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» The kinematically possible models (KPMs) of a given
theory are picked out by tuples (M, &4, ..., ®,), with
1. a manifold, M;
2. fieldson M, &4,...,d,.
» The dynamically possible models (DPMs) of a given theory
are those KPMs in which the ®; satisfy certain dynamical
equations.
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Dynamical versus fixed fields

» Dynamical fields are not fixed identically in all KPMs, and
may have their own associated dynamical equations.
» E.g. ga in GR.
» Fixed fields are fixed identically in all KPMs, and do not
have their own associated dynamical equations.
» E.g.na in SR.
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SR1:
» KPMs: (M, 1z, ¥).
» DPMs picked out by 1,,V2V?p = 0.
» nap fixed identically in all KPMs.

SR2:
» KPMs: (M, gap, ©).
» DPMs picked out by g.,V2VPp = 0 and R%, ., = 0.
» Flatness of g, fixed dynamically by R?,_, = 0.

GR1:
> KPMs: <M7 Gab, QO>
» DPMs picked out by g.,V2VPp = 0 and Gap = 87 Tap.
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Generalising the relativity principle

» One of Einstein’s motivations in constructing general
relativity was (as the name suggests!) to generalise the
relativity principle: the laws of physics should take the
same form not just in the inertial frames of reference, but in
all frames of reference.

» In this way, the need to anchor one’s physics to
the—somewhat etheriall—inertial frames would be
eliminated.

Definition

(General covariance) A formulation of a theory is generally
covariant iff the equations expressing its laws are written in a
form that holds with respect to all members of a set of
coordinate systems that are related by smooth but otherwise
arbitrary transformations.
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In 1913, Einstein and Grossmann developed a theory with
all the essential components of general relativity.

However, between 1913 and 1915, Einstein ‘fell into the
hole’: he rejected all generally covariant theories, in light of
the radical indeterminism which seemed to arise in light of
the hole argument.

Einstein would then convince himself, via his ‘point
coincidence argument’, that the hole argument was not
problematic; he thus returned to general covariance and
finalised general relativity.

The hole argument was, more or less, lost to history until it
was revived in the latter half of the 20th Century by
philosophers of physics.
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Things did not stay problem-free for general covariance for
very long.

In 1917, Kretschmann argued to Einstein that any theory
can be written in a generally covariant form.

By means of a purely mathematical reformulation of
the equations representing the theory, and with, at
most, mathematical complications connected with that
reformulation, any physical theory can be brought
info agreement with any, arbitrary relativity postulate,
even the most general one, and this without modifying
any of its content that can be tested by observation.
(Kretschmann 1917, trans. Norton 1993, p. 818)



Modern endorsements

The Kretschmann point has become orthodoxy. For example, in
1983, Friedman wrote:

the principle of general covariance has no physi-
cal content whatever: it specifies no particular physical
theory; rather it merely expresses our commitment to
a certain style of formulating physical theories. (Fried-
man 1983, p. 55)



Modern endorsements

The Kretschmann point has become orthodoxy. For example, in
1983, Friedman wrote:

the principle of general covariance has no physi-
cal content whatever: it specifies no particular physical
theory; rather it merely expresses our commitment to
a certain style of formulating physical theories. (Fried-
man 1983, p. 55)

There are two different ways in which the Kretschmann point
can made, which I'll now go over.
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The first way of making the Kretschmann point proceeds as
follows:

1. Take the laws of some physical theory, written in a
coordinate system.

2. Transform those laws into an arbitrary coordinate system.
3. The resulting equations might end up being more complex,
but by construction they hold in all coordinate systems!

