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Gauge theories

▶ Today, we’re going to be thinking about some puzzling
features of electromagnetism.

▶ These will have to do with the fact that it is a gauge theory.
▶ But what is a gauge theory? Here the puzzles already

begin...
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Puzzles over gauge

The word “gauge” is ubiquitous in modern physics. Our
best physical theories are described, in various con-
texts, as “gauge theories.” The “gauge argument” al-
legedly reveals the underlying “logic of nature” (Martin
2002). Our theories regularly exhibit “gauge freedom,”
“gauge structure,” and “gauge dependence.” Unfortu-
nately, however, it is far from clear that the term has
some univocal meaning across the many contexts in
which it appears. It is a bit like “liberal” in American po-
litical discourse: it shows up everywhere, and no one
knows what it means. (Weatherall 2016, p. 1039)



Three senses of ‘gauge’

There are (at least) three key ways of understanding what it is
for a theory to be a ‘gauge theory’—the first is interpretational,
and the second and third are mathematical:

G1: Theories with ‘representational redundancy’, in the sense
of their having ‘redundant’, ‘non-physical’ degrees of
freedom.

G2: Theories with symmetries which are local, in the sense of
being spacetime-dependent.

G3: Theories with a certain mathematical structure—namely,
built using principal fibre bundles.

Electromagnetism can be understood a gauge theory in all of
these senses—but actually, the notions can come apart!
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Locality, separability, and determinism

The next thing to get clear on are three key properties of
physical theories:

1. Locality
2. Separability
3. Determinism



Locality

What does it mean for a theory to be local?

▶ The objects of the world can only be affected by objects in
the neighbourhood of their location?

▶ The objects and properties of the world have well defined
spatial locations?

▶ We cannot produce observable effects on objects not in
our neighbourhood?

Is locality the conjunction of these? Or some subset or other?
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Action-at-a-distance

▶ One thing which locality could mean is this: no action at a
distance.

▶ If a physical theory allows one system to directly change,
influence, alter, or otherwise interact with another system
at a remote location, unmediated by some material
connection, this is action-at-a-distance.
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Two senses of ‘at-a-distance’

Einstein locality: ‘At-a-distance’ means at a spacelike
separation between spacetime events. This
assumes at minimum special relativity theory.

Bell locality: ‘At-a-distance’ means beyond causal influences
recognised by current physical theories.

Einstein locality implies Bell locality but not the other way
around. (See Redhead (1987) for more.)
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Separability

▶ Unlike locality (which, roughly, is a thesis about the action
that one system can exert upon another distant system),
separability is a metaphysical thesis.

▶ Separability says this: the properties of a system
supervene upon the properties of its subsystems.

For more on separability, see e.g. (Healey & Gomes 2022).
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Determinism

▶ As a first pass, we can say that a physical theory is
deterministic iff (a) the laws of that theory, plus (b) a
specification of the state of the universe at a particular
time, fixes the state of the universe at all other times.

▶ This is what’s sometimes called ‘Laplacian determinism’.
▶ There is actually a vast literature on different possible

definitions of determinism—Earman (1986) is the locus
classicus.
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Foreshadowing some worries about electromagnetism

The local gauge freedom of electromagnetism already invites
worries about indeterminism:

Firstly, it seems that the gauge transformations of elec-
trodynamics relate empirically equivalent yet physically
distinct states of affairs, implying an underdetermina-
tion of empirical facts by the theory’s dynamics. Sec-
ondly, the fact that gauge symmetries are local means
that one can construct analogues of the infamous
Hole Argument: transformations that act trivially before
some time t, but non-trivially thereafter. This implies a
failure of indeterminism. (Jacobs 2023, p. 34)
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Formulations of electromagnetism

In anticipation of discussing the Aharanov–Bohm effect, let’s
now move on to presenting various different formulations of
electromagnetism—to begin with, there will be three which are
of interest:

1. A-field electromagnetism
2. F -field electromagnetism
3. Holonomy-based electromagnetism

I’ll go through each of these in turn now. Before I get there,
though, a brief general EM recap... (Material which could be
found in e.g. (Jackson 1998).)
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Maxwell’s equations in 3-vector formulation

∇ · E = ρ

∇ · B = 0

∇× E = −∂B
∂t

∇× B = J +
∂E
∂t



Maxwell’s equations in Faraday tensor formulation

Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2
E2/c B3 0 −B1
E3/c −B2 B1 0

 ,

Jµ =

(
ρ

J i

)
.

Then Maxwell’s equations can be written:

ηµλ∂
λFµν = Jν ,

∂µFνλ + ∂νFλµ + ∂λFµν =: ∂[µFνλ] = 0.

Or in differential forms:

d ∗ F = J,
dF = 0.
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Introducing the vector potential
One can define—and, indeed, it turns out to be useful for a lot
of physics of EM to do so—a vector field Aµ = (ϕ,A), the
‘electromagnetic vector potential’, as

Fµν =: ∂µAν − ∂νAµ.

