to Be−kt for any B ∈ R, i.e., is not a solution of our
original equation. So our equation is not Galilean boost invariant.

So much for the space-of-solutions approach; let’s turn now to the form-of-
equations approach. Consider again the equation of motion (2.1). This equation
is built from various objects: d

dt , r, and k. Under a time-translation gb,

• d
dt and k transform trivially;

• the function r transforms, as before, as (gbr) (t) = r (t− b).

The transformed equation is therefore

d

dt
r (t− b) = −kr (t− b) . (2.6)

But asserting that our second equation holds for all t is equivalent to assert-
ing that our first equation holds for all t. Thus, the original equation is time
translation invariant.

The general format of the form-of-equations approach is this:

Form-of-equations approach:

1. Identify the set of equations Θ to be investigated.

2. Identify the group G of transformations whose effects on Θ we will
be interested in investigating.

3. Identify an action of G on each of the ingredients in each equation
in Θ.

4. Write down the equations with the transformed (‘primed’) quanti-
ties in place of the untransformed ones.

5. If the result is a set of equations equivalent to the original Θ, then
Θ is G-invariant.

And here’s a demonstration of non-invariance of an equation on the form-
of-equations approach. Consider once again the equation of motion (2.1). Let



26 CHAPTER 2. SYMMETRIES AND INVARIANCE

G be the group B1 of one-dimensional boosts gv : x 7→ x− vt. The ingredients
of our equation transform as

gv :
d

dt
7→ d

dt
; (2.7)

gv : k 7→ k; (2.8)

gv : r (t) 7→ r (t)− vt. (2.9)

So the transformed equation is

d

dt
(r (t)− vt) = −k (r (t)− vt) . (2.10)

But this is equivalent to the original equation only if −v = vkt, which clearly
cannot hold for all t. The non-equivalence of the untransformed and transformed
equations means that the original equation is not boost-invariant.

Although I used a very simple toy model above, it’s straightforward to apply
both of these approaches to more physically relevant theories. A standard first-
year presentation of Newtonian gravity for two particles is given by (combining
N2L and the law of gravitation):

r̈i =
GNm1m2

|r1 − r2|3
(ri − ri+1) , i = 1, 2. (2.11)

LetG be the group B3 of three-dimensional boosts, {(gv : r 7→ r− vt) : v ∈ R3}.
The quantities in our equation transform as

r′i (t) := (gvri) (t) = ri (t)− vt, (2.12)

r̈′i (t) := ( ¨gvri) (t) = r̈i (t) , (2.13)

m′
i := gvmi = mi. (2.14)

The transformed equation is:

r̈′i =
GNm1m2

|r′1 − r′2|
3

(
r′i − r′i+1

)
, i = 1, 2. (2.15)

Eliminating the primes, we have

r̈i =
GNm1m2

|r1 − r2|3
(ri − ri+1) , i = 1, 2. (2.16)

So the equation (2.11) is form-invariant under Galilean boosts!

Exercise: Generalise this to the N -body problem.

Exercise: Show that Newtonian gravitation is invariant under Galilean
boosts using the space-of-solutions approach.
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Having now presented both methods for ascertaining whether a given set
of equations has a given set of symmetries, there are a couple of conceptual
points to make. First: pragmatically, there’s some reason to prefer the form-
of-equations approach over the space-of-solutions approach, because the former
doesn’t involve having to figure out what the solutions of the equation under
consideration actually are. Second: in each case above, we began with an ansatz
about what the symmetry group of our equation. Figuring out the full symmetry
group of a set of equations is highly non-trivial. While there is no general method
for doing this, the task can be aided by formulating our theories in certain ways,
using certain objects which have familiar symmetry properties. (I’ll demonstrate
explicitly what I mean by this in Chapter 6.)

Question: Are the space-of-solutions approach and the form-of-
equations approach equivalent? Justify your answer.

2.4 Newton on Galilean invariance

I’m now going to indulge in an historical digression. Newton claims to infer
Galilean invariance from his laws of motion: after setting out the latter, he
infers several corollaries; his ‘Corollary V’ is:

The motions of bodies included in a given space are the same among
themselves, whether that space is at rest, or moves uniformly forward
in a right line without any circular motion. [19, p. 20]

This essentially states that the laws of physics are Galilean invariant. Newton’s
argument for Corollary V is this:

For the differences of the motions tending towards the same parts,
and the sums of those that tend toward contrary parts, are, at first
(by supposition), in both cases the same; and it is from those sums
and differences that the collisions and impulses do arise with which
the bodies mutually impinge one upon another. Wherefore (by Law
II) the effects of those collisions will be equal in both cases; and
therefore the mutual motions of the bodies among themselves in
the one case will remain equal to the mutual motions of the bodies
among themselves in the other. A clear proof of which we have
from experiment of a ship; where all motions happen after the same
manner, whether the ship is at rest, or is carried uniformly forwards
in a right line. [19, p. 20]

Newton’s reasoning here is morally correct, but it’s worth pointing to a
couple of non-sequiturs in his argument. First: it does not follow from the laws
of motion alone that “it is from those sums and differences that the collisions and
impulses do arise with which the bodies mutually impinge upon one another.”
This requires the additional assumption that forces depend only on (vectorial)
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differences of positions and/or velocities, not on absolute positions or absolute
velocities. (Consider a particle affected by the force F = −kv.) And second:
it does not follow that “the effects of those collisions will be equal” unless we
further assume that the mass of a given body is independent of the body’s
absolute position and absolute velocity. (Consider particles whose masses are
proportional to their absolute speeds.) That said, with these two auxiliary
assumptions in place, Galilean invariance of the laws does follows from N2L
(by essentially Newton’s argument). (For more on this, see [14, §3.2].)

2.5 Poincaré transformations

So far in this chapter, I’ve introduced the Galilean transformations, as well as
two different methods for checking whether a given set of equations has a given
set of transformations as symmetries. Of course, though, the Galilean transfor-
mations are not the only set of transformations of physical interest—and, indeed
(to anticipate), the transformations which are most relevant to special relativ-
ity are the Poincaré transformations. We saw that a Galilean transformation
can be expressed as the composition of a rigid spacetime translation, a rigid
rotation, and a Galilean boost. A Poincaré transformation is any coordinate
transformation that can be expressed as the composition of a rigid spacetime
translation, a rigid rotation, and a Lorentz boost:2

Spacetime translation gaµ

(
aµ ∈ R4

)
: gaµ (xν) = xν + aν .

Spatial rotation and Lorentz boost gΛµ
ν
(Λµ

ν ∈ SO (1, 3)) : gΛµ
ν
(xν) = Λν

σx
σ.

In both cases, we have a rigid translation, a rigid rotation, and a boost. But the
boosts are different in the two cases. To render this explicit: here’s a Galilean
boost in the x direction:

t′ = t, (2.17)

x′ = x− vt. (2.18)

By contrast, here’s a Lorentz boost in the x direction (γ := 1/
√

1− v2/c2):

t′ = γ
(
t− vx

c2

)
, (2.19)

x′ = γ (x− vt) . (2.20)

Question: Is there any reason to prefer c → ∞ or v/c → 0 as a way of
taking the non-relativistic limit of the Lorentz transformations? What
addition assumptions does one need to make in order to recover the
Galilean boosts from the Lorentz boosts when v/c → 0?

2Here, for the first time in this book, I use the Einstein summation convention, according
to which repeated indices in a term are summed. I also use four-dimensional index notation,
which will be discussed in detail in Chapter 6.
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The first set of physical laws which were discovered to be Poincaré invariant
were Maxwell’s equations. In their typical 3-vector formulation, these read:3

∇ ·E = ρ (2.21)

∇ ·B = 0 (2.22)

∇×E = −∂B

∂t
(2.23)

∇×B = J+
∂E

∂t
(2.24)

Maxwell’s equations are invariant under Poincaré transformations; they are not
invariant under Galilean transformations. One might, indeed, say that it was
the discovery of a set of dynamical laws which were Poincaré invariant rather
than Galilean invariant which precipitated the crisis nineteenth-century physics
which eventually led to the development of special relativity. It’s this crisis
which I’m going to discuss in the next chapter.

3Note that changing just one sign in Maxwell’s equations will change their symmetry
properties: see [71].
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Chapter 3

The Michelson-Morley
experiment and Lorentz’s
programme

It matters little whether the ether
really exists; that is the affair of
the metaphysicians. The
esssential thing for us is that
everything happens as if it
existed, and that this hypothesis
is convenient for the explanation
of phenomena. After all, have we
any other reason to believe in the
existence of material objects?
That, too, is only a convenient
hypothesis; only this will never
cease to be so, whereas, no doubt,
some day the ether will be thrown
aside as useless. (Poincaré, 1888)

I intimated at the end of the previous chapter that the discovery of Maxwell’s
equations—which are invariant under Poincaré transformations—precipitated a
crisis in nineteenth-century physics. Here’s a quick and dirty way to see the
issue, in terms of symmetries.1 We have seen that Newtonian mechanics is
invariant under Galilean transformations—i.e., translations, spatial rotations,
and Galilean boosts. We have also seen that electromagnetism is invariant un-

1This presentation is anachronistic, because in fact around the time that these events were
unfolding in physics (i.e., the 1880s), the symmetry group of Maxwell’s equations was yet to
be discovered: see [14, p. 2]. Still, the presentation here has the merit of pedagogical clarity.

31
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der Poincaré transformations—i.e., translations, spatial rotations, and Lorentz
boosts. Suppose that we lived in a world in which both of these theories were
true. Then the overall invariance group of the physical laws of the world would
be the intersection of these two groups, i.e., the group of translations and spatial
rotations (no boosts). The lack of boost invariance would then imply (up to
translations and spatial rotations) the existence of a preferred frame! So: in
the wake of Maxwell’s electromagnetism in the nineteenth century, physicists
anticipated violations of the relativity principle.2

What did people take the significance of this predicted preferred frame to
be? From Maxwell’s equations, one can derive that the speed of light is c
(see e.g. [80]). It is natural to identify this statement as holding true in the
above-mentioned preferred frame. In this frame, with respect to what is light
moving? 19th Century answer: some background structure: the ether, which was
supposed to be the medium in which light waves propagate. So (the thought
goes) light moves at c in the rest frame of the ether—and this is the preferred
frame in which Maxwell’s equations hold. This was an extremely sensible thing
for 19th Century physicists to think, since it rests only on the assumption that
light is like all other waves, insofar as (i) it has a medium, and (ii) its speed is
independent of the speed of the source (and, insofar as one takes the wave in
question to have a medium, a function only of the speed of that medium).3

That light moves at c only in the rest frame of the ether, and moves at c±v in
a frame moving at velocity v with respect to the ether (because, from Maxwell’s
equations, the speed of light is independent of the speed of the source—to repeat,
the situation here is exactly the same as for all other waves4), is an empirical
hypothesis, which should be testable. In the 19th century, physicists indeed did
attempt to test this hypothesis—all tests ended in null results. The most famous
of these experiments is the Michelson-Morley experiment, which I’ll consider in
detail in this chapter. Before doing so, however, I want to say a little more on
the conceptual background to these issues.

2To repeat the point of the previous footnote: physicists arrived at this conclusion on
the basis of the wave-like nature of light (more on which below), rather than on the basis of
consideration of symmetry groups. Nevertheless, the central conclusion—the existence of a
preferred frame—is the same on either account.

3Sometimes, when one first encounters special relativity, (ii) is marketed as a novel feature
of light. But this is badly confused, since it’s a feature of all waves. As we’ll see below, the
distinctive feature of the light has to do with the nature of its medium (specifically, it has to
do with the fact that we no longer believe that the medium exists!).

4Indeed, the wave equation for sound is also invariant under Poincaré transformations—
albeit with an invariant speed which is not c, but rather the speed of sound. These parallels
raise interesting questions regarding whether (and under what circumstances) one might be
led to a relativistic theory on the basis of (say) sound waves, rather than light waves. I
won’t go into this further here—suffice it to say that exploring the parallels is an illuminating
pedagogical exercise. For recent discussions on these matters, see [23, 157, 158].
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3.1 Conceptual background

In my experience, one can easily become confused over how physicists were
reasoning through these issues in the 19th century, unless one states the issues
very precisely, and approaches them with a great deal of care. To that end, I
want to say a little more here by way of background. Feynman put things very
nicely in his Lectures on Physics:

One of the consequences of Maxwell’s equations is that if there is
a disturbance in the field such that light is generated, these elec-
tromagnetic waves go out in all directions equally and at the same
speed c, or 186,000 mi/sec. Another consequence of the equations
is that if the source of the disturbance is moving, the light emitted
goes through space at the same speed c. This is analogous to the
case of sound, the speed of sound waves being likewise independent
of the motion of the source.

This independence of the motion of the source, in the case of light,
brings up an interesting problem. Suppose we are riding in a car
that is going at a speed u, and light from the rear is going past the
car with speed c. Differentiating [the Galilean transformation for
position] gives

dx′

dt
=

dx

dt
− u,

which means that according to the Galilean transformation the ap-
parent speed of the passing light, as we measure it in the car, should
not be c but should be c−u. For instance, if the car is going 100,000
mi/sec, and the light is going 186,000 mi/sec, then apparently the
light going past the car should go 86,000 mi/sec. In any case, by
measuring the speed of the light going past the car (if the Galilean
transformation is correct for light), one could determine the speed
of the car. A number of experiments based on this general idea
were performed to determine the velocity of the earth, but they all
failed—they gave no velocity at all. [56, vol. 1, lecture 15]

The point is that light, like sound (the medium of which is of course the air),
was in the nineteenth century taken to have a medium: the ether. Like sound
(since light is also a wave, and all waves have this property) the speed of light
is independent of the speed of the source; on the assumption of a medium, its
velocity is a function of the speed of the medium only. So: although light (by
assumption) moves at c in the rest frame of the ether, it will move at c± v in a
frame moving at velocity v with respect to the ether.5 But (to anticipate), such
potentially detectable effects were, in fact, never observed.

5One can in fact show that if one Galilean boosts a plane wave solution to Maxwell’s
equations (remember: such Galilean boosted—rather than Lorentz boosted—frames are not
inertial frames of Maxwell’s equations), then the wave will move at c ± v in boosted frame
(where the boost is understood passively): see [153].
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3.2 The Michelson-Morley experiment

How did physicists attempt to test the above-described predictions? By far
the most famous such attempted experimental test was the Michelson-Morley
experiment, which I’ll now discuss in some detail.6

As we’ve already discussed, assuming that the Earth is moving with some ve-
locity with respect to the ether, there should (the thought went) be deviations
from the observed velocity of light, which should be detectable. It was exactly
these deviations which the Michelson-Morley experiment was designed to detect.
Above, I’ve drawn a schematic representation of the setup of this experiment;
this experiment was designed to work as follows:

1. The interferometer sends a beam of coherent light from a source towards
a half-silvered mirror.

2. Here the beam is split into two components that continue at right angles
to one another: one down ‘arm A’ and the other down ‘arm B’.

3. A short distance later, each half-beam encounters a second (fully silvered)
mirror, and is reflected back. The beams are recombined, and the resulting
interference pattern is observed on a detector screen.

4. The observed pattern will depend on:

(a) the lengths of the arms A and B, and

(b) the speed of travel of the light along each arm in each direction.

In a lab that is moving relative to the ether with speed v, the speed of light
relative to the lab frame is expected to be anisotropic: it should be c − v in

6For further details, see [14, ch. 4].
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the direction of the lab’s motion, c+ v in the opposite direction, and
√
c2 − v2

in directions perpendicular to that of the lab’s motion (the third velocity can
be computed via a straightforward application of Pythagoras’ theorem). If we
could ensure that the arms were exactly equal in length, then anything other
than constructive interference would indicate the presence of an ether wind.
Unfortunately, ensuring this was not technologically feasible when Michelson
and Morley performed their experiment. However, regardless of the arm lengths,
rotating the apparatus should change the interference pattern in a predictable
manner in a moving frame, and would not if the apparatus were at rest with
respect to the ether. Thus we look for this post-rotation change as a signature
of the ether wind.

More quantitatively, the reasoning proceeds as follows. Suppose (for sim-
plicity) that the two arms are of equal length, L. Then, the out-and-back time
for light to travel along the arm that is parallel to the ether drift should be

∆t∥ =
L

c− v
+

L

c+ v
=

2Lc

c2 − v2
. (3.1)

The out-and-back time for light to travel along the arm that is perpendicular to
the ether drift should be

∆t⊥ =
2L√

c2 − v2
. (3.2)

The time difference before rotation is then given by

∆t∥ −∆t⊥ =
2

c

 L

1− v2

c2

− L√
1− v2

c2

 . (3.3)

By multiplying by c, the corresponding length difference before rotation is

∆1 = 2

 L

1− v2

c2

− L√
1− v2

c2

 . (3.4)

After rotation, the length difference is given by

∆2 = 2

 L√
1− v2

c2

− L

1− v2

c2

 . (3.5)

Dividing ∆1 −∆2 by the wavelength λ of the light used in the interferometer,
the fringe shift n is found:

n =
∆1 −∆2

λ
≈ 2Lv2

λc2
. (3.6)

If L = 11m, λ = 550nm and v = 30kms−1, this gives an expected fringe shift
of ∆n ≈ 0.4—certainly large enough to be observable (despite the fact that the
effect is ‘second order in v2/c2’).
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A couple of comments at this stage. First: one might wonder: isn’t a length
of 11m pretty big for the experiment? Yes—in fact, Michelson and Moreley
implemented this effective length by using mirrors to bounce light back and
forth in their detectors (this method is by now standard, and also used in
modern interferometers such as LIGO, which was used to detect gravitational
waves, as predicted by general relativity). (Below, I’ve included a figure from
the original paper by Michelson and Morley [107], in which they illustrate this
use of mirrors.) Second: one might wonder: where did the velocity of 30kms−1

come from? The simple answer is that this was a guess: that velocity is the
approximate orbital velocity of the Earth around the Sun, so seems as good
as any other from the point of view of rendering quantitative the theoretical
predictions regarding this experiment.

In any case, we already know the punch-line to this story: The result of
Michelson-Morley experiment was null—rotating the apparatus did not lead to
a detectable fringe shift. Michelson and Morley concluded that “if there be
any relative motion between the earth and the luminifeous ether, it must be
small” [107, p. 341]; here, ‘small’ means “probably less than one-sixth of the
earth’s orbital velocity, and certainly less than one-fourth.” This null result
was a mystery: this “small relative motion” might obtain by luck at any given
instant, but it is difficult to see how it could obtain throughout the Earth’s
orbit. (Assuming that the ether is an inert background, then of course the
Earth cannot be at rest with respect to it at every point in its orbit; on the other
hand, if the ether is not inert, then it would have to be the case that the Earth
(say) drags the ether around its orbit, so that there is no detectable relative
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motion between the two—but that hypothesis was ad hoc;7 moreover, the drag
hypothesis was already losing favour around the time that the Michelson-Morley
experiment was performed.8.)

It’s worth reiterating the puzzle presented by these null results; we can do so
by treating the Earth as in essence an analogue of Galileo’s ship. Suppose that
the Earth is at rest with respect to the ether at some point in its orbit. Then the
Earth will be moving with respect to the ether at some other point in its orbit. It
look like the Earth is, therefore, a Galileo ship-type subsystem, which has been
actively boosted. If all physics were Galilean invariant, we would expect the
same physical laws on the Earth in the two scenarios. But electromagnetism is
not Galilean invariant (it’s Poincaré invariant)—so (the thought goes) we should
expect violations of the (Galilean) relativity principle, manifesting themselves
in different detected velocities of light in the two cases. How to explain that
this was never observed?

3.3 Lorentz’s programme

It would be easy, through the lens of post-Einsteinian physics, to denigrate the
ether theorists as foolish for having chased after a will-o’-the-wisp in the form of
the ether. But it bears stressing that there was no reason at the time to doubt
the analogies between light and other waves such as sound and water. Moreover,
as we’ll see, the work undertaken by physicists such as Fitzgerald, Larmor, and
Lorentz in the wake of the Michelson-Moreley null result provided the fuel to
ignite Einstein’s relativistic revolution. So, these physicists have every right to
be dubbed, in Brown’s words, “the trailblazers” [14, ch. 4].

Let’s begin with Fitzgerald, who in 1889 the suggested that “almost the
only hypothesis” capable of reconciling the Michelson-Morley experiment with
the apparent fact that the Earth dragged a negligible amount of ether was that

the length of material bodies changes, according as they are moving
through the ether or across it, by an amount depending on the square
of the ratio of their velocities to that light. [58]

He continued:

We know that electric forces are affected by the motion of electrified
bodies relative to the ether and it seems a not improbable supposi-
tion that the molecular forces are affected by the motion and that
the size of the body alters consequently. [58]

The idea here is that we do not observe violations of the relativity principle in
the sense of the frame-dependence of the velocity of light, for material bodies
contract under velocity boosts in just such a way as to compensate for such
effects, and yield the recorded null result. Lorentz, indeed, would arrive at the

7One might be reminded here of Descartes’ celestial fluid: see [128].
8For further discussion of this drag hypothesis, see [144, pp. 172-173] and [115, ch. 8].
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same idea in 1892 [96]; Larmor would also adopt the idea in his 1900 book,
Aether and Matter [88].

To be a little more concrete (and here I follow the presentation in [14, §4.4]),
Lorentz introduced a longditudinal factor C∥ = 1 + δ and a transvere factor
C⊥ = 1 + ϵ. He claimed that the null result required

ϵ− δ ∼ v2

2c2
. (3.7)

Contraction in this manner would cancel out the different velocities of light,
and lead to no phase shift effects at the detector. Lorentz would later push this
idea further, with his theorem of corresponding states [97]. This was designed
to show that no first- or second-order ether-wind effects would be discernible
in experiments involving optics and electrodynamics. In the second version of
this theorem, the Lorentz transformations finally appear; however, until Ein-
stein’s work in 1905 (see Chapter 4) [42], Lorentz continued to believe that
the true coordinate transformations were the Galilean ones, and that these new
transformations were merely a useful formal device.

In sum, the reasoning of the ether theorists can be laid out as follows:

1. When I consider the Earth at rest versus moving with some velocity v, I
am to construe those states as being related by Galilean transformations.

2. Since Maxwell’s equations are not invariant under such transformations,
I should expect different electromagnetic physics in the two states—in
particular, I should expect a different velocity of light in the pre- and
post-transformed states.

3. In light of the null results of experiments such as that of Michelson and
Morley, I postulate that material bodies contract under Galilean boosts:
that is, I postulate more relativity principle-violating physics to cancel
out the first relativity principle-violating physics, and explain why I don’t
observe violations of the relativity principle.

