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Versions of the equivalence principle

Terminology is highly inconsistent, but Lehmkuhl (2021) gives a
nice taxonomy which I’ll adopt:

WEP1: All uncharged test bodies placed at an initial event
in spacetime and given an initial velocity follow the
same trajectories.

WEP2: For any body, the gravitational mass of that body is
equal to its inertial mass.

EEP: Gravity and inertia are the same in their very
essence (‘wesensgleich’).

SEP: Special relativity is ‘locally valid’ in general
relativity.
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The standard story on the local validity of SR in GR

General relativistic physics is special relativistic ‘for suf-
ficiently small neighbourhoods’.





Steven Weinberg (1933–2021)



Weinberg

... we formulate the equivalence principle as the statement
that at every space-time point in an arbitrary gravitational
field it is possible to choose a “locally inertial coordinate sys-
tem” such that, within a sufficiently small region of the point
in question, the laws of nature take the same form as in un-
accelerated Cartesian coordinate systems in the absence
of gravitation. There is a little vagueness here about what
we mean by “the same form as in unaccelerated Cartesian
coordinate systems,” so to avoid any possible ambiguity we
can specify that by this we mean the form given to the laws
of nature by special relativity [...] There is also a question of
how small is “sufficiently small.” Roughly speaking, we mean
that the region must be small enough so that the gravita-
tional field is sensibly constant throughout it, but we cannot
be more precise until we learn how to represent the gravita-
tional field mathematically (Weinberg 1972, p. 68)



Albert Einstein (1879–1955)



Einstein
According to the special theory of relativity the coordinates
x , y , z, t are directly measurable via clocks at rest with re-
spect to the coordinate system. Thus, the invariant ds, which
is defined via the equation ds2 = dt2 − dx2 − dy2 − dz2,
likewise corresponds to a measurement result. The general
theory of relativity rests entirely on the premise that each
infinitesimal line element of the spacetime manifold physi-
cally behaves like the four-dimensional manifold of the spe-
cial theory of relativity. Thus, there are infinitesimal coordi-
nate systems (inertial systems) with the help of which the ds
are to be defined exactly like in the special theory of relativ-
ity. The general theory of relativity stands or falls with this
interpretation of ds. It depends on the latter just as much as
Gauss’ infinitesimal geometry of surfaces depends on the
premise that an infinitesimal surface element behaves met-
rically like a flat surface element [...] . (Lehmkuhl 2021, p.
135)



Philosophical issues regarding the SEP

Recent philosophical work on the SEP has several different
threads:

1. The heuristic role of the local validity of SR in the
construction of GR. (Hetzroni & Read 2023)

2. Making precise sense of the local validity of SR in the
completed theory of GR. (Fletcher & Weatherall 2023ab;
Linnemann, Read & Teh 2024)

3. A (re)constructive project: can we recover a GR model
from privileged, ‘SR-like’ coordinates? (Barrett & Manchak
2024; Gomes et al. 2024)

Today, we’ll first look at (1), then look at (2). We won’t discuss
(3) but I mention it here for completeness/interest.
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Einstein’s 1916 review

▶ In his 1916 review of general relativity, Einstein stressed
the heuristic importance of the local validity of SR in the
development of GR.

▶ Let’s see how something like this goes, following the lead
of (Hetzroni & Read, 2023).

▶ This narrative takes inspiration from...
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John Stewart Bell (1928–1990)







Einstein’s motivations in developing GR

▶ Recall: the relativity principle says that the laws of physics
are the same for all frames of reference in uniform
translatory motion with respect to one another.

▶ A central motivation for Einstein in the development of GR
was to extend the relativity principle to frames of reference
moving arbitrarily with respect to one another.

▶ This can be seen in his identification of inertial and
gravitational effects in the EEP.
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Gameplan

▶ The game is going to be this.

▶ Begin with special relativistic physics in an inertial frame of
reference. (SEP as a heuristic.)

▶ Boost to an arbitrary frame of reference.
▶ Replace the fictitious force terms which appear in said

frame of reference with new physical fields. (An
‘passive-to-active’ transition.)