4. So this is the generally covariant version of the theory
under consideration.



Example: Klein-Gordon equation

First, we’'ll write the Klein-Gordon equation (a wave equation) in
index notation. (This is just a presentational reformulation.)
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Example: Klein-Gordon equation

Then, we'll transform the Klein-Gordon equation to an arbitrary
coordinate system:
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Example: Klein-Gordon equation

Then, we'll transform the Klein-Gordon equation to an arbitrary
coordinate system:

N0 0" =0
o0,
T ox, ox, ¥
B oxy 0 <6xl, o) >:0
M DX, DXy \ Oy DXy ”

Nuv

8Xu’ 82XZ,/ 0 ox,, 0 0 —0
Xy \ OX, 0%y X,y YT x, Xy OX, )=
Pxy Xy OX,yr

n’“’ax,ﬁx,,a P 8XM X,

Mo = 0.

This is a generally covariant version of our theory! Note the
extra term in the non-inertial frame (cf. fictitious forces).
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1. Argue that all theories can be written in the
coordinate-independent language of differential geometry.
(Question: Why think this? Is it obvious? See e.g. (Norton
1993) for discussion.)

2. Note that a fortiori the equations of the theory hold in all
coordinate systems.

3. So this is the generally covariant version of the theory
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Examples

» Coordinate-independent presentations of a special
relativistic Klein-Gordon theory are SR1 and SR2.

» We saw a coordinate independent presentation of
Newtonian mechanics last week:

> KPMs: (M, ta, h?. Y, p, ©).
» DPMs: h?V, Ve = 47p.



The upshot

It's not at all obvious that general covariance affords an
adequate means of distinguishing general relativity from other
spacetime theories.
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Diffeomorphism invariance

» Often, general covariance is conflated with diffeomorphism
invariance.
» Pooley (2017) provides different definitions of the two

notions, such that—perhaps!—it is the latter notion which
distinguishes general relativity from other theories.

Definition

(Diffeomorphism invariance) A theory T is diffeomorphism
invariant iff, if (M, Fy,...,Fn,Dy,...,Dm) is a DPM of T (where
the F; are fixed fields and the D; are dynamical fields), then so
is (M,Fy,...,Fn,d*Dy,...,d*Dp), for all d € Diff(M).
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Assessing diffeomorphism invariance

» General relativistic theories such as GR1 are
diffeomorphism invariant.

» SR1 fails to be diffeomorphism invariant, but SR2 s
diffeomorphism invariant.

» Therefore, diffeomorphism invariance does not serve to
distinguish special from general relativistic theories.
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Background independence

Thought: If what distinguishes general relativistic theories isn’t
their general covariance, and it isn’t their diffeomorphism
invariance, it must be some other property. We’'ll label this
background independence, as a placeholder.

But what is background independence?
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Absolute objects

Anderson (1967) and Friedman (1983) both proposed that the
background independence of general relativity consists in its
lacking ‘absolute objects’. They offered slightly different
definitions of the notion; we’ll use the following (which is closer
to Friedman’s):

Definition

(Absolute object) A geometrical object the same (up to
isomorphism) in all DPMs of a theory.

Definition

(Background independence, absolute objects) A theory is
background independent iff it has no absolute objects in its
formulation.
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Problems for the absolute objects proposal

There are three kinds of problem case for the absolute object
programme:

1. Cases in which structure that intuitively should count as
background is not classified as absolute.

2. Cases in which structure that intuitively should not count
as background is classified as absolute.

3. The observation that general relativity itself seems to have
absolute objects.
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Type | problems: Torretti constant curvature

» Torretti considers a modified Newtonian theory, in which
each model’s spatial metric has constant curvature, but
different models have different values of that curvature.

» Because the spatial metric in every model has constant
curvature, “such a theory has something rather like an
absolute object in it” (Pitts 2006, p. 363).

» Nevertheless, the failure of the metrics to be locally
diffeomorphically equivalent for distinct curvature values
entails that the metric tensor does not satisfy Anderson’s
definition of an absolute object.
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» Pitts (2006, pp. 16-17) argues that Torretti’s example does
not succeed, for if one decomposes the spatial metric into
a conformal spatial metric density and a scalar density,
then the former is an absolute object.