Einstein would reject the first premise here—I’ll tackle in detail how he
achieved this in the following chapter, but in brief for now: he would argue
that when I consider the Earth at rest versus moving with some velocity v, I
am (in light of the dynamical constitution of the bodies under consideration) to
construe those states as being related by Lorentz transformations, so that (a)
the speed of light does not vary from inertial frame to inertial frame, and (b)
accordingly, no ad hoc compensating dynamical effects are required in order to
save the relativity principle.9

Continuing to focus for now on the ether theorists’ dynamical contraction
hypotheses, there is only one further point which I wish to make here. As time

9Of course, the Lorentz transformations famously entail the phenomenon of length con-
traction, which will be discussed in detail in Chapter 9, but for the time being we should take
this to have a different conceptual status to the kind of contraction postulated by authors such
as Fitzgerald, Larmor, and Lorentz—in effect, Einstein elevated contraction to a kinematical
effect.
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went on, the exact nature of the dynamical contraction hypotheses required
in order to underwrite the null results of Michelson-Morely-type experiments
became increasingly delicate and ad hoc. As Brown writes,

Lorentz noted that the theorem of corresponding states actually im-
plies that the frequency of oscillating electrons in the light source is
affected by motion of the source, and it is this fact that gives rise to
the change in frequency of the emitted light. But Lorentz realized
that the oscillating electrons only satisfy Newton’s laws of motion
if it is assumed that both their masses and the forces impressed on
them depend on the electrons’ velocity relative to the ether. The
hypotheses in Lorentz’s system were starting to pile up, and the
spectre of ad hocness was increasingly hard to ignore (as Poincaré
would complain). [14, p. 56]

Something had to give—enter Einstein.
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Chapter 4

Einstein’s 1905 derivation of
the Lorentz transformations

The introduction of a
“luminiferous ether” will prove to
be superfluous inasmuch as the
view here to be developed will not
require an ‘absolutely stationary
space’ provided with special
properties, nor assign a
velocity-vector to a point of the
empty space in which
electromagnetic processes take
place. (Einstein, 1905)

In 1905, Einstein published four papers in the journal Annalen der Physik,
each of which precipitated a revolution in physics. The papers were on:

1. The photoelectric effect. [40]

2. Brownian motion. [41]

3. Special relativity. [49]

4. Mass-energy equivalence. [43]

Quite rightly, the year would come to be known as Einstein’s annus mirabilis.
Einstein’s 1905 derivation of the Lorentz transformations in his third annus
mirabilis paper, On the Electrodynamics of Moving Bodies [42], purports to ac-
count for all ether wind experiment null results, without recourse to dynamical
considerations à la Lorentz et al. In effect, it elevates contraction from a dy-
namical effect to a kinematical effect: all physics must be conditioned such that
it is invariant under Lorentz boosts. In this way, the relativity principle could

41
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be reconciled with the Poincaré invariance of Maxwell’s equations. Distinctive
features of Einstein’s approach include the following:

1. It eliminates “asymmetries which do not appear to be inherent in the
phenomena” [42]. (Here, Einstein is referring to Lorentz’s responses to
the ether wind null results.)

2. It accounts for all null ether wind results.

3. It does not postulate an ether, or a standard of absolute rest, at all.

4. It is a ‘principle theory’, rather than a ‘constructive theory’.

The idea—already outlined at the end of the previous chapter—is that when
one boosts a material body with velocity v, one should (in light of the dynamics
of that body—more on this below) take it that the boosted state is related to
the original state by a Lorentz transformation, rather than a Galilean transfor-
mation. In this way, one need not invoke dynamical contraction hypotheses in
order to compensate for the fact that the velocity of light would differ in frames
related by Galilean boosts. In other words, for Einstein, the theorists which pre-
ceded him had misunderstood the nature of boosts. Here’s how Einstein himself
put the matter towards the start of his article:

Examples of this sort, together with the unsuccessful attempts to
discover any motion of the earth relatively to the “light medium,”
suggest that the phenomena of electrodynamics as well as of me-
chanics possess no properties corresponding to the idea of absolute
rest. They suggest rather that, as has already been shown to the
first order of small quantities, the same laws of electrodynamics and
optics will be valid for all frames of reference for which the equations
of mechanics hold good. [42]

My purpose in this chapter is to dissect Einstein’s 1905 derivation of the Lorentz
transformations, as it appears in [42]. Before doing so, however, I should say
something on the above-mentioned distinction between ‘principle’ and ‘construc-
tive’ theories of physics.

4.1 Principle and constructive theories

The theory presented in Einstein’s 1905 article [42] is something which he would
later recognise to be a ‘principle theory’, rather than a ‘constructive theory’.
Einstein introduced this distinction in a 1919 article in the London Times, where
he wrote that:

Most [theories in physics] are constructive. They attempt to build
up a picture of the more complex phenomena out of the materials of
a relatively simple formal scheme from which they start out. Thus,
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the kinetic theory of gases seeks to reduce mechanical, thermal, and
diffusional processes to movements of molecules ...

[Principle theories, by contrast,] employ the analytic, not the syn-
thetic method. The elements which form their basis and starting
point are not hypothetically constructed but empirically discovered
ones, general characteristics of natural processes, principles that give
rise to mathematically formulated criteria which the separate pro-
cesses ... have to satisfy ... The theory of relativity belongs to the
latter class. [48]

The distinction between principle and constructive theories which Einstein
presents in the above passage can be cashed out thus:

Constructive theories: Theories which attempt to provide a detailed dynam-
ical picture of what is microscopically going on, from which predictions
for observable phenomena can be derived.

Principle theories: Theories which take certain phenomenologically well-grounded
principles, raises them to the status of postulates, and derive from them
constraints on what the underlying detailed dynamical equations could be
like, without attempting to give a fully detailed account of what those
equations are.

A paradigm example of a principle theory is thermodynamics; the ‘phe-
nomenologically well-grounded postulates’ in this case are the laws of thermo-
dynamics, from which one derives (say) relations between certain functions of
state. The corresponding constructive theory in this case, as Einstein points
out in the above passage, would be the (statistical) kinetic theory of gases.

One might think that constructive theories are superior to principle theories,
in the sense that the former are able to provide deeper, mechanistic explanations
for physical phenomena in a way that the latter are not. But in that case,
why was Einstein’s 1905 formulation of special relativity—which (in 1919) he
declared to be a principle theory—so celebrated? One might be motivated to
construct a principle theory by wanting to make some progress, before the fully
detailed microphysical picture (constructive account) is known. Einstein in 1905
saw himself as being in this situation: Lorentz had been pursuing a constructive
approach, but Einstein was bothered by deep suspicions that the true equations
governing intermolecular forces were very far from being known.1 It is, however,
worth registering Einstein’s reservations about principle theories:

1It doesn’t have to be only historical circumstances which justify the use of principle
theories—Einstein himself in his 1919 article points out that such theories have the merits of
being connected directly with empirical experience, and so of indubitability (here, there are
interesting and under-explored connections with the programme of ‘constructive axiomatics’
promulgated by Reichenbach in 1924 [142]: see [31, 92] for discussion). Moreover, there may
be certain explanatory factors which militate in favour of the use of principle theories—as Van
Camp writes:

Constructive theories are grounded in their ability to offer causal-mechanical
explanations of phenomena, a type of scientific explanation most prominently
advocated by Salmon [146].
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It seems to me ... that a physical theory can be satisfactory only
when it builds up its structures from elementary foundations. [55]

[W]hen we say we have succeeded in understanding a group of nat-
ural processes, we invariably mean that a constructive theory has
been found which covers the processes in question. [48]

4.2 Einstein’s 1905 article

Having recognised that Einstein was following the principle theory approach in
his 1905 article—simply assuming (on the basis of phenomenological observa-
tions, e.g. no observed violations of the relativity principle) that the symmetry
group for the laws of mechanics should be the same as the symmetry group for
the laws of electromagnetism, without a clear understanding of the dynamics of
matter which would underwrite this fact—I’ll now present Einstein’s derivation
of the Lorentz transformations as presented in his 1905 article.

Before I begin, there’s one additional point to make. There are questions
which one might reasonably have about Einstein’s methodology in his article.
Since the Lorentz transformations were already known by 1905, what was Ein-
stein adding to extant knowledge? The point is that Lorentz et al. derived these
transformations on the basis of detailed dynamical considerations. By contrast,
Einstein would (a) proceed via phenomenological considerations regarding light
and the relativity principle (and so would avoid having to make unjustified con-
jectures regarding underlying dynamics), and (b) would, as we have already
seen, elevate the resulting transformations to a kinematical constraint. I’ll come
back to these differences between Einstein and Lorentz later in this chapter.

Good. Without further ado, then, I’ll now proceed by extracting the central
threads in Einstein’s 1905 derivation, and discussing them in turn.

4.2.1 Einstein’s operational understanding of coordinates

At the beginning of his article, Einstein is explicit that he has an operational
understanding of coordinates. This understanding means that he requires spa-
tial coordinates to ‘match’ the length of rigid measuring rods that are at rest in
the system in question, and time coordinates to ‘match’ the tickings of clocks
at rest in that system. The appeal to rigid rods and regular clocks in his adum-
bration of his understanding of coordinates is something which Einstein would
later come to regret, as I’ll discuss below (cf. [64]); moreover and more gener-
ally, Einstein would struggling throughout his career with how to understand
coordinate systems (on this, see [65]).

Principle theories are also explanatory. The primary function of a principle
theory is tied to the explanatory role it plays through unification. The theory
of explanation as unification was first advanced by Friedman [59] and has been
developed since by Kitcher [84]. [161, pp. 23-24]

For further discussion of these issues, see [136] and references therein.
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For my purposes in this section, I’ll follow Einstein in simply assuming this
understanding of coordinates. Indeed and in any case, even to set up one coor-
dinate system, we need more than this: we need to decide how to synchronise
clocks that are spatially separated from one another. Having presented his un-
derstanding of coordinates, Einstein next turns his attention to this very matter.

4.2.2 The definition of simultaneity

Consider the following setup: two mirrors A and B are some fixed distance L
apart. A photon is fired from A at event (i.e., spacetime point) A1, bounces
off B at B2, and returns to A at A3, as per the following diagram (here, space
runs along the horizontal axis and time along the vertical axis, as standard):

Now ask: which point on the worldline of mirror A is simultaneous with point
B2 on the worldline of mirror B? The natural answer stipulated by Einstein
(following Poincaré) is the following (here ‘tA’ indicates the time read off by a
clock at A; mutatis mutandis for B):

tB (B2) = tA (A1) +
1

2
(tA (A3)− tA (A1)) . (4.1)

That is, B2 is simultaneous with the point half-way between A1 and A3 on A’s
worldline. This makes the one-way speed of light isotropic. (One would be
perfectly within one’s rights to ask whether this is the only way of ‘spreading
time through space’ in special relativity—I’ll return to this issue in Chapter
7.) For the time being, we can treat this as a conventional choice made by
Einstein for how to synchronise distant clocks: typically, it is referred to as the
Einstein-Poincaré clock synchrony convention.
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4.2.3 Einstein’s two postulates

We turn now to what many would regard as the main event: Einstein’s two
postulates of special relativity. These are the relativity principle (RP) (which
we’ve already discussed at some length) and the light postulate (LP) (something
on which we also remarked in the previous chapter). As stated by Einstein, these
read as follows:

RP: The laws by which the states of physical systems undergo change are not
affected, whether these changes be referred to the one or the other of two
systems of coordinates in uniform translatory motion.

LP: Any ray of light moves in the ‘stationary’ system of coordinates with the
determined velocity c, whether the ray be emitted by a stationary or by
a moving body. Hence [sic?]

velocity =
light path

time interval
,

where time interval is to be taken in the sense of the definition in section
1.

Note that both RP and LP accord with the methodology of a principle theory:
as we’ve already seen, (i) there were no empirically observed violations of RP,
and (ii) light is a wave, so (like all waves) is such that the speed of the wave
is independent of the speed of the source (which is LP). (Sometimes, LP is
identified with the ‘constancy of the speed of light’, but this is not how the
principle is stated. The constancy of the speed of light in inertial frames follows
from a combination of RP and LP; in non-inertial frames, the speed of light
need not be c.2) Einstein’s point is going to be that (a) these conditions (plus the
extra assumptions involved in the 1905 paper, namely those discussed above and
also below) together imply that transformations between frames are the Lorentz
transformations, and (b) if all material bodies are governed by equations which
are invariant under these transformations, then one no longer predicts violations
of RP, so there is no longer any need for a preferred frame, a fortiori no longer
any need for an ether.

4.2.4 Homogeneity, isotropy, and reciprocity

The game is now to derive coordinate transformations from the above principles,
along with a couple of others. In particular, Einstein will also need to assume:

1. The homogeneity of space and time. (‘Every point in space and time is
the same as every other.’)

2. The isotropy of space. (‘There is no privileged direction in space.’)

2Cf. footnote 5 in Chapter 3.
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Note that homogeneity and isotropy are not equivalent: an example of a
homogeneous but anisotropic space would be (say) a set of vectors all pointing
in the same direction in a space; an example of an inhomogeneous but isotropic
space would be one line γ, with vectors emanating radially from this line (in
this case, the space is inhomogeneous, but isotropic about γ).

Also worthy of mention is the principle of ‘Reciprocity’, which states the
following: If two inertial coordinate systems S and S′ are such that S′ is moving
with speed v in the positive x direction relative to S, then S is moving with speed
v in the negative x direction relative to S′. As Brown mentions, this principle
holds if and only if the Einstein-Poincaré synchrony convention is adopted in
both S and S′ [14, p. 118]. Von Ignatowski claimed that Reciprocity follows
from RP alone; however, in the absence of any stipulation regarding a clock
synchrony convention, this claim is incorrect (see [159, p. 79]). Berzi and Gorini
showed in [10], however, that Reciprocity can be derived from a combination
of RP and spatial isotropy. Although these observations are independently
interesting, the main point regarding Reciprocity which I want to make is this:
although the principle can be invoked at certain points in Einstein’s derivation
(see below), it is not necessary to take this to be an independent assumption:
rather, it can be derived from Einstein’s other assumptions already presented
above.

4.2.5 Linearity of the transformations

Homogeneity implies that the transformations between inertial frames must be
linear. Einstein doesn’t spell out how this works, but a reconstruction can be
found in [14, §2.3]. Generic transformations between frames can be written

x′µ = fµ (xν) . (4.2)

Suppose that the transformations encode information on the behaviour of rods
and clocks (recall Einstein’s operational understanding of coordinate systems).
Then such behaviour should not depend on where the rods and clocks find
themselves in space or time, on pains of violation of homogeneity. Consider now
the infinitesimal version of the above transformation law,

dx′µ =
∂fµ

∂xν
dxν . (4.3)

Homogeneity implies that the coefficients ∂fµ/∂xν must be independent of the
xν coordinates, which means that fµ must be linear functions of the coordinates
xµ.

4.2.6 Lorentz transformations up to ϕ (v)

Following Einstein, we now let K be a ‘stationary’ system, and let (t, x, y, z)
be coordinates for K, determined by the conditions of surveyability-using-rods-
and-clocks-that-are-stationary-in-K and the Einstein definition of simultaneity



48 CHAPTER 4. EINSTEIN’S 1905 DERIVATION

applied in K (for t). We let k be a system of coordinates that is moving with
speed v along the positive x-direction relative to the ‘stationary’ system K, and
let (τ, ξ, η, ζ) be coordinates for k, determined by the conditions of surveyability-
using-rods-and-clocks-that-are-stationary-in-k and the Einstein definition of si-
multaneity applied in k (for τ). Using Einstein synchrony in k and the linearity
of the coordinate transformations, Einstein derives (I’ll omit his steps, since
they are straightforward)

τ = ϕ (v) γ
(
t− vx

c2

)
. (4.4)

Now consider a light ray emitted from the origin in the positive ξ-direction.
Using RP and LP to write down expressions for the relationship between ξ
and τ that holds on the path of this ray, and similarly (using RP alone) for
the relationship between x and t that holds on the path of this ray, Einstein
likewise derives therefrom that

ξ = ϕ (v) γ (x− vt) . (4.5)

Similarly, by considering rays of light emitted in the η and ζ directions from the
perspectives of both K and k, Einstein obtains

η = ϕ (v) y, (4.6)

ξ = ϕ (v) z. (4.7)

(4.4)-(4.7) are the Lorentz transformations, up to a velocity-dependent factor
ϕ (v).

4.2.7 Final steps

The final steps involve setting ϕ(v) = 1, and thereby recovering the Lorentz
transformations. First, one invokes RP and Reciprocity in order to argue that
ϕ (v)ϕ (−v) = 1. Now, given Einstein’s operational understanding of coordi-
nates, ϕ (v) can be interpreted physically as the inverse of the transverse length
contraction factor, i.e., the factor by which setting a body in motion causes that
body to shrink in the direction perpendicular to its motion. Given that inter-
pretation, isotropy entails that ϕ (v) = ϕ (−v), so one has ϕ(v)2 = 1. We then
argue somehow against the rogue possibility that ϕ (v) = −1 (using continuity
and ϕ (0) = +1?—Einstein does not discuss this explicitly). It then follows that
ϕ (v) = 1. This yields the by-now familiar Lorentz transformations!

4.3 Einstein versus the trailblazers

Einstein’s 1905 paper predicts once and for all the null result of ether wind
experiments such as that of Michelson and Morley. Indeed, it does so trivially—
just by insisting upon RP alongside LP. As I’ve already mentioned, one way
to understand Einstein is as insisting that the laws of mechanics should also be
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Poincaré invariant—he is making Poincaré invariance universal, as a kinematical
constraint. One sometimes finds the claim that Lorentz was not happy with
Einstein’s approach, as might seem apparent in passages such as the following:

Einstein simply postulates what we have deduced, with some diffi-
culty and not altogether satisfactorily, from the fundamental equa-
tions of the electromagnetic field. [96, p. 230]

To be fair to Lorentz, however, he followed the above passage with this conces-
sion:

By doing so, he may certainly take credit for making us see in the
negative result of experiments like those of Michelson, Rayleigh and
Brace, not a fortuitous compensation of opposing effects but the
manifestation of a general and fundamental principle. [96, p. 230]

As Brown writes, “The full meaning of relativistic kinematics was simply not
properly understood before Einstein” [14, p. 68].

It’s worth asking oneself how radical Einstein’s 1905 approach really was.
Arguably, Newton himself was constructing a principle theory—the postulates
being his three laws of motion. When combined with the RP and the auxil-
iary hypotheses mentioned in Chapter 2, these imply the Gailiean invariance
of physical laws (as a kinematical constraint—i.e., independent of the details
of the particular dynamics governing matter). This, indeed, was achieved by
Albert Keinstein in 1705: see [14, §3.3].3

Question: Given the above, was Einstein, in deriving a different kine-
matical constraint (viz., Poincaré invariance, rather than Gailean invari-
ance), really being any more radical than Newton?

4.4 Einstein’s later misgivings

Einstein would later voice certain misgivings about his 1905 derivation, in par-
ticular regarding:

1. The treatment of rods and clocks as primitive bodies, not “moving atomic
configurations”. [50, 54]

2. The special role of light. [52, 54]

On (1), here’s what Einstein wrote in his 1949 Autobiographical Notes:

One is struck [by the fact] that the theory [of special relativity] ...
introduces two kinds of physical things, i.e. (1) measuring rods and
clocks, (2) all other things, e.g., the electromagnetic field, the ma-
terial point, etc. This, in a certain sense, is inconsistent; strictly

3Please note that Keinstein is fictional!
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speaking measuring rods and clocks would have to be represented as
solutions of the basic equations (objects consisting of moving atomic
configurations), not, as it were, as theoretically self-sufficient enti-
ties. However, the procedure justifies itself because it was clear from
the very beginning that the postulates of the theory are not strong
enough to deduce from them sufficiently complete equations ... in
order to base upon such a foundation a theory of measuring rods and
clocks. ... But one must not legalize the mentioned sin so far as to
imagine that intervals are physical entities of a special type, intrinsi-
cally different from other variables (‘reducing physics to geometry’,
etc.). [54]

The point is that (as per its being a principle theory) Einstein’s approach in
1905 simply assumes that there exist boostable rods and clocks, which when
boosted read of intervals as per a Lorentz transformed frame. Ultimately, this
is a dynamical assumption, which should be justified rather than assumed: I’ll
return to this issue in Chapter 10.

On (2), Einstein wrote this:

The special theory of relativity grew out of the Maxwell electromag-
netic equations. But ... the Lorentz transformation, the real basis of
special-relativity theory, in itself has nothing to do with the Maxwell
theory. [52]

[T]he Lorentz transformation transcended its connection with Maxwell’s
equations and had to do with the nature of space and time in general.
[14, p. 73]

The point here is that the later Einstein viewed the appeal to Maxwell’s elec-
trodynamics in the 1905 paper as a heuristic tool into special relativity (based
upon the historical contingency that the first Poincaré invariant laws to be dis-
covered were those of Maxwell), but in fact, once the completed theory of special
relativity is in hand, one recognises that it has noting in particular to do with
electrodynamics. Here’s how the later Einstein put the point:

The content of the restricted relativity theory can accordingly be
summarised in one sentence: all natural laws must be so conditioned
that they are covariant with respect to Lorentz transformations. [53]

4.5 The Ignatowksi transformations

In 1911, von Ignatowski sought to derive the Lorentz transformations using
RP, but without LP [79]. This claim should elicit suspicion: which of the re-
maining assumptions is violated by Newtonian physics (complete with Galilean
transformation—cf. again the fable of Keinstein)? Let’s delve into this. The
Ignatowski transformations (i.e., those derived by von Ignatowski in his 1911
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article) read as follows, where K is some hitherto-unspecified universal constant:

t′ =
(
1−Kv2

)−1/2
(t−Kvx) , (4.8)

x′ =
(
1−Kv2

)−1/2
(x− vt) , (4.9)

y′ = y, (4.10)

z′ = z. (4.11)

Note now three special cases:

• Setting K = 0 yields a Galilean transformation.

• Setting K = 1 yields a Lorentz transformation.

• Setting K = −1 yields a Euclidean transformation.

Recall that Galilean transformations consist of rigid 3D spatial rotations, Galilean
boosts, and rigid translations; Poincaré transformations consist of rigid 3D spa-
tial rotations, Lorentz boosts (together, these are the ‘Lorentz transformations’),
and rigid translations. We have not seen the 4D Euclidean transformations up
to this point, but these consist of rigid 4D rotations, plus rigid translations.

These results vindicate our suspicion: Galilean, Lorentz, and Euclidean trans-
formations are thus all special cases of the Ignatowski transformations. So
dropping LP is not sufficient to derive the Lorentz transformations. Some-
times, authors rule out K = −1 as “unphysical” (see e.g. [119])—to this one
should also object, for there are plenty of physical applications of theories with
Euclidean symmetries—e.g., any theory which uses the Poisson equation.4

4For further discussion on this point, see [24].



52 CHAPTER 4. EINSTEIN’S 1905 DERIVATION



Chapter 5

Spacetime structure from
Aristotle to Minkowski

Geometry is found in mechanical
practice, and is nothing but that
part of universal mechanics.
(Newton, 1678)

Up to this point, we’ve witnessed the crisis in physics which precipitated the
advent of special relativity; we’ve also seen Einstein’s derivation of the Lorentz
transformations in his 1905 paper, the upshot of which was supposed to be
that these transformations (with invariant speed c) constitute a kinematical
constraint on future physical theorising. So far, however, mention of spacetime
has been conspicuously absent: we haven’t seen the term since Chapter 1!