▶ Thereby, arrive at the kinematical structure of GR while
achieving general covariance.
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Warmup case

▶ The Lagrangian describing the motion of a test particle in
an inertial frame of reference in SR is:

L = ηαβ
dxα

dλ
dxβ

dλ
=: ηαβuαuβ.

▶ In arbitrary curvilinear coordinates, the same Lagrangian
takes the form

L = ωµν
dξµ

dλ
dξν

dλ
, ωµν := ηαβ

∂xα

∂ξµ
∂xβ

∂ξν
.

▶ ωµν (i) transforms like a metric tensor, (ii) reduces to ηµν in
a certain special class of frames.

▶ So now replace this ‘passive’, ‘fictitous force’-like object
with a new physical field, gµν .
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Passive-to-active bootstrap: warmup
▶ Then the Lagrangian becomes

L = gµν
dxµ

dλ
dxν

dλ
.

▶ This form guarantees that in any spacetime region which is
sufficiently small (such that changes in gµν can be
neglected), it would be possible to assign local coordinates
xµ in which the dynamics of free particles would be
described by the original Lagrangian,

L = ηαβ
dxα

dλ
dxβ

dλ
=: ηαβuαuβ.

▶ The field gµν has basic mathematical properties necessary
to be interpreted as a metric.

▶ The replacement of ηµν with gµν has achieved three goals:
1. The theory is now generally covariant.
2. It now has additional physical content.
3. The new physical content explains the non-invariance of the

original theory.
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The methodological equivalence principle

Given a non-invariant dynamical law in the sense that
its form simplifies maximally in a given preferred class
of representations but involves modified/additional ex-
pressions in arbitrary representations, construct an in-
variant law by replacing the modified/additional ex-
pressions with new dynamical fields, whose set of
possible local values is identical to that of the mod-
ified/additional expressions, and which manifest the
same representation-to-representation transformation
properties. (Hetzroni & Read 2023, pp. 15–16)



The case of field theories
▶ Consider an arbitrary curvilinear coordinate transformation

applied to the Lagrangian of a Klein-Gordon scalar field:

L =
1
2

[
ηαβ∂αϕ∂βϕ− m2ϕ2

]
=

1
2

[
ηαβ

(
∂ξµ

∂xα

∂ϕ

∂ξµ

)(
∂ξν

∂xβ

∂ϕ

∂ξν

)
− m2ϕ

]
=

1
2

[
ωµν ∂ϕ

∂ξµ
∂ϕ

∂ξν
− m2ϕ

]
,

with
ωµν := ηαβ

∂ξµ

∂xα

∂ξν

∂xβ
.

▶ Applying the Methodological Equivalence Principle by now
replacing ωµν with gµν , one obtains the Lagrangian

L =
1
2

[
gαβ∂αϕ∂βϕ− m2ϕ2

]
.

▶ Thus, one is once again led to a generally covariant action
featuring a new field gµν .
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No geometry needed at this point!

▶ The important point from a heuristic point of view is that it
is not necessary to presuppose these geometrical notions
in advance in order to construct these significant aspects
of general relativity.

▶ Whether or not to adopt a geometrical understanding of
the resulting theory is now a matter of various
considerations not related to the indispensability of a
geometrical perspective for the construction of the theory.

▶ (This accords with Bell’s warnings about “premature
philosophising about space and time” in the context of SR.)

▶ The physical content of general covariance is revealed not
as a formal requirement, but rather as a heuristic one,
which gains its significance only when applied together
with the Methodological Equivalence Principle.
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Deriving dynamics

▶ So far, we’ve used the MEP as a heuristic to obtain the
kinematics of general relativity. Obtaining the dynamics
(i.e., the EFEs) will require further reasoning.

▶ There are many ways in which one might select a suitable
dynamics, and indeed such dynamical choices might be
guided and constrained via other reasoning.
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Examples of derivations of the dynamics

▶ One example of such a path leading to the EFEs is based
on ‘Lovelock’s theorem’, which states that from a local
action which contains at most second derivatives of gµν ,
the only possible Euler-Lagrange equations are the EFEs.