» More generally, Torretti’s intuition about background
structure would seem to over-generate, for almost all
theories have some models in which a given piece of
structure does not vary with respect to some given
(possibly temporal) parameter. (Consider, e.g., a3 + 1
decomposition of general relativity with constant curvature
of the induced metric on the spatial slices.)
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field is coupled to matter characterised only by a 4-velocity
field U2 and a mass density.



Type Il problems: Jones-Geroch dust

» Consider a general relativistic theory in which the metric
field is coupled to matter characterised only by a 4-velocity
field U2 and a mass density.

» Then, as Friedman states, “since any two timelike,
nowhere-vanishing vector fields defined on a relativistic
space-time are d-equivalent, it follows that any such vector
field counts as an absolute object ... and this is surely
counter-intuitive” (Friedman 1983, p. 59).
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In GR, we can always decompose the metric as

Guv = @;wv _g2/n7

where g, is a conformal metric density, and \/—g is the square
root of the (negative of the) determinant of the metric.

GR has an absolute object! This absolute object [\/—g]
is a scalar density of nonzero weight, because every
neighbourhood in every model spacetime admits coor-
dinates (at least locally) in which the component of the
scalar density has a value of —1. (Pitts 2006, p. 366)

In any neighbourhood of the manifold in any model of GR, one
can find a coordinate system such that the object \/—g takes
the value —1. Thus, this is a geometrical object which is the
same (up to isomorphism) in all DPMs of the theory.
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Variational principles

Pooley (2017) proposes a different definition of background
independence, in terms of variational principles:

Definition

(Background independence, variational) A theory is
background independent iff its solution space is determined by
a generally-covariant action, (i) all of whose dependent
variables are subject to Hamilton’s principle, and (ii) all of
whose dependent variables represent physical fields.



Assessing the variational principle definition
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Assessing the variational principle definition

» General relativity satisfies this definition: the field
equations can be derived from the Einstein-Hilbert action:

_ ] 4
SEH_"GT[‘/N,dX_gR

» SR1 violates the definition: 7, is not subject to Hamilton’s
principle.
» SR2...7?
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Rosen action for SR2:

Sspe = / d*xv—g (@adeRabcd + QabVaSOVb@)

» All dependent variables subject to Hamilton’s principle.

» But SR2 still not background independent, if ©3b¢d
regarded as ‘unphysical’.
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Variational principles

Further worries:

» Parameterised versions of special relativity, written in
terms of clock fields X2. (0, = 149, X209, X°.)

» This definition assumes that every background
independent theory admits of a Lagrangian formulation.
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Belot’s account

» KPMs of a theory given by (M, Oy, ..., Op).

» ldentify geometrical structure; label by O,
e.g. (M,0C,....,0n_1).

» Geometrical degrees of freedom are degrees of freedom
needed to parameterise variation of OC across DPMs.

» Physical degrees of freedom are degrees of freedom
needed to parameterise variation of (O€, ..., O,_1) across
DPMs (modulo gauge equivalence).



Belot’s account

Definition

(Full background dependence, Belot) A field theory is fully
background dependent if it has no geometrical degrees of
freedom: every solution is assigned the same spacetime
geometry as every other solution.

Definition
(Full background independence, Belot) A field theory is fully

background independent if all of its physical degrees of
freedom correspond to geometrical degrees of freedom.
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» In SR1 and SR2, the metric field is fixed (up to
isomorphism) in all DPMs.

» So there are no geometrical degrees of freedom.
» So these theories are background dependent, for Belot.
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Belot’s account

» Prima facie, general relativity is background
independent: each configuration of the matter fields looks
to correspond to a unique configuration of the metric field
(‘geometry’), via the Einstein equations,

Gab - 87T Tab

» But: If (M, gap, Fap) is @ model of Einstein-Maxwell theory,
then so is (M, gap, * Fap). Different matter, same geometry.



Belot’s account

Another worry:



Belot’s account

Another worry:

» Consider a theory with two ‘geometrical’ fields, g; and g»,
and one non-‘geometrical’ field, ¢.