In fact, in was only in 1909 that Hermann Minkowski—one of Einstein’s old
teachers at the Eidgenössische Polytechnikum (now ETH Zurich)—showed that
theories with Poincaré symmetries can be understood as being set in what has
now become known asMinkowski spacetime. In his paper, Minkowski introduced
the ‘world-postulate’: the principle that all fundamental physical laws must
be conditioned so as to be Poincaré invariant. This, as we have seen, was
already to be found in Einstein, but by expressing this notion in four-dimensional
geometrical language, Minkowski felt he had shown how “the validity of the
world-postulate ... now lies open in the full light of day.” [109]

Question: Can what Minkowski suggests here be understood as a pre-
cursor to a Friedman-style ‘geometrical’ approach to physical theories?
(Cf. Chapter 1.)

My purpose in this chapter is to explain what this spatiotemporal structure
amounts to, as well as to compare this structure with the Newtonian space-

53
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time structures of which we already saw a little in Chapter 1. Before doing
so, however, it’s worth mentioning Einstein’s initial reaction to Minkowski’s
spatiotemporal reformulation of special relativity. In response to Minkowski’s
somewhat grandiose claim that, having set theories in his spacetime, “Hence-
forth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent real-
ity” [109], Einstein accused this work of being “superfluous learnedness” [117].
At the end of Chapter 6, I’ll consider what it even means for a theory to be
‘special relativistic’; this reaction on the part of Einstein will be worth bearing
in mind.

5.1 Two conceptions of geometry

Before introducing the specific details of Minkowski spacetime, we need to take
a step back. In general, there are two different approaches to understanding
geometrical notions: the ‘Kleinian approach’, and the ‘Riemannian approach’:1

Kleinian conception: Geometry is characterised via the invariance groups of
certain structures under coordinate transformations.2

Riemannian conception: Geometry is characterised via tensors and other
coordinate-independent differential-geometric structures.

In this chapter, I’ll focus on the Kleinian approach to geometry, and defer a
discussion of the Riemannian approach to the next chapter. The general idea of
the Kleinain approach—from a physical point of view—is as follows. We have
seen that the inertial frames are those coordinate systems in which dynamical
equations governing matter take their simplest form, and in which force-free
particles move with uniform velocity. Sometimes, people also think about the
inertial frames as those frames which respect spacetime’s ‘inertial structure’ in
a certain way. On the Kleinian approach, one can then use the transformations
between the inertial frames of a theory to ascertain that theory’s spacetime
geometrical commitments. The three-point plan is this:

1. Specify the class of coordinate transformations which relate the inertial
frames in the theory under consideration.

2. Identify the structures and quantities which are invariant under those
transformations.

3. Regard these structures and quantities as picking out different kinds of
spacetime.

I’m first going to illustrate how the Kleinian approach works in the case of
Newtonian theories; only after doing so will I turn to the case of special relativity.

1For more detail on the distinction between these two approaches, see [165].
2This approach to geometry is the central idea underlying Klein’s ‘Erlangen programme’

for geometry.
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5.2 Spacetime structure in Newtonian physics

Perhaps surprisingly, the question of the spacetime structure of Newtonian me-
chanics turns out to be a very delicate business—in fact, much more delicate
than in the case of relativistic theories. There is, indeed, a hierarchy of pos-
sible spacetime structures in Newtonian mechanics: running from strongest to
weakest, this reads (for an extremely elegant summary of this hierarchy, see [35,
ch. 2]):

Aristotelian spacetime
↓

Newtonian spacetime
↓

Neo-Newtonian/Galilean spacetime
↓

Maxwellian/Newton-Huygens spacetime
↓

Leibnizian spacetime
↓

Machian spacetime

5.2.1 Aristotelian spacetime

Let’s begin with Aristotelian spacetime, as conceived on the Kleinian approach.3

Suppose that one has a physical theory in which the dynamical equations take
their simplest form in coordinate systems related by the following (rather re-
stricted!) set of Aristotelian transformations:

t 7→ ±t+ τ (5.1)

x 7→ Rx (5.2)

One now asks: what is preserved under such transformations? In this case, a
great deal! The following structures are all invariants of the above Aristotelian
transformations:

1. A notion of spatial distance.

2. A notion of temporal distance.

3. A standard of rotation across time.

4. A notion of straightness of paths across time.

5. A preferred velocity.

6. A preferred point.

3Throughout the following, R ∈ SO (3) and any functions of t are smooth.
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In every case, the reason is that the structure in question is unaffected by
time translations/inversions, and/or spatial rotations—which exhaust the above
Aristotelian transformations. Given this, one can proceed to draw a picture of
a spacetime which preserves all of these notions—it might look something like
this:

In this image, let the vertical line on the left be the preferred point; anything
comoving with respect to the preferred point has the preferred velocity (and
acceleration—i.e., standard of straightness of paths across time). In the space-
time, there is also a standard of rotation, allowing one to adjudicate on whether
or not an object is spinning (this is represented by the curved arrows to the
right); there is also a preferred notion of spatial distance at a time (on the blue
hypersurfaces), and of temporal distance (between the blue slices). Thus, re-
spectively, absolute position, velocity, acceleration, rotation, temporal distance,
and spatial distance are all well-defined in Aristotelian spacetime.

5.2.2 Newtonian spacetime

Suppose now that one liberalises the Aristotelian transformations to the follow-
ing class of Newtonian transformations:

t 7→ ±t+ τ (5.3)

x 7→ Rx+ a (5.4)

In particular, note that the Newtonian transformations—unlike the Aristotelian
transformations—allow for constant translations of the spatial coordinates. This
means that a preferred point is no longer well-defined in Newtonian spacetime,
for such a point would not be left invariant by spatial translations! Thus, only
the following concepts are well-defined in Newtonian spacetime:
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1. A notion of spatial distance.

2. A notion of temporal distance.

3. A standard of rotation across time.

4. A notion of straightness of paths across time.

5. A preferred velocity.

6. A preferred point.

Exercise: Convince yourself that structures (1)-(5) remain well-defined
in Newtonian spacetime.

Accordingly, schematically, a picture of Newtonian spacetime might take the
following form:

Here, the colouring green is supposed to indicate that the two trajectories can
be mapped into one another using the transformations of the Newton group,
so there is no sense in this spacetime structure in which one is ‘preferred’ over
the other. (In later diagrams in this chapter, the same rationale underlying the
green colouring applies.) Although here one no longer has a preferred point, one
retains the trans-temporal identity of spacetime points, which affords a ‘rigging’
(i.e., congruence of vertical lines) with respect to which absolute velocity and
acceleration can be defined.



58 CHAPTER 5. SPACETIME STRUCTURE

5.2.3 Neo-Newtonian/Galilean spacetime

Let’s press on, in the same spirit. Suppose that one now liberalises the Newto-
nian transformations to the Galilean transformations:

t 7→ ±t+ τ (5.5)

x 7→ Rx+ vt+ a (5.6)

Galilean transformations—unlike Newtonian transformations—now allow for
constant velocity transformations of the spatial coordinates. This means that
a preferred velocity is no longer well-defined in Galilean spacetime (sometimes
called ‘neo-Newtonian spacetime’, but it’s worth stressing that the terms are
completely interchangeable), for such a velocity would not be preserved under
Galilean transformations! Thus, only the following concepts are well-defined in
Galilean spacetime:

1. A notion of spatial distance.

2. A notion of temporal distance.

3. A standard of rotation across time.

4. A notion of straightness of paths across time.

5. A preferred velocity.

6. A preferred point.

(Again, one can convince oneself that structures (1)-(4) are well-defined in
Galilean spacetime.) Schematically, a picture of Galilean spacetime would look
like this:

Here, the curved line is supposed to indicate that there remains a standard of
absolute acceleration in Galilean spacetime, even though one can map the first
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(vertical) green line (i.e. the worldline of a body with some uniform velocity) to
the second (non-vertical but straight) green line (i.e., the worldline of a body
with some other uniform velocity) by the action of the Galilean group. One
might be puzzled by this: how can there be a standard of absolute acceleration,
but not of absolute velocity? At this point, suffice it to say that this is a well-
defined mathematical possibility; I hope to be able to shed further light on this
question in the following chapter, when I discuss the Riemannian approach to
geometry.

5.2.4 Maxwellian/Newton-Huygens spacetime

Next, suppose we liberalise the Galilean transformations to the Maxwell trans-
formations:

t 7→ ±t+ τ (5.7)

x 7→ Rx+ a (t) (5.8)

We now allow for arbitrary time-dependent transformations of the spatial co-
ordinates. In this case, a preferred acceleration (i.e., standard of straightness
of paths across time) is no longer well-defined, for it is not preserved under
such transformations. Thus, only the following concepts are well-defined in
Maxwellian/Newton-Huygens spacetime (again, the terms are completely inter-
changeable):

1. A notion of spatial distance.

2. A notion of temporal distance.

3. A standard of rotation across time.

4. A notion of straightness of paths across time.

5. A preferred velocity.

6. A preferred point.

Schematically, a picture of Maxwellian spacetime might look like this:
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In this case, one can no longer distinguish between curved and straight lines
through this spacetime structure.

5.2.5 Leibnizian spacetime

Suppose we liberalise the Maxwell transformations to the Leibniz transforma-
tions:

t 7→ ±t+ τ (5.9)

x 7→ R (t)x+ a (t) (5.10)

In this case, we allow for arbitrary time-dependent rotations of the spatial co-
ordinates. This means that a standard of rotation is no longer well-defined in
Leibnizian spacetime, for rotation rate need not be left invariant under such
transformations. Thus, only the following transformations are well-defined in
Leibnizian spacetime:

1. A notion of spatial distance.

2. A notion of temporal distance.

3. A standard of rotation across time.

4. A notion of straightness of paths across time.

5. A preferred velocity.

6. A preferred point.
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Schematically, a picture of Leibnizian spacetime might then look like this:

Here, colouring the curved arrows green is supposed to indicate that there is no
standard of rotation in Leibnizian spacetime.

5.2.6 Machian spacetime

Now suppose that we liberalise the Leibniz transformations to the Machian
transformations:

t 7→ f(t) (f monotonic) (5.11)

x 7→ R (t)x+ a (t) (5.12)

We now allow for arbitrary rescalings of the temporal coordinates; this means
that a preferred notion of temporal distance is no longer well-defined in Machian
spacetime, for temporal distance is not an invariant of such transformations.
Thus, only the following transformations are well-defined in Machian spacetime:

1. A notion of spatial distance.

2. A notion of temporal distance.

3. A standard of rotation across time.

4. A notion of straightness of paths across time.

5. A preferred velocity.

6. A preferred point.
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Schematically, a picture of Machian spacetime might look like this:

Here, colouring of the temporal intervals between spacetime hypersurfaces is
supposed to indicate that such intervals are not invariants of the Machian trans-
formations.

5.2.7 Summary

The above constitutes the standard hierarchy of Newtonian spacetimes, as one
will find in e.g. [35, ch. 2]. I think it suffices by now to illustrate the general
point: as one liberalises one’s class of allowed transformations (which, physi-
cally, are to be understood as relating the frames of reference in which one’s
description of the physics takes its simplest form), the number of invariants
of those transformations decreases; thus, one’s spacetime geometrical structure
(understood as per the Kleinian approach) becomes, in a clear sense, weaker.
The general moral here is worth keeping in one’s mind:

More symmetries ⇐⇒ Less structure

Also worthy of mention is that there are other possible elements of the
hierarchy of Newtonian spacetimes which I’ve elided on the grounds that they’re
not necessary to make the above general conceptual points. First: one might
allow reflections of the spatial coordinates, so x 7→ ±x; in this case, spacetime
would no longer have a preferred spatial orientation (see e.g. [75]). Second: one
might allow for rescalings of the spatial coordinates: x 7→ Ωx (here, Ω is a
matrix implementing a possibly spacetime-dependent scale transformation); in
this case, only spatial conformal structure (i.e., angles, but not distances) would
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be well-defined.4

5.3 Spacetime structure in special relativity

By now, I’ve spent a lot of time presenting possible Newtonian spacetime struc-
tures, through the lens of the Kleinian approach to geometry. At this point,
we must ask: how does the spacetime structure of special relativity compare
with that of the spacetimes we have just seen? To think about and answer this
question, it’s going to be helpful to switch notation. Consider again the coor-
dinate transformations associated with Galilean spacetime. So far, I’ve written
these in vector notation, as in 5.5 and (5.6). The equivalent expressions in index
notation would be

t 7→ ±t+ τ (5.13)

xi 7→ Ri
jx

j + vit+ ai (5.14)

Note that all terms must have the same free indices, and the Einstein summation
convention is used (so that indices which appear twice in a term are summed
over). By convention, we use Latin indices (i, j, . . . = 1, 2, 3) for spatial indices,
and Greek indices (µ, ν, . . . = 0, 1, 2, 3) for spacetime indices.

With this in mind, we can present the Poincaré transformations as follows:

xµ 7→ Λµ
νx

ν + aµ (Λµ
ν ∈ SO (1, 3)). (5.15)

The spacetime structure which is left invariant under the action of the Poincaré
transformations just is the spacetime structure which Minkowski introduced in
1909. In this spacetime—predictably, dubbed Minkowski spacetime—there is:

1. A notion of spatial distance.

2. A notion of temporal distance.

3. A standard of rotation across time.

4. A notion of straightness of paths across time.

5. A preferred velocity.

6. A preferred point.

7. A notion of spacetime distance.

Note that what’s well-defined and what’s not in Minkowski spacetime cuts
across the Newtonian hierarchy: in all of our Newtonian spacetimes, there was
a well-defined notion of spatial distance; by contrast, this is not an invariant

4The resulting spacetime has a claim to be the correct spacetime structure for the pro-
gramme of ‘shape dynamics’, but I won’t go into this further here (see [134] for more). For
more on shape dynamics, see [106].
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of the Poincaré transformations. By contrast, there is a preferred notion of
straightness of paths across time (translating into a notion of absolute accel-
eration), unlike (e.g.) Maxwellian, Leibnizian, or Machian spacetime. On the
other hand, one very important invariant of the Poincaré transformations is the
interval—a notion of four-dimensional spacetime distance, which can be written

I = −c2dt2 + dx2 + dy2 + dz2. (5.16)

The interval I is preserved in all inertial frames in special relativity—i.e., in
all frames related by Poincaré transformations. It can be used to distinguish
between three different kinds of trajectory through spacetime:

1. Timelike paths (representing the trajectories of massive bodies), which
are such that the tangent vector to the path at every point is such that
I < 0.

2. Spacelike paths (representing the trajectories of superluminal bodies),
which are such that the tangent vector to the path at every point is such
that I > 0.

3. Null paths (representing the trajectories of massless bodies, such as light
rays), which are such that the tangent vector to the path at every point
is such that I = 0.

Together, these three kinds of trajectory pick out the famous ‘lightcone’ struc-
ture of special relativity. Schematically, then, a picture of Minkowski spacetime
might look like this:

What I mean by this image is the following. The two lines on the left
indicate that one can still distinguish straight (i.e. non-accelerating) from curved
(i.e. accelerating) paths through this spacetime (one also has a standard of
rotation in Minkowski spacetime, but I haven’t represented that in the diagram).
On the right, the blue lines represent the lightcone structure of the theory (the
two colored lines represent two distinct timelike vectors).
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5.4 Further reflections on spacetime

Up to this point, I’ve introduced both the standard hierarchy of Newtonian
spacetimes, as well as Minkowski spacetime, via the Kleinian approach to (space-
time) geometry. I’ll close this chapter with some further philosophical points
regarding the nature of spacetime. The first regards the connection between
spacetime and dynamical laws.

In Chapter 2, we saw that the laws of Newtonian mechanics are invariant un-
der Galilean transformations. But these are the transformations associated with
Galilean spacetime, as we have seen above. It is natural, therefore, to regard
Newtonian mechanics as being set in Galilean spacetime. Earman [35, ch. 3]
makes it a very general principle that the spacetime and dynamical symmetries
of a theory should match, by laying down the following two conditions:

SP1: Any dynamical symmetry of T is a spacetime symmetry of T .

SP2: Any spacetime symmetry of T is a dynamical symmetry of T .

(Some have gone further, by saying that these principles are analytically true—
see e.g. [111]. I’ll return to this suggestion in Chapter 10.) The idea here is this:
if there are dynamical symmetries which are not spacetime symmetries, then
(by our above mantra that ‘more symmetries’ is equivalent to ‘less structure’),
there is spatiotemporal structure which is not relevant to the dynamics. In
that case, by an Occamist norm, such structure should be expunged (for more
on such Occamist reasoning in contemporary physics, see [27]). On the other
hand, if there are spacetime symmetries which are not dynamical symmetries,
then it seems that one’s dynamics adverts to structures which don’t exist. It’s
questionable whether this is even coherent: Belot calls it ‘arrant knavery’ [9].5

In this sense, one might accuse Newton of having made a mistake, in postu-
lating that Newtonian rather than Galilean spacetime is the correct spacetime
setting for his theory. The thought here is that we have neither a priori nor
direct empirical access to the structure of spacetime we live in; rather, our guide
to which structure obtains is in the dynamical laws: we should postulate as much
structure as is required to state (the invariance properties of) the laws of our
best physical theories, and no more. (To repeat, this is essentially the content
of Earman’s conditions.) With hindsight, Newton violated this requirement:
Newtonian physics can be formulated in (merely) Galilean spacetime, not New-
tonian spacetime (as Newton maintained). Occam’s razor thus advises against
postulating a standard of absolute rest in addition.6

5For what it’s worth, I disagree with Belot’s claims that such approaches are incoherent.
For example, Huggett’s regularity relationalism [76]—to which I already alluded in Chapter
1—begins with an impoverished spacetime ontology, yet gives a precise prescription for how
further spatiotemporal commitments may be secured via dynamical considerations. For more
on what Pooley calls ‘have-it-all relationalism’ (which includes Huggett’s approach), see [127].

6While this might be true in principle, I agree with Dasgupta [27] that in practice, since
Newton didn’t have the concept of Galilean spacetime, he was justified in believing in New-
tonian absolute space, and thereby in violating Earman’s principles.
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Raising this point presents the following question: is it indeed the case that
Galilean spacetime is the correct spacetime setting for Newtonian mechanics
(given Earman’s conditions), as is by now the standard line? If we follow the
methodology of moving from Newtonian to Galilean spacetime as the correct
spacetime setting for Newtonian mechanics, then (it seems) the discovery of
further symmetries of the Newtonian laws would likewise motivate moving to a
different spacetime setting again, with even less structure than Galilean space-
time. With this in mind, considers Newton’s ‘Corollary VI’ in the Principia:

If bodies moved in any manner among themselves are urged, in the
direction of parallel lines by equal accelerative forces, they will all
continue to move among themselves, after the same manner as if
they had not been urged by those forces. [19, p. 21]

This points out that there is no standard of linear acceleration in Newtonian
mechanics—so perhaps the correct spacetime setting for the theory should be
Maxwellian spacetime? This suggestion was first raised in [148], and continues
to be a matter of some controversy—see inter alia [86] and [166] for further
discussion.

The second philosophical point which I wish to make is this. If we impose
extra structure on Galilean spacetime (namely, a standard of rest), we can
recover Newtonian spacetime. Perhaps more surprisingly, however, if we impose
extra structure on Minkowski spacetime (namely, again, a standard of rest), we
can also recover Newtonian spacetime. So, as Barrett summarises:

There is a precise sense in which Newtonian spacetime has more
structure than both Galilean spacetime and Minkowski spacetime.
But in this same sense, Galilean and Minkowski spacetime have in-
comparable amounts of structure; neither spacetime has less struc-
ture than the other. The progression towards a less structured space-
time therefore does not continue into the relativistic setting. [6,
p. 37]



Chapter 6

General covariance

If only I knew more mathematics!
(Schrödinger, 1925)

In this chapter, I’m going to explain how the second of our two approaches
to geometry—the Riemannian approach—works. Ultimately, I’ll return both to
the Newtonian heirarchy and to Minkowski spacetime. Before doing so, however,
I need to say a little more on the different ways in which one might present a
given set of physical laws.

6.1 Physical laws

In the previous chapter, I introduced briefly the four-dimensional index notation.
Let us now consider how to write some familiar physical laws using this index
notation. I’ll begin with the Klein-Gordon equation, which is a four-dimensional
wave equation for a scalar field ϕ:

− 1

c2
∂2ϕ

∂t2
+

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0. (6.1)

Completely equivalently, I can write this equation using a matrix, as follows:

(
1
c

∂
∂t

∂
∂x

∂
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∂
∂z

)
−1

1
1

1
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c

∂
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∂
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∂
∂y
∂
∂z

ϕ = 0. (6.2)

Calling the vector of partial derivatives in the above ∂µ (µ = 0 . . . 3) and
the above matrix ηµν , I can again write this (completely equivalently!) us-
ing the Einstein summation convention (where, recall again, repeated indices
are summed) as follows:

ηµν∂
µ∂νϕ = 0. (6.3)
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It’s important to stress that the content of (6.3) is exactly the same as that of
(6.1): it still describes the same behaviour of the field ϕ, in the same coordinate
system. Yet there are conceptual merits to the latter syntactic formulation: not
only does it save ink, but (as we’ll see shortly), it also helps us to ascertain the
symmetries of this equation (a point to which I alluded in Chapter 2).

Before I get onto this, I’ll introduce a couple more examples. Consider the
Newton-Poisson equation, which describes the gravitational potential ϕ in the
field formulation of Newtonian gravity:

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 4πρ. (6.4)

As before, I can rewrite this equation using a matrix as follows:
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ϕ = 4πρ. (6.5)

Defining ∂µ exactly as before, and now calling the above matrix hµν , I can write
this equation as follows, where the Einstein summation convention is used:

hµν∂µ∂νϕ = 4πρ. (6.6)

Again, it bears stressing that the content of (6.6) is exactly the same as the
content of (6.6). Moreover, the advantages of this formulation are the same
as in the previous case: (i) it’s more compact, and (ii) it’s easier to use this
formulation to ascertain the symmetries of the equation than the first.

The third example is particularly relevant to special relativity: Maxwell’s
equations. Recall again that, in the usual 3-vector presentation, these equations
read:

∇ ·E = ρ, (6.7)

∇ ·B = 0, (6.8)

∇×E = −∂B

∂t
, (6.9)

∇×B = J+
∂E

∂t
. (6.10)

If I define the following two objects:

Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

 , (6.11)

Jµ =

(
ρ
J i

)
, (6.12)
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then Maxwell’s equations can be written:

ηµλ∂
λFµν = Jν , (6.13)

∂µFνλ + ∂νFλµ + ∂λFµν =: ∂[µFνλ] = 0. (6.14)

As before, at this stage (6.13) and (6.14) are simply a compact and convenient
reformulation of our initial version of the equations, (6.7)-(6.10).