▶ Alternatively, one could take an effective field theory
approach, considering all possible dynamical couplings in
a Lagrangian describing local fields, and then identifying
those terms relevant at a certain energy scale.
▶ Explicitly, one writes down an action of the form

S =

∫
d4x

√
g
(

1
16πG

R + c1R2 + c2RµνRµν + . . .+ Lmatter

)
,

before arguing that higher-order terms (i.e., those with
coefficients c1, c2, . . .) are irrelevant at low energies. In this
way, one can pick out the EFEs as the first-order result in
an infinite energy expansion.
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The story so far

▶ So far, we’ve been considering the role of the local validity
of SR in heuristics for the construction of GR, following the
lead of (Einstein 1916) and much more recently (Hetzroni
& Read 2023).

▶ Whether and how one is to make sense of the local validity
of SR in the completed theory of GR is a different
story—one to which we’ll now turn.
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A recent debate

▶ Recall that the ‘standard story’ is indeed that SR is locally
valid in the completed theory of GR.

▶ Linnemann, Read & Teh (2024), defend the standard story
from a ‘scale-relative’ perspective.

▶ On the other hand, Fletcher & Weatherall (2023a) find
claims about the local validity of SR in GR to be
problematic.
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LRT’s ‘scale-relative’ outlook

LRT claim that a ‘scale-relative’ outlook explicates the standard
story satisfactorily.



Orthonormal lab frame

▶ Relative to a base point x ′, define an orthonormal ‘lab’
frame e µ

I such that

gµνe µ
I e ν

J (x ′) = ηIJ(x ′),

where ηIJ = diag(−1,1,1,1) is the Minkowski metric.

▶ At this stage, just think of e µ
I as a change-of-basis

matrix—the point is, one can always find coordinates at
any point p ∈ M in which the metric gµν takes its simple,
‘special relativistic’, diagonal form.
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Orthonormal lab frame (′-convention)

Relative to the base point x ′, define an orthonormal ‘lab’ frame
e µ′

I such that
gµ′ν′e

µ′

I e ν′

J = ηIJ .

where ηIJ = diag(−1,1,1,1) is the Minkowski metric.



Synge’s world function

▶ Let x ′ be the base point, and x a point in its normal
neighbourhood N (i.e., the neighbourhood of x ′ in which
geodesics passing through x ′ do not intersect).

▶ Denote their unique connecting geodesic by zµ(λ) with λ
the affine parameter ranging from λ0 to λ1 such that
z(λ0) = x ′ and z(λ1) = x .

▶ The world function relative to the base point x ′ and its
neighbouring point x is defined as

σ(x , x ′) =
1
2
(λ1 − λ0)

∫ λ1

λ0

gµν(z(λ))tµtνdλ,

with tµ := dzµ

dλ tangent to the geodesic.
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Synge’s world function

The world function encodes geodesic structure in various ways.
Most importantly:

▶ The world function σ(x , x ′) is tantamount to a Lagrangian.
In combination with Hamilton’s principle, it encodes the
geodesic equations.

▶ The derivative of the world function at base point, x ′, seen
as a function of x , i.e., σa′

x ′(x) := ∇a′
σ(x , x ′) encodes

geodesic deviation structure, in the sense that it is
associated to Jacobi vector fields.
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Riemann normal coordinates

▶ Relative to the fixed base point x ′ and the tetrad e a′

I , the
world function can be used to assign coordinates to a
neighbouring point x of form

x̂ I = eI
a′σa′

(x , x ′).

▶ The Riemann normal coordinates are a down-projection of
the (coordinate-independent) bitensorial object σa′

(x , x ′).
▶ Thus, these charts bear a direct relation to the

coordinate-independent geometric structure.
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Riemann normal coordinates: expansion of the metric

Riemann normal coordinates provide an asymptotic expansion
of the metric:

gIJ = ηIJ − δ2 1
3

RILJK x̂Lx̂K + O(x3)

where RILJK := Ra′b′c′d ′e a′

I e b′

L e c′

J e d ′

K and δ := lprobing
lcurvature

, i.e. the
ratio of characteristic lengths for probing and curvature.