Belot’s account

Another worry:

» Consider a theory with two ‘geometrical’ fields, g; and g»,
and one non-‘geometrical’ field, ¢.

> KPMs <M7 g1, 92, (P>



Belot’s account

Another worry:

» Consider a theory with two ‘geometrical’ fields, g; and g»,
and one non-‘geometrical’ field, ¢.

> KPMs <M7 g1, 92, (P>
» Let g be afixed field; let g» co-vary dynamically with .



Belot’s account

Another worry:

» Consider a theory with two ‘geometrical’ fields, g; and g»,
and one non-‘geometrical’ field, ¢.

> KPMs <M7 g1, 92, (P>
» Let g be afixed field; let g» co-vary dynamically with .

» For Belot, this theory is background independent, in spite
of it having background structure gy.



Belot’s account

Another worry:

» Consider a theory with two ‘geometrical’ fields, g; and g»,
and one non-‘geometrical’ field, ¢.

> KPMs <M7 g1, 92, (P>
» Let g be afixed field; let g» co-vary dynamically with .

» For Belot, this theory is background independent, in spite
of it having background structure gy.

Proposed fix: Each geometrical field must differ between each
non-gauge-equivalent model.
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Fixed fields

Definition
(Background independence, fixed fields) A theory is

background independent iff it has no formulation which features
fixed fields.



Fixed fields

» Doesn’t this render SR2 background independent?



Fixed fields

» Doesn’t this render SR2 background independent?
» Not if we say this is another formulation of SR1:



Fixed fields

» Doesn’t this render SR2 background independent?
» Not if we say this is another formulation of SR1:

Definition
(Equivalent theory formulations) Two theories, T, and T, are
equivalent formulations of the same theory when:
1. KPMs of Ty and T, involve the same types of geometric
object.
2. DPMs of T1 and T are isomorphic, up to classes of
diffeomorphism-related models.



Fixed fields

» Doesn’t this render SR2 background independent?
» Not if we say this is another formulation of SR1:

Definition
(Equivalent theory formulations) Two theories, T, and T, are
equivalent formulations of the same theory when:
1. KPMs of Ty and T, involve the same types of geometric
object.
2. DPMs of T1 and T are isomorphic, up to classes of
diffeomorphism-related models.

(One could, alternatively, appeal to one of the other notions of
theoretical equivalence presented in (Weatherall 2019ab).)



Fixed fields

» Doesn’t this render SR2 background independent?
» Not if we say this is another formulation of SR1:

Definition
(Equivalent theory formulations) Two theories, T, and T, are
equivalent formulations of the same theory when:

1. KPMs of Ty and T, involve the same types of geometric
object.

2. DPMs of T1 and T are isomorphic, up to classes of
diffeomorphism-related models.

(One could, alternatively, appeal to one of the other notions of
theoretical equivalence presented in (Weatherall 2019ab).)

Potential problem: how do we know that the theory in question
has no formulation featuring fixed fields?
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Absolute fields

Definition
(Absolute field) A geometrical object specified in the KPMs of

a theory, which is fixed (up to isomorphism) in all DPMs of that
theory.

Definition
(Background independence, absolute fields) A theory is
background independent iff it has no absolute fields.
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Assessing absolute fields

» The idea would be that e.g. \/—g in GR doesn’t qualify as
an absolute field, because it’s not directly written in the
KPMs of the theory.

» On the other hand, n,, in SR1, and g, in SR2, do qualify
as absolute fields.

» Worry: Doesn’t this make background independence too
dependent upon (syntactic?) choices about the objects
which constitute the KPMs of any given theory?
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Summary

» Since its inception, physicists and philosophers have
debated what'’s special about general relativity.

» This began as a debate regarding ‘substantive general
covariance’, and has evolved into a debate regarding
‘background independence’.

» There are many interesting and illuminating ways of

defining background independence—although arguably
none without its problems.



Questions

1. Which of these proposals is the most promising?
2. Should we accept a plurality of definitions?

3. At what point does the task of trying to identify ‘what’s
special about GR’ become a futile one?
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