Exercise: Plug components into (6.13) and (6.14) in order to recover
Maxwell’s equations in their 3-vector forms, (6.7)-(6.10).

Having put all these examples on the table, let’s think about the second
professed advantage: that the latter (more compact) formulations make it easier
to ascertain the symmetries of these equations. The Klein-Gordon theory and
Maxwell theory both feature explicit coupling to ηµν . The simplest form of these
equations will be preserved under coordinate transformations which preserve the
diagonal form of ηµν , i.e. coordinate transformations such that Λσ

µΛ
λ
νησλ =

ηµν . But these are just the Lorentz transformations!

Exercise: Verify that the condition Λσ
µΛ

λ
νησλ = ηµν picks out Lorentz

boosts and/or spatial rotations.

Indeed, the equations are also invariant under translations, making them invari-
ant under the full Poincaré group. One sometimes hears the claim that writing
a theory using four-dimensional indices makes the symmetries of one’s equations
‘manifest’—this can be misleading, but the point is that it’s easier to read off
the symmetries of equations when they’re formulated in this way.

Exercise: Show explicitly that the Klein-Gordon equation (6.3) and
Maxwell equations (6.13)- (6.14) are invariant under Poincaré transfor-
mations.

We can use exactly the same methodology to demonstrate the Galilean in-
variance of the Newton-Poisson equation (6.6). This equation features explicit
coupling to hµν . The simplest form of this equation will be preserved under coor-
dinate transformations which preserve the diagonal form of hµν , i.e. coordinate
transformations such that Mµ

σM
ν
λh

σλ = hµν . Assuming that the transforma-
tions are linear (i.e., assuming that the change-of-basis matrices Mµ

σ are not
functions of spacetime coordinates), these are just the Galilean transformations
(up to a constant rescaling of t1), once we also include translations.2

1If one considers the symmetries of the Newton-Poisson equation only, one in fact finds
that the allowed transformations of the temporal coordinate are t 7→ κt for some constant κ;
one can only set κ = ±1 if one assumes that the symmetries in addition preserve a standard
of temporal distance, which strictly speaking is not part of the content of the Newton-Poisson
equation.

2If one liberalises the linearity condition, one finds that (6.6) is in fact invariant under the
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Exercise: Show explicitly that the Newton-Poisson equation (6.6) is
invariant under Galilean transformations.

The main point which I want to stress here is that so far we have just repack-
aged these dynamical equations—we have not fundamentally changed their sym-
metry properties. In fact, the index notation makes it pretty easy to transform
to an arbitrary (rather than inertial) coordinate system, and see these equa-
tions in their general (and ugly!) form: recall, indeed, that I already did this
explicitly in the case of N1L in Chapter 1.

Exercise: Transform (1.1) to arbitrary coordinates, and thereby repro-
duce (1.3) from Chapter 1.

One can also show this in the case of e.g. the Klein-Gordon equation: ex-
plicitly, the transformation proceeds as follows:
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)
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∂xµ′∂xν

∂

∂xν′
φ+
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∂
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∂

∂xν′
φ

)
= 0

ηµν
∂2xν′

∂xµ∂xν
∂ν′

φ+ ηµν
∂xµ′

∂xµ

∂xν′

∂xν
∂µ′

∂ν′
φ = 0.

Note the extra term in the non-inertial frame (cf. fictitious forces in (1.3)).

6.2 General covariance

At this point, I want to ask: can we write theories in what’s known as a generally
covariant form—i.e., a form which holds in an arbitrary frame? (Note that the
terminology ‘general covariance’ is confusing here—it should really be ‘general
invariance’, but to mesh with the literature I’ll use the standard term.) Einstein
circa 1915 thought that the answer to this question was no, and that this is what
made his newly-developed general relativity special. But Kretschmann said in
1917 to Einstein: yes. Indeed, speaking anachronistically now, there are (at
least) two different ways to render a theory generally covariant:3

Leibniz group of transformations. This isn’t so surprising once one notes that (6.6) is a static,
three-dimensional equation, so changes in the temporal direction should leave it unchanged.
When one also considers the force equation of Newtonian gravity, the symmetry group of the
theory is reduced.

3For historical background, see [113].
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1. Write its equations in an arbitrary frame, with all extra terms included.

2. Write the theory in a coordinate-independent language.

We’ve seen option (1) both with moving from (1.1) to (1.3) and with our above
transformation of the Klein-Gordon equation to an arbitrary frame. Let’s now
think a bit more about option (2). To do this, we need to be clear about the
distinction between (i) geometric objects, versus (ii) the components of those
objects in a given coordinate system.

To illustrate this difference, consider a vector which I’ll call va: the com-
ponents of this vector in one given (Cartesian) coordinate system could be as
follows:

If I now rotate the coordinate system (i.e., do a passive transformation), the the
vector will remain unchanged, but its components will differ, perhaps as follows:



72 CHAPTER 6. GENERAL COVARIANCE

One might, in light of this, seek to write down different dynamical equations
for a physical theory, which are liberated altogether from coordinate systems,
and which treat with geometric objects themselves, rather than the represen-
tations of those objects in some coordinate system.4 To write a theory in a
coordinate-independent way, we move from using coordinate indices (µ, ν, . . .),
which represent the components of objects in a particular coordinate basis, to ab-
stract indices (a, b, . . .), which directly represent the objects themselves. E.g. in
the case of the Klein-Gordon equation, move from (6.3) to

ηab∇a∇bϕ = 0. (6.15)

This involves no reference to a coordinate system at all—so a fortiori holds in
all coordinate systems. Note, in particular, that in order to make this move,
we’ve introduced two new objects: (what’s known as) a rank-2 tensor field ηab,
and a derivative operator ∇. Suffice it to say that both of these objects can be
defined in a coordinate-independent manner. (See [60, 100] for details.)

Such a move is not always metaphysically innocent. Sometimes, one finds
the claim that writing our theories in a coordinate-independent language makes
manifest the full ontological commitments of those theories. For example, in the
case of Klein-Gordon theory, the claim would be that coordinate-independent
presentations make manifest the commitment of the theory not merely to the
field ϕ, but also to another field, ηab—Minkowski spacetime (along with its
compatible derivative operator ∇—‘compatible’ means that ∇aηbc = 0). But
should this be regarded as representing an autonomous entity (i.e., object in our
ontology), or just as being a codification of the symmetries of the coordinate-
based dynamical equations from which we began? I’ll return to this issue in
detail in Chapter 10.5

6.3 The Riemannian conception of geometry

Rather than identifying geometrical structure as the invariants of a given set of
transformations (as per the Kleinian approach), the Riemannian approach di-
rectly presents and defines such structures, without any reference to coordinate
systems (the technical details of how this works are often sophisticated, but see
e.g. [60, 100] for explicit presentations of how all of the objects which I will
discuss in the remainder of this chapter can be defined on the Riemannian ap-
proach).6 The Kleinian and Riemannian approaches are complimentary, insofar
the transformations specified in the Kleinian approach are those transforma-
tions which would leave invariant the structures presented on the Riemannian
approach, were they to be written in a coordinate basis.

For the time being, however, I’ll simply present the Riemannian approach,
first to the hierarchy of Newtonian spacetime structures which we saw in Chap-

4For some reflections on whether this is always possible, see [122, 137].
5Recall also some of the discussion from Chapter 1.
6Whether the Riemannian approach really makes no appeal to coordinate systems is

questionable—see [165]—but I’ll set this aside here.
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ter 5, and then to special relativity. To begin, recall again that the following
structures are well-defined in Aristotelian spacetime:

1. A notion of spatial distance.

2. A notion of temporal distance.

3. A standard of rotation across time.

4. A notion of straightness of paths across time.

5. A preferred velocity.

6. A preferred point.

In order to underwrite the meaningfulness of these notions, on the Rieman-
nian approach we specify Aristotelian spacetime as a tuple of geometric objects,
⟨M, tab, h

ab,∇, σa, ξ⟩. Here, M is a four-dimensional differentiable manifold
representing the points of spacetime; tab is a temporal metric field of signa-
ture (1, 0, 0, 0) which represents temporal distance relations between spacetime
points; hab is a spatial metric field of signature (1, 1, 1, 0) representing spatial
distance relations between spacetime points; ∇ is a derivative operator affording
standards both of straightness of paths and of rotations; σa is a timelike (in the
sense that tabσ

b = 0) vector field representing trans-temporal identities of space-
time points, and affording a standard of rest; and ξ is a scalar field identifying
the preferred point in this spacetime. (As I say, I won’t go further into the tech-
nical details here, but interested readers should consult e.g. [35, 60, 100, 128].)

As one weakens the spacetime structure in the Newtonian hierarchy, fewer
and fewer geometrical notions become meaningful, as we have already seen. This
is captured easily in the Riemannian approach: one simply defines fewer and
fewer geometrical objects in one’s spacetime models. Using the same objects as
before, the entire Newtonian hierarchy, indeed, can be captured as follows:

Aristotelian spacetime: ⟨M, tab, h
ab,∇, σa, ξ⟩

Newtonian spacetime: ⟨M, tab, h
ab,∇, σa⟩

Galilean spacetime: ⟨M, tab, h
ab,∇⟩

Maxwellian spacetime: ⟨M, tab, h
ab, [∇]⟩

Leibnizian spacetime: ⟨M, tab, h
ab⟩

Machian spacetime: ⟨M,hab⟩

There are a couple of further points to make at this stage. First: as already
mentioned, it is now Galilean spacetime which (for better or worse) is regarded
as being the ‘correct’ spacetime setting for Newtonian mechanics. It is for this
reason that authors such as Malament [100] simply present Newtonian gravity
in this setting, without identifying Galilean spacetime by name. Second: one
might wonder what the square brackets in the above presentation of Maxwellian
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spacetime are doing. Typically when one sees such notation in mathematics,
what is meant is an equivalence class of the relevant object (within the brackets).
In this case, [∇] denotes the equivalence class of derivative operators ∇ which
differ on their standards of linear acceleration (i.e., differ on the adjudications
of which one-dimensional paths through spacetime are bent—i.e., accelerating),
but which agree on their standard of rotation (i.e., agree in there adjudications
of whether bodies are or are not rotating). Thus, by taking this equivalence
class, we secure exactly the structure which we already defined in the previous
chapter to be implicated in Maxwellian spacetime—and no more.

As another example in which the same notation appears, typically conformal
structure—which encodes facts about angles but not facts about distances—is
written in the Riemannian approach using square brackets. For example, one
might yet further weaken Machian spacetime to encode only conformal structure
on the spacelike hypersurfaces: in this case, one could write the models of the
theory as ⟨M,

[
hab
]
⟩. Now, in all such cases, one might complain that it would

be better (in the sense of: more physically perspicuous) to define geometric
objects such that exactly as much structure as required is introduced from
the outset, rather than by (a) introducing something with too much structure,
then (b) telling us to forget about some of it. I agree!7 Indeed, Weatherall
[167] has shown recently that it is possible to write Machian spacetime using
a ‘standard of rotation’ ⟲ which meets the above desiderata. Thus, in fact, it
would arguably be better—and more physically/metaphysically perspicuous—
to write the models of Maxwellian spacetime as ⟨M, tab, h

ab,⟲⟩.8

6.4 What is special relativity?

By now, we understand (i) the genesis of special relatvity, (ii) the content of
Einstein’s 1905 paper, and (iii) the different senses in which one might under-
stand the spatiotemporal commitments of physical theories, including special
relativity. But, having achieved all this, the following question arises naturally:
just what is special relativity? In fact, there are at least three different options
on the table:

1. Special relativity consists of the RP, the LP, whatever supplementary
principles are needed to derive the Lorentz transformations therefrom,
and the said derivation of the Lorentz transformations.

2. Special relativity is the statement that the laws of physics (in standard
formulation) are Poincaré invariant.

3. Special relativity is the statement that spacetime structure (over and
above topological and differentiable structure) is exhausted by Minkowski
spacetime.

7Here, there are connections to a recent philosophical debate about ‘sophistication’: see
[29, 101].

8In the case of conformal structure, one can use a tensor density—see e.g. [92].
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In the coming chapters of this book, we’ll see how different views on the nature
of special relativity can have substantial impacts upon one’s preferred resolution
to certain philosophical puzzles which arise in that theory (however construed).

Question: Which of the above do you think best captures the ‘essence’
of special relativity? Or is this a wrong-headed question, and if so why?
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Chapter 7

The conventionality of
simultaneity

First, it is impossible to ascertain
whether two distant clocks are set
“correctly” in their indication of
time; second, they can be set
arbitrarily and yet no
contradiction will arise.
(Reichenbach, 1956)

Having in the first half of this book presented the genesis of special relativity,
as well as several different ways in which one might understand the content of
the theory, in the coming chapters I’ll introduce, and chart the space of possible
responses to, several important special relativistic paradoxes and conceptual co-
nundrums. I’ll begin with one of the most long-standing and vexed: the question
of whether simultaneity is conventional in special relativity. We have already
seen in Chapter 4 some hints as to what this might mean; before explaining
this in full detail, however, I must remind the reader of a better-known special
relativistic phenomenon: the relativity of simultaneity.

77
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7.1 The relativity of simultaneity

Recall again the setup introduced in Einstein’s discussion of distant simul-
taneity in his 1905 article. Suppose one bounces a light ray from mirror A to
mirror B, then back again to mirror A, as per the above diagram. Which point
on the worldline of mirror A is simultaneous (according to a clock at A) with
point B2 on the worldline of mirror B (according to a clock at B)? As we have
already seen in Chapter 4, a natural answer to this question was stipulated by
Einstein (following the earlier writings of Poincaré) to be the following:

tB (B2) = tA (A1) +
1

2
(tA (A3)− tA (A1)) . (7.1)

This is the Einstein-Poincaré clock synchrony convention. If we apply this in all
frames, then the relativity of simultaneity—which means that adjudications on
simultaneity will vary from inertial frame to inertial frame, so that simultaneity
is not an invariant of the relevant transformations—follows, as can be seen in
the following diagram:
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Here, we consider a new coordinate system G in which our above-described
Langevin clock setup (consisting of the two mirrors A and B and a bouncing
light ray) is moving uniformly; by applying the Einstein-Poincaré synchrony
convention in this frame, one finds tilted simultaneity hyperplanes. So, if we
understand simultaneity à la Einstein, then the frame-relativity of simultaneity
follows. But could it be that, even in one particular frame, there is no fact
about which point on the worldline of mirror A is simultaneous with point B2

on the worldline of mirror B? One who thinks this would have to say that that
there are no facts about simultaneity even in one frame—and thus that these
can be fixed by convention only. This is the conventionality of simultaneity,
which is conceptually distinct from the relativity of simultaneity.

7.2 The conventionality of simultaneity

One of the first authors to explore systematically the possibility of other simul-
taneity convenions was Hans Reichenbach, in his The Philosophy of Space and
Time [141]. Reichenbach maintained that we are free to make stipulations about
which point on the worldline of mirror A is simultaneous with event B2 on the
worldline of mirror B different from those of the Einstein-Poincaré convention.
To reflect this, he generalised Einstein’s simultaneity relation by replacing the
factor of 1/2 in (7.1) with an ϵ-factor, such that ϵ ∈ [0, 1]:

tB (B2) = tA (A1) + ϵ (tA (A3)− tA (A1)) , 0 < ϵ < 1. (7.2)

Reichenbach’s underlying thought was this: nothing in the formal structure of
special relativity fixes which synchrony convention we must use; it is, rather, an
additional input choice. This, indeed, squares with the way in which we have
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already seen that Einstein understood the matter of distant clock synchrony in
special relativity.

How would the description of physical goings-on change one were to deploy
a non-standard (i.e., ϵ ̸= 1/2) simultaneity convention in the rest frame of the
above-described Langevin clock? The answer is illustrated below: simultaneity
hyperplanes in this convention will be tilted. Moreover, if we choose e.g. ϵ = 1/4,
simultaneity is still frame-relative—i.e., simultaneity hypersurfaces will still shift
on transforming to frames comoving with the original frame (assuming the same
convention is used in the moving frame). Finally, any ϵ ̸= 1/2 will mean that
the one-way speed of light is not isotropic.1

Why did Reichenbach bound ϵ by 0 and 1? Here’s Brown on this question:

I will have more to say about this Reichenbach factor ϵ shortly,
but note that it is widely assumed that ϵ must be restricted to the
closed set [0, 1] ... This is to ensure that in one direction light does
not propagate backwards in time. It is often claimed that such a
possibility would violate the fundamental canons of causality, but it
is a hum-drum experience for airline travellers flying East across the
International Date Line.

... I can testify, having flown from New Zealand to both North and
South America, that arriving before you left is survivable! ... Come
to think of it, every telephone call from, say Australasia to the UK,
involves a signal arriving before it left, and no one seems the worse
for it. [14, p. 97]

What Brown is stressing here is that we are free to coordinatise space and time in

1The conventionality of simultaneity as discussed here is closely related to the fact that it
is not possible to measure the one-way speed of light: see [145] for further discussion.
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any way that we please; even if a particular coordinatisation yields descriptions
of physical events according to which there is (say) communication backwards
in time, this will not lead to logical catastrophe. Therefore, although choosing
ϵ /∈ [0, 1] might yield just such descriptions, this is not per se problematic.
This point is surely correct—and yet, one might feel that Brown has missed
something. In my opinion, Huggett hits the nail on the head when he writes:

Now of course we are logically free to coordinatize as we please, and
so we can assign, in principle, the same ‘time’ coordinate to any pair
of points we wish. Indeed, in the sense that coordinates are just
labels for points, we could attach absolutely any numbers to any
points we liked. At certain points (e.g., PR, 20, 97) Brown seems to
mean nothing more by ‘convention’, but surely this sense has little
philosophical import.

A more weighty issue that motivates conventionalism is that of the
status of spacetime geometry. The realist-minded about geometry
will evaluate different choices of coordinates according to how well
they express the geometric properties of the spacetime manifold. Of
course, even if the manifold were a substance, with intrinsic geo-
metric structure, then we could still assign coordinates as we chose
without affronting logic; but if there are intrinsic facts of the matter
about the geometry of spacetime then some coordinates are ‘better’
than others. [77, p. 410-411]

Here’s how I would put the point. It’s of course uncontroversial that we
can coordinatise space and time in any way we please, and that descriptions of
physical events may be counter-intuitive or unnatural in some such coordinati-
sations. However, theories come endowed with laws with certain symmetries,
and the question is: to what extent do such symmetries fix (i.e., leave invari-
ant, in the sense of Chapter 5) certain notions—most relevantly for us in this
chapter, simultaneity? Note that, in fact, it does not matter whether one has
a ‘dynamics-first’ view such as that of Brown (according to which spacetime
structure is a codification of dynamical symmetries—see Chapter 10 for further
discussion) or a ‘geometry-first’ view such as that of Friedman (according to
which spacetime structure in some sense constrains dynamical symmetries—
again, see Chapter 10) in order to make this point: in both cases, the issue is:
given those symmetries, which notions are or are not well-defined? (Cf. [76,
p. 411].)2

Moving on from these issues, let’s explore the ramifications of choosing non-
standard (i.e., ϵ ̸= 1/2) simultaneity conventions. In fact, once one recognises
the possibility that ϵ ̸= 1/2 (however one takes the quantity to be bounded), an
array of different possible means of ‘spreading time through space’ arise. I’ll
focus on two, which I’ll call the ‘Reichenbach-I’ and ‘Reichenbach-II’ synchrony
conventions, respectively.

2Brown [14, p. 20] also claims that simultaneity is conventional in Newtonian mechanics—
however, the same criticisms as above would apply to that claim.
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Let’s begin with the former. Suppose we send a light ray out in both di-
rections, with an ϵ = 1/4 convention. Simultaneity surfaces won’t be flat, and
there will be a preferred position in the reference frame. This is represented
in the above figure by the blue line, bent at A. About A, the description of
the one-way speed of light is isotropic, but highly non-homogeneous due to the
preferred point. (On one natural understanding, C2 and B2 are simultaneous
from the point of view of A but not from the point of view of C, so what counts
as simultaneous is not just frame-dependent, but position-dependent. A sec-
ond natural understanding would have it that C2 and B2 are simultaneous tout
court—but then there is something metaphysically privileged about A, which
might seem mysterious.)

One objection to the Reichenbach-I synchrony convention is due to Torretti
[159, ch. 7]. Call a timescale (i.e. an assignment of temporal coordinates to
spacetime points) inertial just in case, relative to that timescale, free bodies
have (or would have) constant velocities. Then, an assignment of temporal
coordinates as per the Reichenbach-I convention does not define an inertial
timescale. To see this, consider a free body which crosses A’s worldline. As
the particle moves from one side of this worldline to the other, it (according
to this way of spreading time through space) accelerates instantaneously—in
spite of the fact that no force is acting on it. Given this, we can say that,
when one adopts non-standard synchrony on the Reichbach-I convention, the
resulting frames of reference are not inertial frames (recalling Knox’s functional
definition of inertial frames given in Chapter 1), for they implicate free bodies
in arbitrary accelerative motions.
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Turn now to the Reichenbach-II synchrony convention. In this case, we set
coordinated values of ϵ on either side of (in our example) A’s worldline, such
that no ‘bend’ in the simultaneity hypersurfaces arises. Suppose, for example,
that we set ϵ = 1/4 on one side, then we set ϵ′ := 1 − ϵ = 1 − 1/4 = 3/4 on the
other side. This will yield flat simultaneity surfaces. (See the above figure.)
Around A, space will be anisotropic but homogeneous: light travels faster in the
rightwards direction. Note that Torretti’s objection does not apply in this case.

We’ve already seen that the description of the selfsame physical events can
change, depending upon one’s choice of simultaneity convention. Indeed, the
derivation of the Lorentz transformations assumes standard (ϵ = 1/2) synchrony;
adopting non-standard synchrony would require changing, inter alia: [2, 172]

• The form of the Lorentz transformations.

• Length contraction and distances in a frame (typically a rod will contract
differently when moving in different directions).

• Time dilation.

• How fast something moves relative to a reference frame.

Of course, though, empirically-accessible quantities will have to stay the same
(otherwise our synchrony convention would make an observable difference, and
so no longer be a convention!). For example, the time read by two clocks when
reunited after a ‘twin paradox’ journey will have to be the same, given any
synchrony convention (see Chapter 9).
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7.3 Arguments against conventionality

Since the possibility of the conventionality of simultaneity in special relativity
was first raised, a number of different arguments have been presented to the
effect that, in fact (and in spite of the above discussions), simultaneity is not
conventional in this theory. These arguments intimate that if one attends suffi-
ciently carefully to the conceptual architecture of the theory, one will find that
only one simultaneity convention is permitted (typically, this is argued to be
‘standard’ ϵ = 1/2 synchrony). Here, I’ll focus on two of the best-known such
arguments:

1. Arguments from slow clock transportation.

2. Malament’s 1977 (purported) proof of non-conventionality.

Let’s begin with the former.