World-function-based expansion of the metric

Asymptotic expansion in terms of the derivative of the world
function:

gac = ηac − δ2 1
3

Ra′b′c′d ′σb′
σd ′

σa′
aσ

c′
c + O((∇σ)3).

In particular, δ is independent of the specific tetradic
down-projection and thus intrinsic to the geometric structure of
the general relativistic model under consideration.



An EFT-inspired/scale-relative perspective

▶ The expansion around Minkowski is natural from a
‘scale-relative’ point of view.
▶ Thanks to the world function, we can think of the expansion

purely geometrically.
▶ This provides a clear sense—LRT claim!—in which GR is

locally SR.



An EFT-like/scale-relative aspect is already familiar!

In the context of curved spacetime (CST), we come across this
EFT-like/scale-relative thinking in terms of an expansion
parameter δ encoding scale-relativity all the time:

Approximate Killing vectors in CST:
▶ Notion of approximate Killing and approximate Rindler

observer key to thermodynamic-‘derivation’ of GR
(Jacobson 1995)

▶ Control through δ allows for seeing that only GR (but not
higher-order corrections) has a meaningful thermodynamic
reinterpretation (Jacobson 2012).

Geometrical optics-limit in CST:
▶ The high-frequency limit for EM waves in CST involves the

idealisation of letting δ go to zero (MTW 1973, §22.5).
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Questioning the standard story

So much for the ‘standard story’ and an articulation of it via a
‘scale-relative’ perspective. Let’s turn now to scepticism about it
from Fletcher & Weatherall (2023a).



Fletcher and Weatherall

▶ Fletcher & Weatherall (2023a) have serious concerns
about the ‘standard story’ about the local validity of SR in
GR.

▶ Inter alia, they provide:
1. A proof regarding the ‘non-uniqueness’ of local flatness.
2. A rigorous scheme for cashing out (i) the closeness of two

metrics, and (ii) the closeness of some vector field to being
Killing.

▶ From (2), they show that it follows that ultimately, to first
order, every metric is approximately like every other.

▶ Together, these results seem to temper straightforward
claims about the local validity of SR in GR.
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Fletcher & Weatherall on local flatness

Theorem 1 (Local Flatness). Given any spacetime
(M,gab), any embedded curve γ : I → M therein, and
any point p ∈ γ[I], there exists, on some neighbour-
hood O containing p, a flat metric ḡab, such that on
γ[I] ∩ O, (a) gab = ḡab, and (b) ∇ = ∇̄, where ∇ and ∇̄
are the Levi-Civita derivative operators associated with
gab and ḡab, respectively.

So, this tells us that locally any (possibly curved) metric agrees
(non-canonically—see below) with some flat metric.
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Non-uniqueness of local flatness

Corollary 4. In general, for any sufficiently small neigh-
borhood of any point on the image of an embedded
curve in a spacetime, there are (infinitely) many flat
metrics with the properties described in theorem 1.

From this, F&W conclude:

It follows that while every spacetime is locally approx-
imately flat, none is canonically so, as there are many
flat metrics locally approximating any given metric at
any given point. This failure of uniqueness is obscured,
in our view, by approaches that focus on particular con-
struction procedures, or on the existence of certain co-
ordinates, because not all such flat metrics (or nor-
mal coordinates) arise from a single construction pro-
cedure.
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F&W’s scheme for approximate local flatness

Choose any smooth Riemannian metric hab on U. Physically, any
such metric can be determined by a smooth, orthonormal frame

field {
i
ua}i∈{0,...3} on U, as

∑3
i=0

i
ua

i
ub is a smooth Riemannian met-

ric. [...] We may then define, relative to hab, a norm on covariant
tensors fa1···an at a point by: [footnote suppressed]

|f | h =
∣∣∣ha1b1 · · · hanbn fa1···an fb1···bn

∣∣∣ 1/2

[...] Using this family of norms, we can define a family of distance
functions on tensors as:

dU(f , f ′; h, k) = max
j∈{0,...,k}

sup
U

∣∣∣(∇)j(f − f ′)
∣∣∣ h,

where (∇)j abbreviates “acts with j derivatives,” ∇ is the Levi-Civita
derivative operator determined by hab, and (f − f ′) abbreviates
fa1···an − f ′a1···an . What this distance function does is return the great-
est distance, relative to hab, between f and f ′ or any of their first k
derivatives, ranging over all points in U. [...]



F&W’s scheme for approximate local flatness

The case of greatest interest here will be when we use
distance functions defined in this way to measure dis-
tances between different Lorentzian metrics on U. In-
deed, let gab and ḡab, and O be as in the statement
of Theorem 1. Then it immediately follows from the
smoothness of gab and ḡab that for any hab on O and
any ϵ > 0, there exists a neighbourhood U ⊆ O such
that dU(f , f ′;h, k) < ϵ. Thus we see that not only do the
two metrics coincide at p, but they also approximate
one another, to first order, arbitrarily well in sufficiently
small neighborhoods of p.



Fletcher (2020) on approximate isometry

a local diffeomorphism ψ : U → V (of course with
U,V ⊆ M) is an (h, ϵ)-spacetime symmetry to order k
on U when dU(g, ψ∗(g);h, k) < ϵ. (Note that when ψ is
a member of a one-parameter family of local diffeomor-
phisms generated by a local Killing vector field κ, this is
equivalent to the condition that supU

∣∣Lκ∇(j)g
∣∣ h ≤ ϵ.)



Upshots from the approximation scheme

Theorem 5. Given any spacetime (M,gab), embed-
ded curve γ : I → M, point p ∈ γ[I], compact neigh-
bourhood U of p, Riemannian metric hab on U, real
ϵ > 0, spacetime (M ′,g′

ab), and point p′ ∈ M ′, there ex-
ist neighbourhoods O ∋ p and O′ ∋ p′, an embedded
curve γ′ : I′ → M ′ with p′ ∈ γ′[I′], and an (h,1, ϵ)-
isometry χ : O′ → O between (O,gab) and (O′,g′

ab)
satisfying χ ◦ γ′ = γ on I′ and χ∗(gab) = g′

ab on γ′[I′].



Upshots from the approximation scheme

If we call any spacetime fulfilling the role of Minkowski
spacetime [...] a universal locally approximating space-
time, then Theorem 5 shows that every spacetime is a
universal locally approximating spacetime. For exam-
ple, one could equally well take (anti-)de Sitter space-
time or Schwarzschild spacetime to play this role. So, it
may be misleading to assert that “free-falling observers
see no effect of gravity in their immediate vicinity” (Pois-
son 2004, 11); one might just as well say “free-falling
observers see the local effects of a large cosmological
constant” or “free-falling observers see the local effects
of being inside a rotating black hole.” (FW 2023a, p. 14)



Immediate worry: physical significance of hab and ϵ

Such a distance function has, I think, severe problems
of physical interpretation, which can in large part be
traced to the fact that the positive-definite metrics them-
selves used to fix the distance function have no phys-
ical significance (Geroch 1967, 1971; Curiel 2015).
Unless the authors explain why we should take these
constructions as illuminating or capturing something of
physical or conceptual importance, it seems that they
are doing only geometry here, not foundational work.
[...] I want to see an argument that explains and justi-
fies the physical significance of these objects, in a way
relevant to the foundational aims of the paper: what
does such an hab have to do with spacetime structure
and its conceptual and physical interpretation? (Erik
Curiel, personal communication)



What to do?

▶ In any case, setting this objection aside for now, these are
serious challenges from FW...