7.3.1 Slow clock transport

The thought underlying the idea of synchrony by slow clock transport is this.
Take two clocks, A and B, which are initially spatiotemporally coincident and
synchronised. Now transport B infinitesimally slowly away from A. In such a
scenario, the internal workings of the clock should not change,3 so the clocks
(the thought goes) should continue to tick in step after B has been transported
away from A. In turn, this recovers standard synchrony.

The idea of using slow clock transport to establish a privileged simultaneity
convention goes back (at least) to Eddington in the 1920s [38] (although nota
bene: Eddington did not actually endorse this proposal—see below). There
are, however, a number of concerns with the approach, which have since been
articulated. One is that the whole idea is question-begging (so the thought goes),
because until the clocks are synchronized, there is no way of measuring the one-
way velocity of the transported clock. In order to tackle this concern, Bridgman
[12, p. 26] used the ‘self-measured’ velocity, determined by using the transported
clock to measure the time interval. However—in fact, like Eddington—he did
not see this scheme as contradicting the conventionality thesis:

What becomes of Einstein’s insistence that his method for setting
distant clocks—that is, choosing the value 1/2 for ϵ—constituted a
‘definition’ of distant simultaneity? It seems to me that Einstein’s
remark is by no means invalidated. [12, p. 66]

The point is that using the slow clock method to synchronise distant clocks is
itself just another synchrony convention. It’s also, of course, completely irrele-
vant for clocks which are not originally transported away from one another in
this way.

3Note that here the ‘clock hypothesis’—which I’ll discuss in detail in Chapter 9—is invoked
implicitly.
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7.3.2 Malament’s 1977 theorem

I’ll now dedicate some attention to a theorem proven by Malament in 1977
[99], which was (and continues to be) interpreted by many as demonstrating
unequivocally that simultaneity is not conventional in special relativity, and
that only the ϵ = 1/2 simultaneity convention is allowed. As Brown puts it,
Makament’s proof is

a result which virtually single-handedly managed to swing the or-
thodoxy within the philosophy literature from conventionalism to
anticonventionalism. [14, p. 98]

And here’s Norton:

Contrary to most expectations, [Malament] was able to prove that
the central claim about simultaneity of the causal theorists of time
was false. He showed that the standard simultaneity relation was
the only nontrivial simultaneity relation definable in terms of the
causal structure of a Minkowski spacetime of special relativity. [112,
p. 222]

The content of Malament’s result is this. He claims to prove that the simul-
taneity relation S (·, ·) picked out by the standard (ϵ = 1/2) convention is the
only such relation

(a) which is invariant under all O-causal automorphisms (i.e., maps from
Minkowski spacetime to itself preserving the lightcone structure and map-
ping the worldline of some observer O to itself).

(b) which is an equivalence relation (i.e., which is symmetric, transitive, and
reflexive).

(c) for which there exist world points p and q, one of which is on O’s worldline
and one of which is not, such that S (p, q).

(d) which is not the universal relation.

That is, Malament considers a world with only one inertial observer O, along
with the causal (i.e. lightcone) structure of special relativity. He then considers
the simultaneity relations which can be defined from this structure—i.e., which
respect the symmetries of this structure, which are known as the ‘O-causal au-
tomorphisms’ (if a symmetry relation were not to respect the symmetries of this
structure, then it would—by the mantra of Chapter 5—presuppose implicitly
further structure, which is ex hypothesi prohibited), and shows that, subject to
the further above (supposedly innocuous—but see e.g. [69, 82] for for discus-
sion and criticism) constraints, this picks out uniquely the standard synchrony
relation as the simultaneity relation which O would be able to use in order to
‘spread time through space.’

What exactly are the O-causal automorphisms? These are maps from the
worldline O to itself which preserve the worldline (hence ‘automorphism’) and
the lightcone structure on O (hence ‘O-causal’). They include all and only:



86 CHAPTER 7. THE CONVENTIONALITY OF SIMULTANEITY

1. Translations along O.

2. Scale expansions.

3. Reflections about a hypersurface orthogonal to O.

4. Spatial rotations.

Visually, from left to right, these transformations are presented in the following
diagram (based upon [112, p. 226]):

The idea is this: given an inertial worldline O in Minkowski spacetime,
there is only one simultaneity relation which an observer represented by the
wordline could define—namely, standard synchrony. Any other simultaneity
relation would not be invariant under O-causal automorphisms, and so (to re-
peat) would imply a commitment to further spatiotemporal structure beyond
that of Minkowksi spacetime. One prominent author who gives exactly this line
of argument is Friedman:

So we cannot dispense with standard simultaneity without dispens-
ing with the entire conformal structure of Minkowski space-time.
Second, it is clear that if we wish to employ a nonstandard [simul-
taneity] ... we must add further structure to Minkowski space-time.
... This additional structure has no explanatory power, however, and
no useful purpose is served by introducing it into Minkowski space-
time. Hence the methodological principle of parsimony favors the
choice of Minkowski space-time, with its ‘built-in’ standard simul-
taneity, over Minkowski space-time plus any additional nonstandard
synchrony.

These considerations seem to me to undercut decisively the claim
that the relation of [simultaneity] ... is arbitrary or conventional in
the context of special relativity. [60, p. 312]

Friedman’s point is that, in order to articulate non-standard synchrony conven-
tions in a given frame in special relativity, one must introduce extra structure.
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But, just as the extra structure in Newtonian spacetime (i.e., persisting points
of absolute space—see Chapter 5) is unnecessary to state the laws of Newtonian
mechanics, so too is this extra structure otiose in the relativistic case. Thus,
Friedman is stating that while we could articulate non-standard synchrony con-
ventions in a given frame, this would involve introducing extra structure, and we
have an Occamist norm to not do so (cf. [27]). This is the import of Malament’s
result, for Friedman.

Not all authors agree with Friedman. Brown’s response, perhaps predictably,
is very different:

Why should we consider defining simultaneity just in terms of the
limited structures at hand in the Grunbaum-Malament construc-
tion, namely an inertial world-line W and the causal, or light-cone
structure of Minkowski space-time? [14, p. 100]

The thought is this: in the real world, there are multiple observers, each with
an associated worldline. What’s wrong with saying that O is to use the stan-
dard simultaneity relation of O′—which need not be a standard simultaneity
relation for O? Malament’s proof, the thought goes, would have relevance only
in the impoverised (and utterly counterfactual!) case in which only one inertial
observer exists in a background Minkowksi spacetime. (Cf. [82].)

In fact, however, Brown’s qualms run deeper than just this: in the Mala-
ment world, it’s not obvious that we have enough physical structure to set up
coordinates at all (how, operationally, is one to ‘spread time through space’ with
only one worldline—that of O?). There would, for example, be no way to set
up ‘radar coordinates’ in such a world. (Not only this, but in fact stronger: it’s
not obvious that Brown—with his views that spacetime geometry is ultimately
to be regarded as a codification of dynamics—will regard the Malament world
as being coherent to begin with!) So, given an operational understanding of
coordinates, it’s not clear that it is legitimate to speak of simultaneity relations
at all in that world. And in the actual world, there are many observers and
much physical structure, which should afford ample opportunity to define non-
standard simultaneity relations for O. Either way, Malament’s proof seems to
fail to show what is claimed.

For what it’s worth, I find Brown’s reasoning here convincing. But it’s
helpful to recall the different possible understandings of the content of special
relativity (adumbrated at the end of the previous chapter) in order to under-
stand why the issue of the conventionality of simultaneity continues to propel
authors in different directions. If one understands (as on the third option) spe-
cial relativity to just be a theory of Minkowski spacetime and what’s derivable
therefrom, then the Malament-Friedman line that simultaneity is not conven-
tional in special relativity (because only standard synchrony is definable using
only one observer and said structure) looks more plausible. But if one has
the second understanding, according to which special relativity has to do with
Poincaré invariant material laws, then arguably Brown’s position becomes the
more plausible (here, there is no limit to the number of material bodies in-
volved). Interestingly, if one takes the first understanding, according to which
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special relativity essentially amounts to the content of Einstein’s 1905 paper,
then there’s a sense in which simultaneity is not conventional in the theory, for
standard synchrony is baked into its axioms! This highlights that there can
be both theory-external notions of conventionalism—which additional, super-
empirical, assumptions to insist upon when building a theory?—and theory-
internal notions of conventionalism—having fixed a theoretical edifice, what’s
definable uniquely therefrom, and what’s not?

Let me close this chapter with one broader thought. Famously, Quine, in
his critique of the analytic/synthetic distinction, maintained that “the lore of
our fathers is ... a pale grey lore, black with fact and white with convention.
But I have found no substantial reasons for concluding that there are any quite
black threads in it, or any white ones” [132]. If correct, this would imply that
there is no clean distinction between the (supposedly) empirically-motivated
inputs in Einstein’s 1905 derivation of the Lorentz transformations (e.g. his two
postulates) and the (supposedly) conventional inputs (e.g. standard synchrony).

Question: How plausible is Quine’s position, in the context of special
relativity?



Chapter 8

Frame-dependent effects

The presentation of space-time
theory found here has slowly
evolved over many classes. At
first I followed standard
presentations, making extensive
use of coordinates and coordinate
transformations. Bit by bit, class
after class, reference to
coordinates dropped away, leaving
the fundamental geometry open
to inspection. (Maudlin, 2012)

The phenomena of time dilation, length contraction, and the relativity of
simultaneity are often presented as some of the defining and canonical results
of special relativity. However, there are, as we will see in this chapter, at least
some good reasons for doubting the physical reality of these phenomena, for
they are frame-dependent effects, which do not admit of a description liberated
from coordinate systems. So: are these truly physical effects or not? This is the
question upon which I will focus in this chapter.

8.1 Time dilation

I’ll begin with time dilation: the famous special relativistic result that ‘moving
clocks run slow’. It’s easy to demonstrate time dilation directly from Einstein’s
two postulates using the example of a Langevin clock: in a frame moving uni-
formly with respect to the light clock setup presented by Einstein at the begin-
ning of his 1905 paper (see Chapter 4), the light will still travel with velocity c,
but will now have to traverse the hypotenuse of a triangle—meaning that the
time between ticks will thereby be slower.

89
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Exercise: Derive a formula describing the rate of ticking of a Langevin
clock in terms of the velocity of that clock in the direction orthogonal to
the alignment of the mirrors.

The result can also be derived directly—and very straightforwardly—from
the Lorentz transformations. Considering two coordinate systems related by a
Lorentz boost in the positive x-direction, we have, where β := v/c,

c∆t′ = γ (c∆t− β∆x) , (8.1)

∆x′ = γ (∆x− βc∆t) , (8.2)

∆y′ = ∆y, (8.3)

∆z′ = ∆z. (8.4)

Setting ∆x = 0 in the first of the above Lorentz transformations, we have
∆t′ = γ∆t. Thus, given a clock stationary in one frame, that clock will tick
more slowly in a Lorentz-boosted frame.

But here’s the rub: time dilation seems to arise because the time elapsed
between ticks on a clock is frame-relative. So it seems that one ‘gets a clock to
slow down’ merely by changing one’s own frame of reference; but, in so doing,
one clearly does nothing at all to the clock itself. (In other words, one need
only perform a passive rather than an active transformation in order for time
dilation to manifest itself—recall Chapter 2.) This line of thought seems to
suggest that time dilation is not a real physical effect, but is a ‘merely perspec-
tival’ one. Moreover, whether or not a clock moving in a given direction runs
slow relative to any given frame depends upon how distant clocks are synchro-
nised in that frame. Hence, conventionalists about simultaneity should also, for
consistency, be conventionalists about time dilation—and this might reasonably
further undercut any thought that time dilation is a ‘real’ phenomenon.

8.2 Length contraction

Le me turn now to length contraction. Like time dilation, this phenomenon can
be derived from Einstein’s two postulates, as well as directly from the Lorentz
transformations. This time, I’ll skip directly to the second. Consider again a
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boost in the positive x-direction. Combining (8.1) and (8.2), we have

∆x′ = γ∆x− βc∆t′ − β2γ∆x. (8.5)

Setting ∆t′ = 0, we have

∆x′ = γ∆x
(
1− β2

)
. (8.6)

But γ−2 = 1− β2, so

∆x′ =
1

γ
∆x. (8.7)

So, given a rod stationary in one frame, the distance between the ends of that
rod at a given time will be smaller in a Lorentz-boosted frame.

Once again, there are worries here regarding perspectivalism and conven-
tionalism. Length contraction seems to arise because the length of a rod is
frame-relative. So it seems that one ‘gets a rod to contract’ merely by changing
one’s own frame of reference; but, in so doing, one clearly does nothing at all to
the rod itself. This line of thought seems to suggest that length contraction is
not a real physical effect, but is a ‘merely perspectival’ one. Moreover, note that
the length of a given object in a given frame depends upon the synchrony scheme
for distant clocks in that frame—if (and only if) the object is moving relative
to the frame in question. Hence, conventionalists about simultaneity should
also, for consistency, be conventionalists about lengths of moving bodies—and
this might reasonably further undercut any thought that length contraction is
a ‘real’ phenomenon.

8.3 Bell’s rockets

We’ve already seen the relativity of simultaneity in the previous chapter, so I’ll
skip over an explicit discussion of that phenomenon here. Rather, I’ll turn now
to the question of whether frame-dependent explanations in special relativity
are—or can be—legitimate. (As contrasted with the question of whether frame-
dependent phenomena are physically real.) One of the most famous places in
which frame-dependent explanations come to the fore is a thought experiment
due to John Bell, regarding two rockets:

Three small spaceships, A, B and C, drift freely in a region of space
remote from other matter, without rotation and relative motion,
with B and C equidistant from A.

On reception of a signal from A, the motors of B and C are ignited
and they accelerate gently.

Let the ships B and C be identical, and have identical acceleration
programmes. Then (as reckoned by the observer in A) they will
have at every moment the same velocity, and so remain displaced
one from the other by a fixed distance. Suppose that a fragile thread
is tied initially between projections from B and C[, and that] it is
just long enough to span the required distance initially. [7, p. 67]
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Question: Does the string in Bell’s rocket thought experiment break?
Why, or why not?

Take a couple of minutes to think about the above question before proceed-
ing. As Bell explains, the answer to the question is this:

If [the rope] is just long enough to span the required distance initially,
then as the rockets speed up, it will become too short, because of its
need to Fitzgerald contract, and must finally break. It must break
when, at a sufficiently high velocity, the artificial prevention of the
natural contraction imposes intolerable stress.

Is it really so? This old problem came up for discussion once in the
CERN canteen. A distinguished experimental physicist refused to
accept that the thread would break, and regarded my assertion, that
indeed it would, as a personal misinterpretation of special relativity.
We decided to appeal to the CERN Theory Division for arbitration,
and made a (not very systematic) canvas of opinion in it. There
emerged a clear consensus that the thread would not break! [7,
pp. 67-68]

So, the string breaks, as illustrated also in the above diagram (based upon
that found in [103]). But let’s think about the different explanations for why
the string breaks, which might be offered from different frames of reference:

• From the point of view of the control tower A, the breakage happens as a
result of length contraction of the string.

• From the point of view of the first rocket B, the breakage happens as the
second rocket moves progressively further away (due to the relativity of
simultaneity—draw a spacetime diagram!).
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• From the point of view of the second rocket C, the breakage happens as
the first rocket lags further behind (due to the relativity of simultaneity—
draw a spacetime diagram!).

All of the above should make sense (though I’ll return shortly to the question
of whether frame-relative explanations in general are legitimate). So why so
much confusion in the CERN theory division about whether the string would
snap? The Bell rocket scenario is peculiar, in the following sense. If one were
to begin with two rockets stationary with respect to one another, and boost
to a uniformly accelerating frame in special relativity (a ‘Rindler frame’), one
would find that the rockets do not have the same accelerations in this frame,
at any given time. This difference in accelerations would mean that the rockets
move closer to one another as they accelerate, thereby implementing the length
contraction effects. This does not happen in the Bell rocket scenario—so the rest
frame of A is not a Rindler frame. This difference is illustrated in the diagrams
on this page and the next (which are based upon those found in [170]): the first
represents the Bell rocket setup; the second represents two rockets in a Rindler
frame. Clearly, these two physical setups are different!

In other words, the point is this: many presented with this puzzle assume
that, as the rockets accelerate, the rocket-string-rocket system length contracts
(from the point of view of the control tower A), so that the string does not snap.
However, by stipulation, in the Bell rocket scenario, the rockets maintain at all
times equal spatial distance between them, in A’s frame. This means that the
rockets exert an ever-greater force on the string, ultimately meaning that the
latter will snap. In Bell’s scenario, the string connecting the rockets is weak:
it breaks under only a small applied force, and is unable to keep the rockets
together. If, however, the string were infinitely strong, then it would contract
as the rockets accelerate, thereby pulling the rockets together: they would form
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a Rindler pair.
Having settled what can be so confusing about the Bell rocket example, let’s

return to our three frame-dependent accounts of why the string breaks, in Bell’s
original scenario. Maudlin repudiates such explanations:

The surface contradiction between these three account of why the
thread breaks illustrates that frame-dependent narrations of events
in Relativity can be misleading. There is one set of events, governed
by laws that are indifferent to which coordinate system might be
used to describe a situation. In each frame-dependent account, the
interatomic forces in the thread play a role in determining exactly
when the thread breaks. But how that role is described in a par-
ticular reference frame depends critically on which frame is chosen.
[103, p.120]

Question: What, exactly, is misleading about frame-dependent ac-
counts of special relativistic phenomena?

8.4 The ladder paradox

The Bell rocket thought experiment is one place in which frame-dependent ex-
planations as to why a certain (invariant!) phenomenon occurs (in that case,
the snapping of the string tethering the two rockets) can differ. I now want
to illustrate the same point with another example: what’s known as the ladder
paradox.

Consider a garage with a front and back door which are open, and a ladder
which, when at rest with respect to the garage, is too long to fit inside. Now
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move the ladder at a high horizontal velocity through the stationary garage. The
ladder undergoes length contraction, meaning that it can fit inside the garage,
at a particular time. We could, if we liked, simultaneously close both doors for
a brief time, to demonstrate that the ladder fits, as illustrated below:

But now consider an observer co-moving with the ladder. From this perspec-
tive, the ladder is stationary, and the garage is moving at high velocity. So the
garage is now length contracted—so how can the ladder fit inside the garage,
and how can the doors close to contain the ladder?

The solution to the riddle is this: in the frame co-moving with the ladder, we
need to properly take into account the relativity of simultaneity in the ladder’s
rest frame: the doors of the garage no longer close at the same time! This can
be brought out by considering again the situation in the barn rest frame versus
ladder rest frame. The barn-frame description runs as follows:
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The ladder-frame description, by contrast, runs as follows:
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What’s wrong with frame-relative explanations like these? Don’t they help
us to get a handle on what’s invariant and what’s not in special relativity, and
thereby help us to understand the architecture of the theory? Presumably, how-
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ever, authors such as Maudlin would deride these frame-dependent explanations
of the ladder paradox, for the same reasons as in the case of Bell’s rocket thought
experiment.

Question: What kind of explanation do you think would satisfy
Maudlin here? And is it as physically insightful as these frame-dependent
explanations?

I’ll go some way to answering the above question in the next section.

8.5 Assessing frame-dependent effects

Up to this point in this chapter, we’ve both witnessed frame-dependent effects
such as time dilation and length contraction, and seen arguments to the effects
that these phenomena are ‘merely perspectival’, or conventional. We’ve also
seen, in the context of the Bell rockets and ladder paradoxes, that one can find
in the literature different attitudes towards the legitimacy of frame-dependent
explanations. This means that there are really two questions in play:

1. Are frame-dependent explanations of physical phenomena legitimate?

2. Are frame-dependent effects—e.g., length contraction and time dilation—
‘physical’?

As we have seen, Maudlin disavows frame-dependent explanations (of e.g. the
Bell rocket result), for different explanatory accounts will be offered in different
frames. But what exactly is wrong with availing oneself of such explanations?
Why does a lack of univocity imply illegitimacy? Maudlin instead prefers ge-
ometrical explanations, as is evident in the epigraph to this chapter. Note, in
particular, that in that passage Maudlin is:

1. Committing to a geometrical understanding of special relativity.

2. Disavowing frame-dependent explanations.

The thought is that only invariant structures—e.g. the structure of Minkowski
spacetime in special relativity—should feature in genuine explanations. What-
ever one makes of this, it is clearly going to be anathema to e.g. Brown, for whom
such invariant spacetime structures are just a codification of the symmetry prop-
erties of the dynamical equations governing matter, written in coordinate bases.
(See Chapter 10.)

Let’s turn now to the second question: are frame-dependent effects ‘physi-
cal’? To make progress in answering this question, let me say provisionally that
a phenomenon associated with a coordinate transformation is physical just in
case that transformation relates physically distinct states of affairs. So:

• Global Galilean boosts are physical in Newtonian spacetime.
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• Global Galilean boosts are not physical in Galilean spacetime.

• Global Lorentz boosts are not physical in Minkowski spacetime. (Re-
call: Minkowski spacetime has no standard of rest.)

• Local Galilean boosts are physical in Galilean spacetime. (Consider Galileo’s
ship.)

• Local Lorentz boosts are physical in Minkowski spacetime. (Consider
a constant-velocity-transformation version of Bell’s rockets—this is what
Maudlin calls ‘physical length contraction’.)

The moral which I think we can take here is this. The physicality of a coor-
dinate effect (by the preceding definition of ‘physicality’) is crucially dependent
upon

(a) the amount of spacetime structure presupposed, and

(b) whether the associated coordinate transformations are applied globally
(i.e., to the whole universe) or locally (i.e., to subsystems of the universe).

Local transformations can effect genuine physical change, even if the particular
mode of description of that change is frame-dependent (cf. again Bell’s rockets,
or the ladder).

8.6 Fragmentalism

Within the metaphysics literature, there’s a stronger view than that articulated
at the end of the previous section, to the effect that all frame-dependent effects
can (in principle) be regarded as being physically real. This view is known as
‘fragmentalism’, and was first articulated by Fine in the context of the philoso-
phy of time [57]. According to this view, “the world is inherently perspectival”,
and “the overall collection of facts, ‘über reality’, includes pairs of mutually
incompatible facts” [94, p. 23]. So, on this view in the context of special relativ-
ity, the totality of facts about the universe includes frame-dependent facts about
(e.g.) lengths of rods and periods of clocks, which are mutually inconsistent.

It’s important to be clear on the fragmentalist’s commitments. As Lipman
writes,

The importance is that of marking a metaphysical realism about
those variant matters. The relevant question is whether realism or
antirealism is true about the frame-relative facts, that is, whether
consideration of the special theory of relativity removes all frame-
relative facts from one’s metaphysical conception of reality: the
Minkowskian answers yes, the fragmentalist answers no. [94, p. 31]

That is, the fragmentalist doesn’t deny the existence of coordinate-independent
facts to do with (say) Minkowski spacetime; they simply admit further, frame-
dependent facts into their ontology. I’ll leave it to the reader to decide what to
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make of fragmentalism in the context of special relativity;1 here, however, are
two questions which the fragmentalist must address:

Question: How to make sense of a ‘disunified reality’, according to
which ‘the totality of facts is incoherent’?

Question: What does fragmentalism add to the considerations of phys-
icality and subsystem-environment decompositions introduced already
above?

1For my own take, see [137].



Chapter 9

The twin paradox

If we placed a living organism in
a box ... one could arrange that
the organism, after any arbitrary
lengthy flight, could be returned
to its original spot in a scarcely
altered condition, while
corresponding organisms which
had remained in their original
positions had already long since
given way to new generations. For
the moving organism, the lengthy
time of the journey was a mere
instant, provided the motion took
place with approximately the
speed of light. (Einstein, 1911)

From Planet of the Apes to Ender’s Game, the twin paradox is by now a
mainstay of 20th Century science fiction. Qualitatively, the idea is this: consider
two identical twins, at rest on the Earth. One twin takes an interstellar journey
before returning to Earth, while the other remains at home on Earth; on reunion,
our twins find that they have aged by different amounts. So far, this is just a
feature of special relativity (which I’ll derive quantitatively below)—the paradox
is supposed to consist in the fact that, if one considers the same situation in the
rest frame of the travelling twin, then it seems that it should be the Earthbound
twin who ages less (the situations are entirely symmetrical, or so it seems). So,
how to resolve this paradox? This is the question which I’ll address in this
chapter.
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9.1 The clock hypothesis

Before I discuss the twin paradox any further, I need to introduce a crucial device
in the foundations of spacetime theories: what’s known as the clock hypothesis.
Suppose that we have two identical clocks built from Poincaré invariant matter
fields, with one clock moving with uniform velocity with respect to the first.
Will these clocks function identically in their rest frames? Yes, by the relativity
principle. Now suppose we have two identical clocks built from Poincaré in-
variant matter fields, with one clock accelerating with respect to the first. Will
these clocks function identically in their rest frames? Not necessarily—for the
relativity principle holds for systems related by Poincaré transformations.

Another (more geometrical) way to make the point is this. Given two clocks
A and B, if B moves at uniform velocity with respect to A, then if A correctly
reads off the Minkowski spacetime interval

∫
γA

ds along its worldline γA, then

so too will B correctly read off the interval
∫
γB

ds along its worldline γB , by
the relativity principle. However, if B accelerates with respect to A, then the
fact that A correctly reads off the Minkowski spacetime interval

∫
γA

ds along its

worldline γA does not guarantee that B correctly reads off the interval
∫
γB

ds
along its worldline γB . That this is so is an additional input assumption, which
is the clock hypothesis. As Maudlin puts it, the clock hypothesis amounts to
this:

The amount of time that an accurate clock shows to have elapsed
between two events is proportional to the Interval along the clock’s
trajectory between those events, or, in short, clocks measure the
Interval along their trajectories. [103, p. 76]

One should not, however, simply assume that the clock hypothesis is foun-
dationally unproblematic. In fact, to suppose that any clock satisfies the clock
hypothesis is misleading, for all clocks have a breaking point. As Eddington
said nicely of an accelerating clock,

We may force it into its track by continually hitting it, but that may
not be good for its time-keeping qualities. [39, p.64]

The point is this: whether a particular clock ticks in accordance with the space-
time metric is not a matter of stipulation or luck, but depends crucially on
the constitution of the clock. For any given clock, no matter how ideal its
performance when inertial, there will in principle be an acceleration-producing
external force, or even tidal effects inside the clock, such that the clock ‘breaks,’
in the sense of violating the clock hypothesis. Might it therefore not be more
appropriate to speak of the clock condition? (Cf. [17, §III.C].)

Regardless of what one thinks of this, what’s uncontroversial is that, when-
ever we have accelerating clocks, the clock hypothesis/condition must be brought
into consideration: is it satisfied or not? And what upshots does this have for
the discussion at hand? In much of this chapter, in order to render the con-
tours of philosophical discussion of the twin paradox as crisp as possible, I’ll
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simply assume the clock hypothesis—but it’s important to remember that this
principle lurks beneath the hood. I’ll flag it again explicitly where relevant.

9.2 The twin paradox

Without further ado, then, let’s turn to a more quantitative presentation of the
twin paradox. Consider two identical twins A and B, who are spatiotemporally
coincident on the Earth at some time. Twin B decides to make an out-and-back
trip away from the Earth—perhaps to our closest star, Alpha Centauri—while
Twin A stays at home. The situation is illustrated on a spacetime diagram as fol-
lows:

It’s a basic feature of special relativity that, on returning to the Earth, Twin
B will have aged less than Twin A. This is easy to see, by computing the
proper time (which is the time read off by a clock in the rest frame of the
observer under consideration, which will corresponding to the integral of the
metric interval along that observer’s worldline, on the assumption of the clock
hypothesis) along the worldline of each twin:

TA =

∫ p

o

dτA (9.1)

TB =

∫ p

o

dτB

=

∫ p

o

(
1−

(
dx

dτA

)2

−
(

dy

dτA

)2

−
(

dz

dτA

)2
) 1

2

dτA

< TA. (9.2)
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(Here, o and p are, respectively, the departure and reunion events of the two
twins.) Note that the result of this computation is not relative to a particular
frame—it’s a frame-independent fact that Twin B has aged less than Twin A
when they are reunited.1 There’s a temptation to appeal to time dilation in
order to explain the twin paradox result, but (at least in the first instance) this
should be resisted: we’ve already seen in the previous chapter that whether it’s
appropriate to appeal to time dilation will depend upon the frame of reference
with respect to which one is describing the physical situation under consider-
ation; moreover, there are choices of simultaneity convention which eliminate
time dilation effects. Thus—again, as stressed previously—at the very lest such
accounts cannot be fundamental.

The above result is certainly unexpected, but it’s not yet a paradox. (Recall
Quine’s famous characterisation of a paradox: an apparently successful argu-
ment having as its conclusion a statement or proposition that seems obviously
false or absurd [133].) But we can generate the paradox in the following way.
We’ve seen that TA > TB—and this is a frame-independent result. But if we
were to boost to B’s rest frame, the situation would look (it seems) exactly anal-
ogous. In that case, we would surely expect TB > TA. Assuming that TA ̸= TB ,
this leads to a contradiction—and so a something more unavoidably classified
as a paradox. So the challenge is this: what breaks the symmetry between A and
B?

9.2.1 Inertial frames

As a first response to the twin paradox, it is natural to appeal to inertial versus
non-inertial frames (or, if one prefers language expunged of reference to frames,
inertial versus non-inertial trajectories). Recall that Minkowski spacetime has
the resources to distinguish straight (‘inertial’) from bent (‘accelerating’) trajec-
tories. Suppose that A is following an inertial trajectory relative to Minkowski
spacetime structure; then (the thought would go), B is not following an inertial
trajectory relative to the selfsame spacetime structure. Therefore, to boost to
B’s rest frame would involve moving to a non-inertial frame, in which case, we
should not expect the same laws of physics to apply. Thus, consideration of the
structure of Minkowski spacetime allows us to break the symmetry between A
and B, and thereby resolve the paradox.

This reasoning on the basis on inertial frames is a plausible first reaction to
the paradox—although ultimately we’ll see that it’s not problem-free. Before I
get onto that, though, we should recall from Chapter 1 that different authors
have very different views on the nature of inertial frames. In particular, authors
such as Brown might well be unhappy with the appeal to Minkowksi spacetime
in the above discussion of inertial frames. In light of this, we should ask: what
role is Minkowski spacetime playing in the above explanation? Could we excise
it, and just appeal to the inertial frames as picked out by the dynamics, rather

1Aside: this is a nice illustration of the sense in which drawing spacetime diagrams can be
misleading—for B’s path looks longer on the diagram presented above, but is in fact shorter,
when we do the computation.
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than cashed out using geometrical notions? Indeed we can do this—here’s how
the account might go.

Suppose that A is following an inertial trajectory—that is, it travels with
uniform velocity in the inertial frames, as picked out by the dynamics (in one
way or another—see Chapter 1). Then B is not following an inertial trajectory,
for B accelerates with respect to A. Therefore, to boost to B’s rest frame would
involve moving to a non-inertial frame, in which case, we should not expect the
same laws of physics to apply. Thus (again, the thought might go), consideration
of the inertial frames allows us to break the symmetry between A and B, and
thereby resolve the paradox.

My point here is really a simple one: one can appeal to inertial frames in
order to attempt to account for the twin paradox time differential, on both a
‘geometrical’ and ‘dynamical’ understanding of inertial frames. Fair enough—
but is the account actually any good to begin with? One should be careful about
making too much of the inertial/non-inertial distinction, for one can formulate
twin paradoxes with

(i) equal accelerations, or

(ii) no accelerations at all!

Let me begin with the first case (here, I’ll drawing on Maudlin’s very elegant
discussion of the twin paradox [103, p. 82]). One can envisage a case where Twin
A undertakes a ‘mini-journey’, but with the same acceleration profile, as per the
following diagram:

In this case, neither Twin A nor Twin B find themselves in inertial frames—
nevertheless, or recombination, Twin B has still aged less than Twin A. Thus,
it seems that it cannot be non-inertial motion alone which accounts for this
result. On this issue, Maudlin writes the following:
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Both Rindler and Feynman point out that acceleration is objective
in Relativity, just as it is in Newtonian absolute space and time and
in Galilean space-time. This is true but irrelevant: the issue is how
long the world-lines are, not how bent. [103, p. 83]

Let’s turn to the second potential problem for inertial frame-based attempts
to explain the twin paradox: the cases in which one has no accelerations at
all. There are two such cases. The first involves not twin but triplets, A (the
stay-at-home twin), B (whose clock is initially synchronised with that of A, and
who travels away from the Earth with constant velocity), and C (who travels
towards the Earth with constant velocity, and who synchronises her clock with
that of B on passing the latter). In this case, the time displayed by C’s clock
will still be less than that displayed by A’s clock on recombination. Moreover,
here, all three triplets are moving inertially—so can one really appeal to inertial
versus non-inertial motion to account for this result?

Question: How physical is this case, given that (presumably) some
energy/momentum must be exchanged between Twin B and Twin C?

The second ‘no acceleration’ case is particularly intriguing. Imagine that
our twins A and B find themselves on a spacetime of cylindrical topology, as
per the following diagram:2 (Cf. [169, p. 587].)

In this case, Twin A stays at home as before, whereas Twin B travels with
constant velocity around the cylinder, before rejoining Twin A on the Earth.
Again in this case, on recombination, Twin B will have aged less than Twin A.

2There’s a broader literature on twin paradoxes in spacetimes of different topologies: see
[98].
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Since both twins are (it seems) moving inertially in this case, it would again
seem to be the case that one cannot appeal to the distinction between inertial
and non-inertial motion in order to account for the time discrepancy between
the clock readings of the twins.

In neither of the above cases is there a straightforward way of appealing to
the inertial/non-inertial distinction in order to account for the twin paradox
time differential. That said, in the latter (i.e., the cylindrical spacetime case),
perhaps there is still a difference between A and B—for only A’s worldline is
aligned with the principal axis of the cylinder. So claim: in this case, at least,
there is a preferred frame, thereby allowing us to account for the cylindrical
twin paradox time differential.

Exercise: Assess the above response to the case of the cylindrical twin
paradox.

What should we take the lessons from these cases to be? Taken together,
they suggest that the twin paradox result can’t be accounted for solely in terms
of the accelerations of the twins. So, at this point—as we’ve already seen in the
above quote from Maudlin—exploring some other possible explanations of the
paradox is apposite.

9.2.2 Geometrical and dynamical explanations

On the twin paradox, Maudlin writes:

The Twins “Paradox” has inspired more confusion about Relativity
than any other effect. The explanation of the phenomenon, in terms
of the intrinsic geometry of Minkowski space-time and the Clock
Hypothesis is exquisitely simple: clocks measure the Interval along
their world-lines, and B’s world-line between o and q is longer than
A’s. Period. There is nothing more to say. [103, p. 79]

It’s certainly true that this kind of geometrical account of the twin paradox
time differential faces no apparent counterexamples, as with the previously-
countenanced appeals to inertial frames. But how illuminating is it? Presum-
ably, a ‘dynamicist’ (e.g. Brown) would find the spacetime explanation of the
cylindrical twin paradox (and the equal-acceleration twin paradox) similarly
otiose, and would say that, even if it’s not an (operationalised) notion of in-
ertial frames which accounts for the time differential, it’s still facts about the
matter out of which the twins are built, more generally construed, which account
for the difference, rather than anything to do with spacetime geometry.

To summarise, the dialectic here between the ‘geometrical’ camp à la Maudlin
and the ‘dynamical’ camp à la Brown proceeds as follows. An initial ‘geometri-
cal’ thought might be that it is spacetime which grounds the distinction between
inertial and non-inertial motion, and it is this distinction which can be appealed
to in an explanation of the twin paradox time differential. Such a line of thought
could be represented thus:
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On the other hand, an initial ‘dynamical’ though, as we have seen, would be
that the appeal to spacetime in the above is redundant, and one can appeal
directly to the inertial/non-inertial distinction (as, ultimately, given by facts
about the dynamics) in order to account for the twin paradox time differential.
Such a line of thought could be represented thus:

In light of our problem cases, however, we’ve seen that it’s difficult to maintain
that appeal to the inertial/non-inertial distinction can account completely for
the twin paradox result. In light of this, a revised ‘geometrical’ understanding
(again, à la e.g. Maudlin) would appear thus:
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By contrast, a revised ‘dynamical’ thought would maintain that it’s facts about
dynamics which directly explain the twin paradox time differential; appeal to the
inertial/non-inertial distinction is likewise recognised to be unnecessary here:

Question: Which of the ‘geometrical’ or ‘dynamical’ approaches to the
twin paradox is to be preffered, and why?

9.3 Frame-relative accounts

There are many purported ‘explanations’ of the twin paradox which make appeal
to frame-relative structures. (The situation is very similar to that of e.g. Bell’s
rockets, discussed in the previous Chapter.) Here, I’ll present one of the most
prominent of these, which appeals to simultaneity hypersurfaces in B’s rest
frame.3 I’ll then consider (in a continuation of the discussion presented in the

3This particular proposal was first made by von Laue in 1913 [108]; in [110], it is described
as a ‘complete solution to the twins paradox’. At the very least, that latter claim is misleading,
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previous chapter) the more general question of the legitimacy of these accounts.
The account of the twin paradox time differential which appeals to the rel-

ativity of simultaneity proceeds like this. Consider the (ϵ = 1/2) simultaneity
hyperplanes from the point of view of B’s rest frame. At the turnaround point,
there is a sudden swing in the hyperplanes, leading to ‘lost time’ relative to A’s
worldline. The situation would be illustrated on a spacetime diagram as follows:

Then claim, then, is that it’s this ‘lost time’ which accounts for the time
differential between A and B. This seems fine (at least if one is Brown—not if
one is Maudlin!), but is the account a fundamental one? Here’s Brown on this
question:

[E]xplanations of synchrony-independent phenomena in SR that rely
crucially on the relativity of simultaneity are not fundamental. (A
common example concerns the clock retardation effect, or ‘twins
paradox’, where it is claimed that at the point of turn-around of the
travelling clock, the hyperplanes of simultaneity suddenly change
orientation and the resulting ‘lost time’ accounts for the fact that
the clocks when reunited are out of phase. It is worth bearing in
mind that the clock retardation effect, like any other synchrony-
independent phenomenon in SR, is perfectly consistent with all the
non-standard transformations ..., including those which eliminate
relativity of simultaneity.) [14, p. 105]

I agree with Brown (who, on this front, would also agree with Maudlin). There
are, indeed, three reasons why such accounts of the twin paradox result should
be regarded as being non-fundamental:4

given the appeal of this account to frame-relative structures.
4Those who don’t accept that simultaneity is conventional in special relativity—recall



9.4. GENERAL RELATIVITY 111

1. They are frame-relative.

2. They are convention-relative. (For more on this, see [28].)

3. They only apply to certain versions of the paradox—e.g., not to the cylin-
drical case.

To repeat: Maudlin agrees that such accounts are non-fundamental, but also
(as we have seen in the previous chapter) regards such accounts as thereby ille-
gitimate. Thus, the difference between authors such as Brown on the one hand,
and such as Maudlin on the other, vis-à-vis such frame-dependent accounts, can
be summarised thus:

Brown-style: They are legitimate, but non-fundamental.

Maudlin-style: They are illegitimate and non-fundamental.

(Of course, we’ve already seen that these authors have profoundly different views
as to what would count as a fundamental explanation of the effect—Maudlin
appeals to spacetime structure; Brown appeals to dynamics.)

9.4 General relativity

It is sometimes claimed that, since the twin paradox scenario involves acceler-
ations, we must appeal to general relativity to explain the result (at various
stages, Einstein and Born made such claims: see [81, p. 165]). Recall that gen-
eral relativity is Einstein’s theory of gravitation, completed in 1915, according to
which spacetime structure is dynamical, and can vary in the presence of matter.
As I will discuss in detail in Chapter 12, consideration of accelerations afforded
a crucial way into the theory for Einstein; my conjecture is that it’s this role of
the consideration of accelerations—as an heuristic for the construction of gen-
eral relativity—which ultimately has led to the confused and incorrect claims
that discussion of accelerations requires recourse to general relativity—which it
emphatically does not! Any such claim, indeed, is confused, for:

1. Accelerations are not an essential feature of the twin paradox—as we have
already seen above.

2. Special relativity has the resources to distinguish accelerating from non-
accelerating trajectories. (Recall Chapter 5.)

Still, it’s worth dissecting this reasoning a bit more, to see what’s really wrong
with it (as I say, I’ll have more to say on connections with general relativity in
Chapter 12).

Chapter 7—would not accept (2). This, however, would not prevent them from still accepting
the conclusion, in light of (1) and (3).
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Consider the fictitious force terms which one obtains by writing one’s theo-
ries of physics in non-inertial frames of reference (we’ve seen explicit examples
of these terms in Chapter 1 and Chapter 6). Call these terms ‘inertial effect’
terms. Einstein in 1907 [44] had an insight—now known as ‘Einstein’s equiv-
alence principle’ (see [90])—that such inertial effect terms are to be identified
conceptually with terms representing gravitation (for further discussion here, see
[89]). I’ll discuss the significance of this move—and why Einstein later declared
it to be “the happiest thought of my life”—in Chapter 12, but for now let’s just
consider its ramifications in the context of the twin paradox.

One could appeal to Einstein’s equivalence principle to explain (accelerating
versions of) the twin paradox: the accelerating twin is subject to a gravita-
tional force. But—crucially!—note that this is really no better than the original
(bad!) appeal to accelerations! Moreover, this approach is also in tension with
a widespread methodology in the philosophy of physics: try to understand ef-
fects which arise in a given theory in terms of that theory itself—i.e., without
introducing notions which transcend that theory. Thus, in my view, claims that
one has to appeal to general relativity in order to account for the twin paradox
result implicate one in a misunderstanding of (a) the equivalence principle, (b)
the representational and descriptive capacities of special relativity (to repeat
again: accelerations are perfectly meaningful here!), and (c) the necessity of
accelerations for twin paradox effects. Best, then, to avoid such appeals, when
one is engaging in the philosophical and conceptual ramifications of the special
theory.



Chapter 10

Dynamical and geometrical
approaches to spacetime

There is no intention here to
make any reservation whatever
about the power and precision of
Einstein’s approach. But in my
opinion there is something also to
be said for taking students along
the road made by Fitzgerald,
Larmor, Lorentz and Poincaré.
The longer road sometimes gives
more familiarity with the country.
(Bell, 1976)

One of the central and recurring themes of this book has been the profound
differences between ‘dynamical’ and ‘geometrical’ approaches, both to articu-
lating the content of physical theories (e.g. Newtonian mechanics—see Chapter
1) and to the explanations of physical phenomena (e.g. the twin paradox time
differential—see Chapter 9). In this chapter, I’ll address head-on the differ-
ences between authors in these two camps (while also recognising that there are
substantial differences internal to each of these camps).1

10.1 Bell’s Lorentzian pedagogy

Bell, in his ‘How to Teach Special Relativity’ [7], considers an atom as modelled
by classical Maxwell theory. He shows that, when such an atom is gently ac-

1I should flag at the outset that this debate has become very subtle and involved—in other
recent work (in particular [18, 74, 135, 136]), I approach the same issues from other angles,
so those articles can be considered complimentary to this chapter.
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celerated up to some constant velocity, its moving state will be contracted with
respect to its stationary state, in accordance with the length contraction of sub-
systems under active Lorentz boosts. The moral—what he calls he Lorentzian
pedagogy—is that we can explain the behaviour of macroscopic systems via ap-
peal to the micro-dynamical underpinnings of those systems. In particular, we
can do so without “premature philosophizing about space and time” [7].

Brown and Pooley takes inspiration from Bell’s Lorentzian pedagogy: they
maintain that appeal to the fundamental physical laws governing the systems
under consideration can explain the behaviour of those systems [15]. I’ll come
back to this in a minute, but for the time being note that Bell himself stresses
that there are some limitations to his particular electron model as a means of
illustrating the Lorentzian pedagogy:

Can we conclude then that an arbitrary system, set in motion, will
show precisely the Fitzgerald and Larmor effects? Not quite. There
are two provisos to be made.

The first is this: the Maxwell-Lorentz theory provides a very inad-
equate model of actual matter, in particular solid matter. It is not
possible in a classical model to reproduce the empirical stability of
such matter. ...

The second proviso is this. Lorentz invariance alone shows that for
any state of a system at rest there is a corresponding ‘primed’ state
of that system in motion. But it does not tell us that if the system
is set anyhow in motion, it will actually go into the ‘prime’ of the
original state, rather than into the ‘prime’ of some other state of the
system at rest. In fact, it will generally do the latter. A system set
brutally in motion may be bruised, or broken, or heated, or burned.
[7, pp. 74-75]

Here, Bell is stressing that, in order for the Lorentzian pedagogy to go through
in full detail, we had better

1. appeal to the fundamental laws governing the physical systems under con-
sideration, and

2. hope that we can actually build stable bodies (such as rods and clocks)
from matter governed by such laws. (Recall again the clock hypothesis,
discussed in Chapter 9.)