▶ ...so how to reconcile FW’s results with our defence of the
‘standard story’ seen previously?
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How to proceed?
The following passage from Fletcher & Weatherall (2023a, pp.
14–5) is important:

All this said, the fact that other spacetimes are univer-
sal locally approximating does not imply that Minkowski
spacetime is not—and so one might ask whether there
are other reasons to think that Minkowski spacetime
has a distinguished role to play (beyond its prag-
matic advantages already noted). One possible answer
would return to an issue we raised previously, [...] in
some discussions of local (approximate) flatness, au-
thors present particular constructions of normal coordi-
nates, or flat approximating metrics, motivated by phys-
ical considerations. [... T]his sort of argument pur-
chases a special status for Minkowski spacetime at the
cost of assuming a special status for a particular coor-
dinate construction procedure.
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A possible line of response

▶ One doesn’t have to deny FW’s results about
approximating metrics.

▶ But surely there is still something privileged (i.e., more
physically interesting) about the LRT construction:
▶ the ‘base point’ is associated with the tangent space

Minkowski metric, and
▶ the expansion is straightforwardly adapted (via the world

function) to the intrinsic geometry of the problem.
▶ Approximation doesn’t always track what’s of physical

interest...
▶ In some sense, FW push all of the decisions about what

expansions people choose to use into pragmatics—but
doesn’t this in some sense leave interesting questions
unanswered?
▶ E.g., Why do physicists tend to think in terms of the LRT

construction rather than some other?
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Summary so far

▶ Something like the LRT construction probably captures
how physicists reason in practice.

▶ However, it’s not itself sufficient to overcome to FW worries.
▶ FW are likely correct to call for some criteria for when

material bodies behave ‘as if’ they’re special
relativistic—this is likely where most of the action is (this,
indeed, is the topic of their (2023b)).
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Enter Wallace (2017)





Scale-relativity and Wallace

Consider self-gravitating systems, e.g. black holes. The rough
idea is that, if we zoom far enough out, we should still be able
to make sense of such systems as being ‘approximately SR’.

Here’s Wallace:
So for any given level of tolerable deviation from the
Minkowski metric, we can find a tube around the black
hole such that the spacetime outside that tube approx-
imates the Minkowski metric to that level. (Wallace
2017, p. 263)

Then the rough idea is that, if we ‘zoom out’ far enough, that
system will be approximately Minkowskian.



Scale-relativity and Wallace

Consider self-gravitating systems, e.g. black holes. The rough
idea is that, if we zoom far enough out, we should still be able
to make sense of such systems as being ‘approximately SR’.

Here’s Wallace:
So for any given level of tolerable deviation from the
Minkowski metric, we can find a tube around the black
hole such that the spacetime outside that tube approx-
imates the Minkowski metric to that level. (Wallace
2017, p. 263)

Then the rough idea is that, if we ‘zoom out’ far enough, that
system will be approximately Minkowskian.



LRT on the physical meaning of spacetime points
This seems to chime well with LRT’s ‘scale-relative’ perspective
and their understanding of the physical meaning of spacetime
points:

At this stage, as we are apparently dealing with a lab
frame defined at a ‘point’, it is worth contemplating what
is meant by a ‘point’ in GR to begin with. Notably, a
manifold point p ∈ M does not represent an extension-
less event—rather, it can be understood as a mathe-
matical notion that we bring to bear upon some partic-
ular modelling context. The context that will concern us
in this article is that in which the characteristic length
scale of some object (a black hole, a lump of matter,
and so on) is sufficiently small relative to some other
relevant background length scale that the object is well
modelled by a (mathematical) point. Thus understood,
the point is rather analogous to point particles. (Linne-
mann et al. 2024, p. 5)



Back to Wallace

We can coherently talk about isolated systems in
general relativity because, as a matter of dynam-
ics, there exist a large number of solutions to the
equations—including ones which represent stars, plan-
ets, black holes, etc., as well as interacting sets of
these—where the curvature and matter are concen-
trated in some finite region and far outside that region
the spacetime is approximately empty and flat. This
allows us to paste such solutions together, to form re-
gions of spacetime consisting of a number of isolated
subsystems embedded in approximately flat space-
time. Because of the Poincaré symmetry of flat space-
time, we can perform a Poincaré transformation on one
of the subsystems without violating the boundary con-
ditions between subsystems; hence, the relativity prin-
ciple applies for collections of such subsystems ...