In a sense, this point isn’t novel to Bell. Here’s the young Wolfgang Pauli,
writing on the selfsame issues in his seminal 1921 textbook on general relativity:

Should one, then, completely abandon any attempt to explain the
Lorentz contraction atomistically? We think that the answer to this
question should be No. The contraction of a measuring rod is not an
elementary but a very complicated process. It would not take place
except for the covariance with respect to the Lorentz group of the
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basic equations of electron theory, as well as of those laws, as yet
unknown to us, which determine the cohesion of the electron itself.
[118, p. 15]

So, if one takes certain macroscopic, phenomenological special relativistic
effects, e.g.—canonically—the contraction of rods and dilation of clocks (at least
relative to some synchrony convention: see Chapter 7), the thought is that it
would be legitimate to explain those effects in terms of the micro-constituents
of the systems under consideration. As a matter of practical fact, however,
we might lack an understanding of the physics of such micro-constituents, or it
might be that to work which such physics is experimentally intractable (consider
e.g. the number of degrees of freedom in statistical mechanics, often thereby
requiring recourse to thermodynamics). For this reason, Brown and Pooley [16]
advance what they call a truncated Lorentzian pedagogy :

In order to predict, on dynamical grounds, length contraction for
moving rods and time dilation for moving clocks, Bell recognised
that one need not know exactly how many distinct forces are at work,
nor have access to the detailed dynamics of all of these interactions
or the detailed micro-structure of individual rods and clocks. It
is enough, said Bell, to assume Lorentz covariance of the complete
dynamics—known or otherwise—involved in the cohesion of matter.
We might call this the truncated Lorentzian pedagogy. [16, p. 7]

The suggestion is that we can offer a partial explanation of special relativistic
effects via appeal to the Poincaré invariance of the dynamical laws. A full
(untruncated) explanation is deferred to a later date.

10.2 Constructive and principle theories, reprise

Recall from Chapter 4 that a constructive theory attempts to provide a detailed
dynamical picture of what is microscopically going on, from which predictions
for observable phenomena can be derived. A principle theory, by contrast, takes
certain phenomenologically well-grounded principles, raises them to the sta-
tus of postulates, and derives from them constraints on what the underlying
detailed dynamical equations could be like, without attempting to give a fully
detailed account of what those equations are. The Lorentzian pedagogy suggests
(straightforwardly) that the detailed microdynamics associated with special rel-
ativistic systems would provide the constructive account of the behaviour of
those systems. Here, indeed, is Bell circa 1992 writing on precisely this matter:

If you are, for example, quite convinced of the second law of thermo-
dynamics, of the increase of entropy, there are many things that you
can get directly from the second law which are very difficult to get
directly from a detailed study of the kinetic theory of gases, but you
have no excuse for not looking at the kinetic theory of gases to see
how the increase of entropy actually comes about. In the same way,
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although Einstein’s theory of special relativity would lead you to
expect the FitzGerald contraction, you are not excused from seeing
how the detailed dynamics of the system also leads to the FitzGerald
contraction. [8, p. 34]

Clearly, Bell is suggesting that the fundamental microdynamics governing phys-
ical systems can provide a constructive underpinning of (macroscopic) special
relativistic effects. Brown and Pooley are fully onboard with this lesson, but
others—certain geometricians—have a very different story to tell.2 To be con-
crete, here is Janssen’s very different take on the constructive theory associated
with Einstein’s 1905 special relativity:

Minkowski (1909) did for special relativity, understood strictly as
a principle theory, what Boltzmann had done for the second law
of thermodynamics. It turned special relativity into a constructive
theory by providing the concrete model for the reality behind the
phenomena covered by the principle theory. [83, p.40]

The idea is that it is Minkowski spacetime structure which affords the construc-
tive underpinning of special relativity. The state of play at this point, then, can
be summarised as follows:

10.3 Arrows of explanation

In order make progress in this dispute regarding the constructive underpinnings
of special relativistic phenomena, authors change focus: to whether spacetime
structure explains the form of the dynamical laws governing the matter out
of which our physical systems are constructed, or vice versa. Proponents of a
‘dynamical’ view à la Brown maintain something like this:

2As we’ll see below, the story is subtle when it comes to some advocates of a geometrical
view, e.g. Maudlin [103]. As we’ll see, Maudlin is also completely on board with the above
lesson from Bell, yet nevertheless maintains that geometry has a significant role to play in the
explanation of physical effects and phenomena.
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On the other hand, proponents of a ‘geometrical’ view à la Friedman, Janssen,
or Maudlin maintain something like this:

Our authors, indeed, recognise explicitly their disagreements as such. Here,
again, is Janssen:

Our central disagreement ... is a dispute about the direction of
the arrow of explanation connecting the symmetries of Minkowski
spacetime and the Lorentz-invariance of the dynamical laws govern-
ing systems in Minkowski spacetime. I argue that the spacetime
symmetries are the explanans and that the Lorentz invariance of the
various laws is the explanandum. Brown argues that it is the other
way around. [83, p. 29]

Brown agrees on the nature of this dispute, but (by now predictably!) does
not think that spatiotemporal geometrical explanations hold together:

Here we are at the heart of the matter. It is wholly unclear how this
geometrical explanation is supposed to work. [14, p. 134]

As a matter of logic alone, if one postulates spacetime structure as
a self-standing, autonomous element in one’s theory, it need have no
constraining role on the form of the laws governing the rest of the
theory’s models. So how is its influence supposed to work? Unless
this question is answered, spacetime cannot be taken to explain the
Lorentz covariance of the dynamical laws. [16, p. 84]

Rather, Brown and Pooley propose to reverse the arrow of explanation, as
follows (and as we’ve already seen in e.g. Chapter 1 and Chapter 9):

[T]he appropriate structure is Minkowski geometry precisely because
the laws of physics ... are Lorentz covariant. [16, p. 80]
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There are three points to note on the proposal which is being adumbrated
here by Brown and Pooley. First, inasmuch as the position seeks to reduce space-
time structure to facts about the dynamical laws, arguably it is best understood
as being a modern-day form of relationalism (according to which spacetime is
derivative—in some way or other—on material bodies and their behaviours)—
see [127].3 Second, arguably, the view renders the connection between spacetime
and dynamical symmetries analytic: spacetime structure just is an expression
of dynamical symmetries [111].4 Third, if this view can indeed be made to
hold together, then there is a clear sense in which spacetime symmetries (and
structure) are explained by dynamical facts.5

To summarise so far, then: certain ‘geometrical’ authors such as Janssen
maintain that spacetime structure explains the behaviour of matter, and the
symmetries of the associated laws. For Brown and Pooley, this is mysteri-
ous; they propose to reverse the arrow of explanation, by ontologically reducing
spacetime structure to an expression of the symmetries of the dynamical laws
for material bodies, which (for them) are to be regarded as being conceptually
prior.6

10.4 Geometrical sub-views

In order to better understand the geometrical position, I now want to distinguish
several different possible versions of this view:

Version A: Spacetime structure (e.g. the Minkowski metric field ηab in special
relativity) is ontologically autonomous and primitive, and (in some sense
to be articulated) constrains the dynamical behaviour of matter.

Version B: Spacetime structure is not necessarily to be construed as being
ontologically autonomous and primitive, but is, rather, a universal kine-
matical constraint on possible physical theorising. (This position is close
to that explicitly stated by Janssen [83]). This kinematical constaint could
be, e.g.,

1. a ‘meta-law’, in the sense of Lange [87], or

2. a pragmatic restriction (more on which below).

Versions A and B.1 are both what I referred to in [135] as ‘unqualified ge-
ometrical views’, in the sense that both are subject to Brown and Pooley’s

3It hasn’t escaped notice that this position is not neutral on the metaphysics of laws of
nature—see [16, 77, 136] for discussion.

4Brown is broadly on board with this claim—see [18] for his engagement with the analyt-
icity claim.

5For further discussion of issues of explanation in this debate, see [136] and references
therein.

6Several authors have reasonably asked whether one can articulate these laws without
presupposing spacetime structure. I touched on this question in Chapter 6, but see e.g. [30]
for further discussion.
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challenge: how is this geometrical explanation supposed to work? 7 Version B.2
is, by contrast, a ‘qualified geometrical view’, in the sense that this charge does
not apply to it: we can use (e.g.) ηab to explain the behaviour of matter (in-
cluding the symmetry properties of the laws governing matter), once we have
restricted to a certain allowed class of laws (namely, those which are Poincaré
invariant). We’ll see this view expliclty in the quote from Maudlin below—so
there’s little doubt that Maudlin counts as a ‘qualified geometrician’.

Before I get to Maudlin’s views in more detail, though, I want to ask the
following question: in what sense can a qualified geometrical approach offer a
constructive explanation of the behaviour of the physical bodies under consid-
eration? This is a good question, since not all proponents of a geometrical view
profess to hypostatise spacetime (Janssen, for example, explicitly does not do
this: see [83]). Since constructive explanations (i.e., explanations in terms of
constructive theories: see [136]) make appeal to physical entities and goings-
on, it seems to me that Janssen occupies an unstable position in both refusing
to hypostatise spacetime yet nevertheless imputing that spacetime can offer
constructive explanations of physical phenomena: in my view, the former is a
necessary condition for the latter. Of course, though, this isn’t to say that a
non-hypostatised spacetime can’t offer other kinds of explanations of physical
goings on—perhaps unificatory explanations, in the manner of Friedman [59].8

What, then, of Maudlin? The following passage is revealing:

Complete physical understanding of an equilibrium state would re-
quire a complete account of the internal structure of the rigid system,
both its composition and the forces among its parts. But even absent
such a detailed account, we can make some general assertions about
rigid bodies in any Special Relativistic theory. The fundamental re-
quirement of a relativistic theory is that the physical laws should
be specifiable using only the relativistic space-time geometry. For
Special Relativity, this means in particular Minkowski space-time.
It is the symmetry of Minkowski spacetime that allows us to prove
our general result. [103, p. 117]

Note that the first sentence here is completely consistent with the Lorentzian
pedagogy, so Maudlin wholly concurs with Brown and Pooley on this point.
When Maudlin then writes that “[t]he fundamental requirement of a relativistic
theory is that the physical laws should be specifiable using only the relativistic
space-time geometry”, this is also something to which the advocate of the dy-
namical approach should be able to assent (as a mathematical claim, at least).
The remaining issues are (a) whether this spacetime structure is ontologically
autonomous, and (b) whether it can offer a constructive explanation of the above
effects. Advocates of the dynamical approach will assent to neither (a) nor (b),
whereas Maudlin, I take it (albeit not in the above quote!), will assent to both
(a) and (b). Once one recognises Maudlin as a ‘qualified geometrician’, however,

7For Brown on Version B.1, see [18, p. 76].
8For further discussions on all these issues, see [1, 136].
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there does not seem to be anything profoundly problematic in his position (for
further discussion, see [135]).

10.5 Norton’s challenge

Having clarified the different forms that a geometrical view might take, I now
want to turn to a different issue. Norton claims that the whole idea of a ‘dy-
namical approach’ to spacetime in the style of Brown is question-begging:

Constructivists, such as Harvey Brown, urge that the geometries of
Newtonian and special relativistic spacetimes result from the proper-
ties of matter. Whatever this may mean, it commits constructivists
to the claim that these spacetime geometries can be inferred from the
properties of matter without recourse to spatiotemporal presump-
tions or with few of them. I argue that the construction project
only succeeds if constructivists antecedently presume the essential
commitments of a realist conception of spacetime. [114, p. 821]

Recall from Chapter 6 that, when constructing spacetime theories (on the
Riemannian approach, at least), we begin by writing down a differentiable man-
ifold M , before writing down certain additional (e.g.) metrical structure on that
manifold. For example, recall that the spacetime structure of special relativity
(on the Riemannian approach) is ⟨M,ηab⟩; the (Galilean) spacetime structure of
Newtonian mechanics is ⟨M, tab, h

ab,∇⟩. Norton’s claim, amongst other things,
is that Brown must presuppose the manifold structure M in order to write down
dynamical equations for matter fields (for these equations hold at spacetime
points), and so to get his relationalism about metric structure off the ground.
So Brown’s approach fails, according to Norton, for it implicitly makes certain
spatiotemporal presuppositions.

Is this fair? Let’s consider two responses to Norton. The first is issued by
Pooley, who accuses Norton of misunderstanding the scope of the dynamical
project:9

The advocate of the dynamical approach need not be understood as
eschewing all primitive spatiotemporal notions (pace Norton, 2008).
In particular, one might take as basic the “topological” extendedness
of the material world in four dimensions. [127, p. 55]

[T]he project was to reduce chronogeometric facts to symmetries,
not to recover the entire spatiotemporal nature of the world from no
spatiotemporal assumptions whatsoever. [127, p. 57]

Others have argued that it’s unreasonable to say that Brown does not have
a relational account of the manifold, as indeed seems to be exhibited in the
following passages:

9For more on this, see [154].
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In pre-quantum physics then, space-time points are perhaps best
viewed not as entities in their own right, but as correlations or links
between the individual degrees of freedom of distinct physical fields.
[13, p. 68]

The simplest (and to my mind the best) conclusion, and one which
tallies with our usual intuitions concerning the gauge freedom in
electrodynamics, is that the space-time manifold is a non-entity. [14,
p. 156]

One might, however, regard the above as mere promissory notes: how exactly
is Brown to eliminate his apparent commitment to manifold points? Menon
[105] takes up this challenge, using the machinery of ‘algebraic fields’ to show
that manifold points can be understood as ‘structural properties of matter’,
in line with the above quote from Brown. This work has very recently been
developed further in e.g. [22]—but for a more sceptical response, see [93]. One
concern expressed by Linnemann and Salimkhani in the latter of these articles
is this: how does demonstrating the existence of a mapping between (i) theories
in their traditional manifold setting, and (ii) these theories formulated in terms
of algebraic fields, actually resolve Norton’s challenge? For this, one would
surely need to argue that the formulation in (ii) is metaphysically prior to the
formulation in (i)—but how would any such argument proceed?

These debates are ongoing. But what we can say, in light of the recent
writings of inter alia Pooley and Menon, is that it’s not clear whether Norton’s
charges against the dynamical approach find their mark.
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Chapter 11

Presentism and relativity

Following up the consequences of
the strange state of affairs one is
led to conclusions about the
nature of time which are very
far-reaching indeed. In short, it
seems that one obtains an
unequivocal proof for the view of
those philosophers who, like
Parmenides, Kant, and the
modern idealists, deny the
objectivity of change and consider
change as an illusion or an
appearance due to our special
mode of perception. (Gödel,
1949)

In this chapter, I’ll consider the bearing of special relativity upon certain
long-standing debates and views in the philosophy of time. In particular, I’ll
focus on presentism: the view that only the present exists. Most presentists
take it that reality is three dimensional (below, I’ll discuss heterodox presentist
views which deny this), but one can see immediately the potential problems
for such a view raised by the relativity and conventionality of simultaneity in
special relativity: if there is no objective way of identifying which events are si-
multaneous with a given event, then how can we identify the objectively present
events, and so (for the presentist) the existent events?

11.1 The philosophy of time

I’ll start by introducing three distinct but related debates in the classical phi-
losophy of time. In the next section, I’ll then discuss how positions in these
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debates interact with special relativity.

11.1.1 Static versus dynamic conceptions of time

The following intuition will be familiar to all: far-future moments become
near-future moments, which become present moments, which in turn become
near-past and far-past moments, in an endless ‘flow of time’. But is temporal
passage—becoming—truly an objective feature of reality? Here, answers fall
into one of two camps: dynamic views hold that temporal passage is fundamen-
tal, whereas static views deny this. This debate goes back to the pre-Socratics:
Heraclitus maintained that temporal passage was a fundamental feature of re-
ality, whereas Paremenedes held a static conception of time. These ancient
philosophers continue to find respective counterparts in the modern literature:
for example, Maudlin embraces a dynamic conception of time [102], whereas
Barbour’s ‘Machian relationalist’ approach to physics adheres to a static view
[4].

11.1.2 The A-series and B-series

In his (in)famous 1908 paper, ‘The Unreality of Time’, J. E. M. McTaggart
distinguishes between what he calls the A-series and the B-series [104]:

A-series: That ordering of events according to whether they are past, present,
or future.

B-series: That ordering of events according to whether they are earlier or later.

Those who maintain that the universe contains irreducible A-series (‘tensed’)
facts are known as A-theorists. Those who maintain that the universe does
not contain irreducible A-series facts, but only B-series facts, are known as
B-theorists. (One way to think about this is that A-theorists maintain that
events in spacetime have the additional, primitive tensed properties of being
past/present/future; B-theorists deny the existence of primitive tensed proper-
ties.) To connect this up with the previous debate: those who believe in a ‘mov-
ing present’—i.e., those who believe that temporal passage is fundamental—will
be A-theorists.

Question: Does the reverse of this implication hold?

11.1.3 The ontology of events

The third by-now classic debate in the philosophy of time regards the ontology
of events in spacetime: which moments really exist? There are three main
positions taken in response to this question:1

1Note, though, that these are not exhaustive: for example, one might embrace a ‘shrinking
block’ view [21]. Since such positions are neither terribly popular nor essential for my purposes,
I won’t say more about them here.
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1. The ‘block universe’ view.

2. The ‘growing block’ view.

3. Presentism.

I’ll go through each of these in turn.

The block universe view (sometimes: eternalism) holds that past, present and
future events are all equally real. Schematically, then, the view is represented in
the image above (take the spatial dimensions to run along the horizontal axis,
and the temporal dimension to run along the vertical axis).

The growing block view holds that the past and present are real, but the
future is not. Reality, then, is four-dimensional, but the four dimensional block
grows over time, as represented in the image above.
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Finally, according to (the most standard version of—again, see below) pre-
sentism, reality is three-dimensional; the past and future are unreal, as rep-
resented in the image above. In fact, there are several different varieties of
presentism (here, I follow the terminology of Dainton’s excellent discussion [26,
ch. 6]):

1. Solipsistic presentism: Nothing exists that is not present, and only one
present ever exists—this one. (A static view.)

2. Many-worlds presentism: Reality as a whole includes many momentary
presents that are not temporally related to one another, and so do not
succeed each other in any way. (A static view.)

3. Dynamic presentism: Reality takes the form of a succession of instanta-
neous (or near-instantaneous) presents; no sooner has one present come
into existence than it will depart from it, to be replaced by another.

Question: How does many-worlds presentism differ from the block uni-
verse view?

Question: Can Barbour’s ‘shape dynamics’ be classified as a many-
worlds presentist view?

11.1.4 Connections between the debates

It’s natural to group, e.g., presentism with dynamic conceptions of time with an
A-series, and eternalism with static conceptions of time with a B-series. How-
ever, one should be wary of thinking that these connections are stronger than
they in fact are. They need not necessarily hold—for example, as pointed out
above, solipsistic and many-worlds presentism are presentist static views; more-
over, eternalism is compatible with events having auxiliary A-series properties.
(Consider e.g. the ‘moving spotlight view’, according to which reality is four di-
mensional, but events in spacetime have primitive tensed properties, and these
properties change—specifically with respect to which events are ‘illuminated’ as
the present events.)

Thus, in my view, the most appropriate strategy is to regard the above three
debates as being distinct, albeit very closely related. That said, there’s a sense
in which the A-theory/B-theory debate is more fundamental than the other
two, for commitments there (specifically: a commitment to the A-series) is (so
it seems) required if one is to endorse certain views in the other two debates
(e.g., a dynamic conception of time, and presentism).

11.2 Presentism and relativity

In order to understand better the challenges presented to presentism by rela-
tivity, it’s helpful to rehearse why the same issues (supposedly) do not arise
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in the context of Newtonian mechanics. Newtonian mechanics looks to be an
hospitable environment for presentism, because:

1. Time in Newtonian mechanics is absolute. (In either Newtonian or Galilean
spacetime.)

2. Simultaneity in Newtonian mechanics is also absolute. (In either Newto-
nian or Galilean spacetime.)

So there exists sufficient spacetime structure to identify the class of spacetime
points which might qualify as ‘the present’.2

By contrast to the (standard line on the) Newtonian case, special relativity
does not appear to be an hospitable environment for presentism, because:

1. The relativity of simultaneity tells us that how we ‘spread time through
space’ depends upon the frame from which the physics is described.

2. The conventionality of simultaneity tells that, even within a frame, there’s
no fact of the matter about the simultaneity of spatially-separated events.

Even if they do not accept the conventionality of simultaneity—see Chapter 7—
the presentist will have to contend with (1). In any case, focusing for now on the
relativity of simultaneity, Putnam constructed the following formal argument
against the possibility of presentism in special relativity [131]:

I. All events that I consider to be simultaneous with me-now are real. (Re-
member, the presentist thinks only these things are real.)

II. Some of these events involve other observers, so I should believe that these
other observers are real. Some of them are in motion relative to me.

III. There are no privileged observers, so if one of the other observers thinks
something’s real, then I should think it’s real too.

IV. Special relativity tells me that the events moving observers consider to be
simultaneous will be different from those that I think are simultaneous.

V. Therefore, some events are real that are not simultaneous with me—so
presentism is false!

By running this argument repeatedly, the presentist seems forced to concede
that all events in the four-dimensional block are real—a reductio on the view.
In light of Putnam’s argument, then, is there any way of saving presentism
within the framework of relativity theory?

2Although by far the mainstream view, it’s worth noting that the second of the above
two points has been questioned by Brown, as already mentioned (and called into question)
in footnote 2 of Chapter 7. Thus, Brown might very likely maintain that presentism faces
difficulties not only in special relativity, but also—and for the same reasons—in Newtonian
mechanics.
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11.3 Presentist fallbacks

I’ll discuss three different presentist fallbacks within the context of special rel-
ativity, following the discussion of Hinchliff [73]. These fallbacks are:

1. Introduce a privileged simultaneity slicing.

2. ‘Point presentism’.

3. ‘Cone presentism’.

Let me go through each of these in turn.

11.3.1 Privileged simultaneity slicing

The first of our three fallbacks involves designating some simultaneity surface
as being metaphysically privileged, in the sense of picking out the present—and
so existent, for the presentist—events. Clearly, this is tantamount to choosing a
preferred frame, for the designated simultaneity surface will be that associated to
some observer (idealised as a timelike trajectory), given standard synchrony (see
Chapter 7). Sometimes, this view is accordingly dubbed ‘neo-Lorentzianism’,
since the existence of a preferred frame was, of course, one of the commitments
of the ether theorists such as Lorentz (see Chapter 3 and Chapter 4). Schemat-
ically, the commitments of this view might be represented thus:

(Here, the red horizontal line represents the objective present; the vertical
worldline represents the idealised observer associated with this designation of si-
multaneous events (given standard synchrony), and the diagonal lines represent
the lightcone structure of special relativity.) Importantly, note that a privileged
simultaneity slicing is not incompatible with special relativity—although it does
involve adding extra structure which, one might argue, we have an Occamist
norm to expunge (see Chapter 5).
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Here is one way to implement this position in terms of Reichenbach’s ϵ
factors: (See Chapter 7.)

• Suppose simultaneity is not conventional, but that the correct ϵ factor
changes from frame to frame.

• Then, we can eliminate the relativity of simultaneity.

• Moreover, since simultaneity is not conventional, there is a fact about
simultaneity in each frame.

• In this way, we can introduce a privileged slicing into special relativity—
though, of course, it won’t be empirically accessible.

As already indicated above, however, the central concern with this position is
that the extra, privileged simultaneity structure is otiose, and a throwback to
Lorentz. In addition, there is a worry about observer-dependence: why did a
particular observer get lucky, in the sense that only their simultaneity slicing
picks out the objective present? Without good answers to these questions, the
position is in danger of seeming ad hoc.

11.3.2 Point presentism

Let’s turn next to point presentism. The point presentist says that only the
present exists, but the present is not a simultaneity surface, but rather a single
point. Thus, reality is in fact zero-dimensional, on this view! The major benefit
of this position is supposed to lie in the fact that it is the relativity of simul-
taneity which plays havoc with presentism—but if reality is in fact a point, one
can cease to worry about the different possible ways of spreading time through
space which are consistent with special relativity. Schematically, then, this view
might be represented as follows:
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As with the previous case, however, point presentism faces a number of
problems; here I’ll mention three which I take to be the most pressing. The
first is that it is lonely or solipsistic—it implies that anything which is spatially
separated from the privileged point does not exist! Hincliff is unmoved by
this objection, writing that it is “just a restatement of the view” [73, p. 579].
However, if other presentist (or, indeed, eternalist) views do not have this radical
consequence, one might well regard that as being ceteris paribus a mark in their
favour. The second concern is closely related: not only is the view lonely, but
it is in fact (the charge might run) empirically incoherent, for it denies the
existence of the (spatially extended!) measuring devices which are used in order
to confirm the very theory itself! (For more on the issue of empirical incoherence,
see [5, 78].)

The third concern is that—perhaps contrary to initial appearances—the view
does not evade the issue of observer-dependence after all, for there remains the
question: upon whose worldline does the privileged point lie? One version of
point presentism might appeal to the idea of there being multiple, observer-
relative point presents in order to avoid this concern; the challenge, however,
remains to make good metaphysical sense out of such proposals.3 Perhaps the
fragmentalist views discussed in Chapter 8 can help here—but again, the devil
is in the details of how exactly these issues are worked out.

Exercise: Develop and defend what you take to be the most plausible
point presentist view.

11.3.3 Cone presentism

The final presentist fallback which I’ll discuss here is cone presentism. The idea
underlying this position is to use the structures that are held to be invariant by
special relativity—namely, the lightcone structure—and identify the objectively
present events with (at least some of) such structures. Specifically, cone pre-
sentists identify the surface of a light cone as picking out the objective present,
as represented thus:

3For more on the idea of ‘personal A-series’, see [25]. Maudlin also discusses there idea of
there being multiple A-series in [102].
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On the merits of cone presentism, Hinchliff writes:

One virtue of [cone presentism] is that it captures the idea that
what is present is what I am seeing now. A second virtue is that it
identifies the present with an invariant feature of the special theory.
A third virtue is that we are not alone. [73, p. 500]

I don’t dispute the second and the third of these points. But it’s worth flagging
that the first of these consequences, although intuitive, is certainly highly revi-
sionary: since high school physics, we’re used to the idea that the light reaching
us now depicts the state of the universe so-and-so many (millions of) light years
ago. On cone presentism, this is false: the time of emission just is the time
of reception: the astrophysical events which I’m observing are happening right
now !

I’ll very shortly return to an assessment of cone presentism. Before doing
so, however, I want to draw attention to the fact that there are two distinct
sub-views within cone presentism, depending upon whether one takes it that
the present should be identified as4

1. the ‘past’ lightcone (‘backward-cone presentism’), or

2. the entire lightcone (‘double-cone presentism’).

(Technical aside: backward-cone presentism presupposes that the manifold be
temporally orientable, such that a future/past lobe of the lightcone can be
identified consistently across spacetime.5) Which one of these is to be preferred?
Here’s Savitt on backward-cone presentism:

4Again, these positions aren’t exhaustive: one could, in principle, be a ‘forward-cone pre-
sentist’. To my knowledge, nobody has endorsed such a position—but perhaps it shares some
of the virtues of the ‘shrinking block’ view which I mentioned in footnote 1.

5For further recent philosophical discussion regard the orientability of spacetime and its
testability, see [11].
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[Backward-cone presentism] seems to rest on the idea that events on
the past lightcone of E have a lightlike separation from E and hence
the spacetime interval from E to (say) E′ (on the past lightcone of E)
is 0. But then it seems arbitrary to exclude from the present events
on the future lightcone of E, which are also light like separated from
E. [149, p. 6]

And here’s Hinchliff’s response to this charge of arbitrariness:

The surface of E’s past lightcone is the set of events from which a
light signal or ray could be sent to E. The surface of E’s future
lightcone is the set of events to which a light signal or ray could
be sent from E. The difference between the cones is due to the
asymmetry built into the nature of a light ray or signal. And that
asymmetry arises from the asymmetric nature of causation itself,
which is a non-arbitrary foundation on which to rest the distinction
between cone and double-cone presentism. [73, p. 582]

Question: Is Hinchliff introducing extra structure in the form of a prim-
itive causal relation here? (Cf. Chapter 7.)

Note also that one needn’t appeal to causal notions à la Hinchliff here—one
could appeal to a primitive spacetime orientation (cf. [102]), or to some other
means of identifying an asymmetry in time (e.g., an entropic gradient).6

As before, there are various worries regarding cone presentism. First, again,
there is a worry about with respect to whose worldline the present is meant to
be defined—in the absence of a response to this, the view still appears to be
observer-relative in a way which renders it ad hoc. Second, as already indicated
to some extent in the foregoing, radiation is currently reaching us from the
cosmological decoupling period—does that mean we’re simultaneous with the
‘early’ universe? (Note that this is only a worry for the double-cone presentist—
but even here, one anticipates that Hinchliff will respond that this is not an
argument against the view.)

11.4 Presentism and cosmology

So far, we’ve seen that while there are attempts to save presentism from con-
cerns regarding the relativity/conventionality of simultaneity in special relativ-
ity, none of these responses are problem-free. Does anything change when we
move from special relativity to the general theory? (Again, for background on
general relativity, see Chapter 12.) Some authors, e.g. Swinburne [155], have
suggested that the prospects for presentism in fact improve when one moves
from special relativity to general relativity. Here’s the reasoning. Minkowski

6For an assessment of these different possible approaches to grounding an arrow of time,
see [164].
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spacetime is just one solution of the Einstein equations of general relativity (the
flat spacetime solution). Another solution is the Friedman-Lemâıtre-Robertson-
Walker (FLRW) cosmological (‘big bang’) solution—and it’s this spacetime
which cosmologists use to model our universe. Unlike Minkowski spacetime,
there is a preferred choice of temporal coordinate (i.e., foliation; i.e., frame) in
which (the coordinate description of) FLRW spacetime simplifies. Thus (the
thought goes), there is a preferred frame, once one moves to general relativity.
This gives a notion of cosmic simultaneity.7

Be the above as it may, one can identify are a number of concerns about this
strategy (see [139] for further discussion). Two notable such concerns are:

1. FLRW spacetime is an idealisation: it assumes perfect homogeneity and
isotropy. The actual universe would be better represented by a ‘perturbed
FLRW’ spacetime. Can cosmic simultaneity be defined in such space-
times? (As far as I know, this is as-yet an open question—albeit one
which should be tractible to the willing.)

2. There are other solutions of general relativity in which the spacetime can-
not be foliated into hypersurfaces at all—e.g., Gödel’s famous time travel
solution. There are no good prospects for presentism there.8 But since
metaphysics cannot be contingent (or so the argument now countenanced
here goes), there are no prospects for presentism in the actual world, ei-
ther. (This is Gödel’s ‘modal argument’—see [66].)

These debates are ongoing. What we can say, though, is that there are prima
facie serious problems for presentism in special relativity, which the proponent
of the view must address; the extent to which these issues carry over to general
relativity remains to be settled.

11.5 The growing block and relativity

In this final section of the chapter, I want to move away from presentism, and
consider the growing block theory: does this fare any better in the context of
relativistic physics? The first thing to say is that the growing block view is
necessarily (definitionally!) a dynamic A-theoretic view: events have primitive
tensed properties, which change, and as they change, more events get added
to the total stock of existent events. Given its status as a dynamic theory of
time, the growing block theory faces problems associated with any such theory,
such as: “How fast is the block growing? With respect to what is the block
growing—some additional dimension?”, etc. [36, p. 138]

In addition to these problems, insofar as the growing block theory presup-
poses an objective past/present/future distinction, it also inherits all of the

7For recent elegant discussions of such arguments in the context of presentism and the
A-theory, see [91].

8Nota bene: such a claim ignores point presentism. (But why should the point presentist
concern themselves with different solutions when in every case they take the reality represented
by such solutions to be a single unstructured point?)
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problems for presentism which we have already discussed. While the growing
block seems to have better prospects in Newtonian theories than in special rela-
tivity, due to the absolute simultaneity structure,9 one again faces the following
challenge in special relativity: how to define the hypersurfaces into which the
block is growing?

Thus, the quick verdict on the growing block theory is that its prospects are
at least as bad as those for presentism in the relativistic context. That said,
it might be that the growing block views finds a more natural home in certain
approaches to quantum gravity. Here’s Sorkin on one such approach, known as
causal set theory :

Think of the causal set as an idealized growing tree (in the botanical
sense, not the combinatorial one). Such a tree grows at the tips of
its many branches, and these sites of growth are independent of one
another. Perhaps a cluster of two leaves springs up at the tip of one
branch (event A) and at the same moment a single leaf unfolds itself
at the tip of a second branch (event B). To a good approximation,
the words “at the same moment” make sense for real trees, but we
know that they are not strictly accurate, because events A and B
occur at different locations and distant simultaneity lacks objective
meaning. If the tree were broad enough and the growth fast enough,
we really could not say whether event A preceded or followed event
B. [152, p. 4]

To go into causal set theory and the philosophy of time any further here would
take me too far afield—but see [173] for further discussion.

9Although note again Brown’s views on simultaneity in Newtonian physics—see footnote
2 in Chapter 7.



Chapter 12

Acceleration and
gravitational redshift

Gravity and inertia are the same
in their very essence. (Einstein,
1918)

One sometimes hears that it is not possible to model accelerating systems
in special relativity, and that to do so one must move to the framework of
general relativity.1 As already mentioned towards the end of Chapter 9, any
such claim is badly confused. For consider e.g. Bell’s accelerating rockets—
what was incoherent in this setup? (Answer: nothing!) Or: what is wrong with
Rindler frames in special relativity? (Answer: again, nothing!) Indeed, such a
claim should be especially perplexing, given that we’ve already seen (in Chapters
5 and 6) that special relativity retains a standard of absolute acceleration!

My main purpose in this chapter is to present and resolve one significant
confusion involving acceleration in relativity theory—viz., that regarding grav-
itational redshift. The claim to be tacked has it that to account for the results
of gravitational redshift experiments mandates recourse to general relativity—
but, again, my response is going to be that consideration of accelerations in
special relativity (plus one other input, to be discussed below) suffices. Before
getting into this, though, I must say something on what’s known as Einstein’s
equivalence principle.

12.1 The Einstein equivalence principle

In 1907, when thinking about someone unfortunate enough to be falling off
a roof, Einstein had “the happiest thought of my life” (“glücklichste Gedanke

1See [63] for discussion.
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meines Lebens”) [51]. He realised that in the immediate vicinity of such an ob-
server, gravity would seem to disappear. Of course, this would have been known
since Newton, but Einstein’s revolutionary insight was that the gravitation field
itself “has only a relative existence” [51]. Here’s what he wrote:

[F]or an observer falling freely from the roof of a house there exists—
at least in his immediate surroundings—no gravitational field ... The
observer therefore has the right to interpret his state as “at rest”.
[117, p. 178]

The point is that, for Einstein after 1907, gravitational effects and inertial effects
(i.e., perceived accelerative effects which arise in a non-inertial frame, as seen in
Chapters 1 and 6) are not just empirically equivalent, but conceptually identical.
As Einstein put it in 1918 in the epigraph to this chapter, gravity and inertial
are in essence the same thing. And as was nicely summarised by Pauli:

In Einstein’s theory, gravitation is just as much a fictitious force as
the coriolis and centrifugal forces are in Newton’s theory. (However,
it is equally justified to say that in Einstein’s theory neither of these
two forces is a fictitious force.) [118, p. 709]

So, given Einstein’s equivalence principle, gravitational effects just are in-
ertial effects. If one is in a freely-falling frame in which one doesn’t feel any
gravitational effects, that’s because there literally are no gravitational effects.

Why was it so important to Einstein that he make this move? As Lehmkuhl
writes in his excellent recent survey article on on the equivalence principle,

Einstein himself stressed again and again the heuristic importance of
the [Einstein equivalence principle] in his search for what came to be
[general relativity]. This role of the principle is intimately connected
to Einstein thinking of it as a relativity principle. He clearly saw
it as extending the special principle of relativity, that states that
all inertial motions, including rest, are empirically indistinguishable
and thus equivalent in an important sense. [90, p. 7]

For Einstein, seeing the presence of gravitational fields as a coordinate-
dependent state of affairs was not a price to be paid but a major
achievement of the theory. [90, pp. 13-14]

For Einstein, the idea was that by writing one’s physics in arbitrary coordinate
systems, and subsequently identifying what were previously regarded as inertial
effect terms in one’s equations as terms pertaining to the gravitational field,
one has thereby constructed a theory which is generally covariant—that is, a
theory which (recall from Chapter 6) holds in all coordinate systems. One has
thus liberated physics from its dependence upon the inertial system. It was this
which Einstein regarded as being a major conceptual leap forward in his quest
for the general theory of relativity.
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12.2 Inertial frames, reprise

Suppose, then, that one embraces the Einstein equivalence principle (henceforth
EEP). What are the consequences for one’s understanding of the nature of
inertial frames? Recall Knox’s functional definition of inertial frames (presented
explicitly in Chapter 1): they are those coordinate systems in which the laws
of physics take their simplest form, and in which force-free bodies move with
uniform velocities. Given EEP, the frames which qualify as inertial are not (as
we might previously have thought) the frames stapled to the surface of the Earth
(say, the rest frame of my office), for in such frames there are gravitational effects
(if I drop my cup, it is accelerated to the floor by gravity). Rather, the inertial
frames are the freely falling frames, in which (on the assumption of EEP!) it is
not simply that inertial effects cancel the effects of the gravitational field (as on
the Newtonian, pre-EEP account2), but that there just is no gravitational field
in such frames. Thus, given EEP, it is the freely falling frames which satisfy
Knox’s functional definition of the inertial frames—it is these frames which
qualify as inertial in any theory which embraces the EEP, including general
relativity.

This point will be crucial to securing a proper understanding of the reasons
underlying the results of gravitational redshift experiments. Before I explain
this, however, there is one further piece of conceptual apparatus to introduce:
what’s known as the strong equivalence principle.

12.3 The strong equivalence principle

Unlike EEP, the strong equivalence principle (henceforth SEP) is not (at least
in the way in which I’ll understand it in this chapter) an heuristic tool used in
the construction of general relativity. Rather, it’s a principle which holds in the
completed theory of general relativity.3 To explain SEP, then, I first need to
say a little more about the structure of general relativity.

Let’s begin with models of the theory.4 In general relativity, spacetime is
represented not by ⟨M,ηab⟩ (as in special relativity), but rather by ⟨M, gab⟩.
Like the Minkowski metric ηab, the metric field gab of general relativity encodes
spatiotemporal distances and (via its compatible derivative operator) a notion

2See [140] for a discussion of Newtonian equivalence principles, which uses the same ter-
minology as this chapter.

3It’s worth flagging that the status of the equivalence principles in the completed theory
of general relativity—especially that of SEP—is controversial. For example, Synge declared
infamously in 1960 that

The Principle of Equivalence performed the essential office of midwife at the
birth of general relativity, but ... I suggest that the midwife be now buried with
appropriate honours ... [156, pp. ix-x]

I don’t accept this understanding of the equivalence principle in general relativity, and will
proceed accordingly.

4I’ll present things in the language of the Riemannian approach. It’s a bit harder to present
general relativity in the language of the Kleinian approach, as solutions of the theory in general
have no global symmetries. For relevant discussion, see [165].
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of straightness of paths through spacetime. The central differences between ηab
and gab are these. First, although one can find a coordinate system such that
globally ηab takes the form diag(−1, 1, 1, 1), one can only do this locally—i.e., in
the neighbourhood of each point p ∈ M—in the case of gab. Second, gab is
dynamical, obeying the Einstein equation,5

Gab(gab) = 8πTab(gab,Φ). (12.1)

This says that the spacetime curvature associated with gab is proportional to
the amount of matter (energy-momentum) content Tab in the relevant region.

Although visually the above idea might be clear enough, it’s worth giving
the technical definition of curvature (for further details, see e.g. [100, ch. 1]).
Take two vectors, initially at the same point p ∈ M and pointing in the same
direction. Transport these vectors along two different paths to some other point
q ∈ M .6 If the vectors cease to point in the same direction, then by definition the
spacetime is curved. The point is nicely illustrated on the surface of the Earth:
consider two vectors initially at the equator; transport one around the equator
by some amount, then transport both vectors to the North pole. Generically,
the vectors will no longer point in the same direction—this, mathematically, is
why the surface of the Earth is curved.7

Mathematically, the extent to which vectors cease to point in the same direc-
tion when transported as above is quantified by an object known as the Riemann
tensor, written Ra

bcd. The Einstein tensor Gab, which appears on the left hand
side of (12.1), is related to the Riemann tensor by

Gab := Rc
acb −

1

2
gabg

deRc
dce. (12.2)

We needn’t get into the weeds here any further—for my purposes, it suffices to
note that Gab also expresses facts about the curvature of spacetime.

With all of this preamble in mind, let me turn now to SEP. The idea un-
derlying this principle is that, locally (i.e., in sufficiently small neighbourhoods
of any given p ∈ M), the curved spacetime of general relativity (and its asso-
ciated physics) should approximate the flat spacetime of special relativity (and
its associated physics). Here’s how Einstein put the idea:

[L]et us now introduce the following premise: For infinitely small
four-dimensional regions the theory of relativity in the restricted
sense [i.e., special relativity] holds, if the coordinates are suitably
chosen. [46, p. 777]

5Here’s a fussy point: if one is using abstract notation, as in (12.1), one has a single equa-
tion, hence ‘Einstein equation’. But in coordinate indices, one has a set of partial differential
equations, hence ‘Einstein equations’.

6Specifically, parallel transport the vectors. I won’t go into the definition here; see e.g. [163]
for the details.

7There are differences between ‘intrinsic’ and ‘extrinsic’ curvature, but I won’t go into
them here—see e.g. [67].
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Intuitions underlying SEP can be pumped by the following obvious analogy: the
surface of the Earth, in spite of being curved (as discussed above), is effectively
flat in sufficiently small regions. Making SEP precise, however, is a delicate
and ongoing business—see inter alia [14, 62, 85, 138, 168] for further discussion.

Although in one sense the conceptual status of EEP versus SEP is very
different—as we’ve seen, the former is an heuristic device used in the construc-
tion of a geometrised theory of gravity such as general relativity (cf. [140]), while
the latter is a principle taken to obtain within such a theory, once completed—
it’s helpful, following Lehmkuhl, to see both principles as ‘bridges’ with other
physical theories:

[O]ne might look at the EEP as a bridge principle, a principle form-
ing a bridge from GR to Newtonian theory, a bridge that allows us
to see the shadows of Newtonian theory in GR. But this bridge is not
just about accommodating our “physical habits of thinking” in al-
lowing us to keep operating with the terms ‘gravity’ and ‘inertia’, it
also implies that a curvature-free spacetime is just as ‘gravitational’
as a strongly curved spacetime. [90, p. 25]

While the Einstein equivalence principle can be seen as a bridge
from GR to Newtonian theory, the strong equivalence principle can
be seen as a bridge from GR to SR. [90, p. 25]

12.4 Gravitational redshift

Finally, with all of this background in hand, we can turn our attention to experi-
ments designed to detect gravitational redshift, such as the famous Pound-Rebka
experiment of 1959 (discussed in detail below) [130]: do the results of these ex-
periments provide—as is often claimed—direct evidence for general relativity,
and in particular for the curved spacetime structure of that theory? (Such
claims are common in the literature—see e.g. [20, 70].) I’ll cast doubt on this
claim: special relativity in accelerating frames, together with the equivalence
principle(s), should suffice.8

Before going further, we should be clear about the nature of gravitational
redshift. The phenomenon amounts to this: clocks situated deeper in a gravita-
tional well tick more slowly than those further outside of the well. Equivalently:
the wavelength of a photon is longer when observed from further out of a grav-
itational well. Here, the ‘clock’ is the frequency of the photon and a lower
frequency is the same as a longer (‘redder’) wavelength.

Gravitational redshift has been experimentally confirmed—most famously by
Pound and Rebka in the above-mentioned experiment. Such experiments made
use of the ‘Mössbauer effect’: γ-rays in a certain narrow frequency range are
emitted and absorbed by two solid samples containing radioactive Fe57. When
two such samples are placed vertically with a height difference h, the photons
emitted from one sample will no longer be absorbed by the other. But if the

8This argument is presented in greater depth in [17].
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absorber is put into a certain degree of vertical motion relative to the source,
the resulting Doppler effect can restore absorption.

Contrary to the orthodoxy, here’s how an explanation of the results of
such experiments based upon only special relativity and the equivalence prin-
ciple(s) would work. First, SEP states that the local neighbourhood of a
gravitational redshift experiment should look approximately special relativis-
tic (i.e., like Minkowski spacetime).9 Second, by EEP, the experimental setup
on the surface of the Earth is in an accelerating frame of reference (which, re-
call, is a perfectly legitimate notion in special relativity). So considering this
setup in an accelerating frame in special relativity should allow us to derive the
correct results—and indeed we do! Quantitatively, we find

∆tB ≃
(
1− gh

c2

)
∆tA, (12.3)

where ∆tA is the coordinate interval between successive electromagnetic wave
crests being emitted by A, and ∆tB is similarly defined for reception at the
lower sample B. This is in agreement with the experimental results!10

I suggest, then, that the moral is this. The results of a single gravitational
redshift experiment of Pound-Rebka type do not provide direct evidence for
spacetime curvature, for spacetime curvature is not required to explain these
results. That said, there is a role for curvature in the results of redshift experi-
ments, albeit of a more subtle kind. We can explain the results of a gravitational
redshift experiment using the fact that the inertial frames are the freely falling
frames, as captured by EEP. But now consider multiple such experiments, at
different points on the Earth’s surface. Doesn’t this mean have certain inertial
frames moving non-inertially with respect to one another? The solution (fa-
miliar from the completed theory of general relativity) is to recognise that the
inertial frames are to be re-conceptualised as being local, not global. Ultimately,
this motivates the introduction of a curved ‘affine connection’—this is the true
place for spacetime curvature in discussions of gravitational redshift.11

9Note that SEP is required only if one is working within the framework of the completed
theory of general relativity—otherwise it too is redundant, and merely special relativity along-
side EEP will suffice.

10Note also that these calculations make certain assumptions—e.g., the clock hypothesis
(see Chapter 9).

11To present all the mathematical details here would take me too far afield, but see [17] for
further discussion on this point.
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