Back to Wallace

... In turn, regions of effectively flat spacetime can
always be found in a given spacetime, provided we
are prepared to make those regions sufficiently small.
If “sufficiently small” is nonetheless large compared
to the effective size of the subsystems we are inter-
ested in, then (a) we can apply the above argument for
the relativity principle to isolated systems in a curved
spacetime; (b) we can embed such systems in any
such effectively flat region without affecting their inter-
nal dynamics, since their Minkowski boundary condi-
tions are compatible with any region flat on sufficiently
large lengthscales. (Wallace 2017, p. 265)



Stepping back, reflecting

▶ This seems to imply that it is properties of the solutions
used to model the systems under considerations—e.g., the
asymptotic flatness of solutions describing black
holes—which allows one to say that those systems are
aptly described by SR as one ‘zooms out’.

▶ As such, this seems to chime well with the ‘scale-relative’
perspective of LRT...

▶ ...and to break the symmetry between different possible
base points of LRT-style expansions, which FW are likely to
complain about (insofar as, as a result, the local validity of
Minkowski over (say) de Sitter doesn’t seem to be
privileged—recall their previous quotes).

▶ As such, Wallace perhaps gives us the resources to weave
all of this together?
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Interpretative significance of the SEP

Some philosophers have made a great deal of the interpretative
significance of the local validity of SR in GR—that is, of the
SEP.

Here, for example, is a well-known quote from Brown:

It is because of minimal coupling and local Lorentz co-
variance that rods and clocks, built out of the matter
fields which display that symmetry, behave as if they
were reading aspects of the metric field and in so do-
ing confer on this field a geometric meaning. That light
rays trace out null geodesics of the field is again a con-
sequence of the strong equivalence principle, which
asserts that locally Maxwell’s equations of electrody-
namics are valid. (Brown 2005, p. 176)
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Some worries about this interpretative line

▶ If the claim is that the SEP affords gab a “geometric
meaning” in GR... well, we saw previously in our
discussion of heuristics that we didn’t need to give this field
a geometric interpretation.

▶ If the claim (which one can find in later works such as Read
et al. (2018)) is that gab acquires its ‘chronogeometric
significance’ via the SEP, then on reflection this also seems
questionable, on various grounds...
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Specific worries about the interpretative claim

1. The SEP is insufficient to underwrite the existence of
stable rods and clocks, which are what at the end of the
day are relevant for ‘chronogeometric significance’.

2. Using an antecedent theory in the heuristics of theory
constriction is one thing (cf. again Hetzroni & Read
(2023)), but saying that said antecedent theory is
necessary for the interpretation of the more recent theory
is a rather stronger claim.

3. One might in general, with FW, find SEP to be intolerably
unclear—cf. Fletcher (2020) and Weatherall (2020).

4. There are other ways in which gab can come to be ‘read
off’ by material bodies—e.g., the EPS (1972) construction,
on which see e.g. Adlam et al. (2025).
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Tentative conclusion on interpretative significance

Perhaps SEP is not required for the physical
interpretation/chronogeometric significance of the metric field
gab in GR after all, pace Brown (2005).
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Conclusions
▶ The ‘standard story’ is that SR is locally valid in GR.

▶ One can think about this claim as a heuristic device in the
construction of GR.

▶ LRT cash out the ‘standard story’ in terms of (a)
asymptotic expansions and (b) scale-relative reasoning.

▶ FW question the significance of the local validity of SR in
GR, saying that more would need to be said to justify
certain ‘construction procedures’ in order to underwrite this
claim in particular...

▶ ...but there do indeed seem to be good justifications for
using LRT-like ‘construction procedures’...

▶ ...and perhaps Wallace (2017) can help us in underwriting
these and recovering a robust sense in which, from a
‘scale-relative’ perspective, GR is locally SR.

▶ The necessity of SEP for the interpretation of GR seems
questionable.
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