One can then compute the electric and magnetic fields directly
from the vector potential, as

E = −∇ϕ− ∂A
∂t
,

B = ∇× A.

But there is some representational/gauge redundancy, because
if we take

Aµ → Aµ + ∂µΛ,

this will yield the same electric and magnetic fields!
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Maxwell’s equations in vector potential formulation

In any case, writing Maxwell’s equations in terms of the vector
potential yields:

−∂µ∂µAα + ∂α∂µAµ = Jα.

Since in differential forms F = dA, it’s easy to see that the
Maxwell equations in terms of the vector potential should be:

d ∗ dA = J,
ddA = 0.

(The latter, recall from Week 1, is a mathematical identity—the
twice exterior derivative necessarily vanishes.)
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Turning to the formulations

So much for the background. With all of this in hand, I’m now in
a position to introduce formally the first two of our three
different versions of electromagnetism, which recall again were:

1. A-field electromagnetism
2. F -field electromagnetism
3. Holonomy-based electromagnetism
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A-field electromagnetism

Kinematically possible models (KPMs) given by ⟨M, ηab,Aa, Ja⟩.

Dynamically possible models (DPMs) given by

−∇a∇aAb +∇b∇aAa = Jb.

This approach is:
▶ Local
▶ Separable
▶ Indeterministic (can generate a version of the hole

argument with it; recall the Jacobs quote from before).
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F -field electromagnetism

KPMs given by ⟨M, ηab,Fab, Ja⟩.

DPMs given by

ηab∇bF ac = Jc ,

∇[aFbc] = 0.

This approach is:
▶ Non-local (for reasons to do with the AB effect, to be

discussed in a minute)
▶ Separable
▶ Deterministic
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Loop holonomies

To talk about our next approach to electromagnetism—the
holonomy interpretation—I first need to introduce the notion of
a loop holonomy:

▶ For a vector field Aµ, we can defined its holonomy as

H(l) = exp
(
−iq

∮
l
Aµdxµ

)
.

▶ In holonomy-based electromagnetism, there is a
fundamental non-localised property H(l) associated to
every closed curve l in spacetime.
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Holonomy-based electromagnetism

KPMs given by ⟨M,H, Ja⟩.

DPMs given by... ???

This approach is:
▶ Local
▶ Non-separable
▶ Deterministic
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The Aharanov–Bohm effect



The Aharanov–Bohm effect summarised

▶ The Aharanov–Bohm effect is essentially a modified
double slit experiment in which a(n impenetrable) solenoid
is placed between the plate and the screen.

▶ The Aharanov–Bohm effect then refers to the fact that the
interference pattern on the screen changes when we let a
current run through the solenoid.

▶ This is the case despite the fact that the electromagnetic
field vanishes outside the solenoid!

▶ Hence, we cannot simply understand the effect as a result
of the force field acting locally on the matter field.

▶ This led Aharonov and Bohm (1959) to posit the vector
potential Aa—which doesn’t vanish outside the
solenoid—as causally responsible for the effect, despite
the fact that it is usually considered to be ‘gauge’!
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Background on the AB effect

▶ The time-dependent Schrödinger equation for a single
particle of mass m and charge q immersed in an
electromagnetic field is

iℏ
∂ψ (x, t)

∂t
=

[
1

2m
(−iℏ∇− qA (x, t)) 2 + qϕ (x, t)

]
ψ (x, t) .

▶ This equation is invariant under the gauge transformations:

Aµ = (ϕ,A) → Aµ +
1
q
∂µα(x),

ψ → eiqα(x)ψ,

where α(x) is a function of the spacetime coordinates x .
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Aµ = (ϕ,A) → Aµ +
1
q
∂µα(x),

ψ → eiqα(x)ψ,

where α(x) is a function of the spacetime coordinates x .



The question

▶ For the AB effect, we consider the field

ψ(x) = ψI(x) + ψII(x),

where ψI and ψII are the components of the field that pass
through the left and right slit, respectively.

▶ Let Q denote an arbitrary point on the screen. What
happens to ψ(Q) when we turn on the solenoid?
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Mathematical warmup

▶ Consider a region of space R which is simply connected
(no ‘holes’), so that all closed curves in R can be
continuously deformed to a point.

▶ Suppose the magnetic field strength vanishes everywhere
in R:

B = ∇× A = 0.

▶ Recall that the following is a mathematical identity for any
scalar f :

∇×∇f = 0.

▶ So when B = 0, we can write A = ∇f .
▶ But given the gauge freedom A → A +∇κ, it is clear that f

is defined only up to a constant additive factor.
▶ Given this, for any given origin point P ∈ R, we can always

set f such that f (P) = 0; let us do so.
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Mathematical warmup continued
▶ Consider now the line integral

∫ Q
P A · dx, defined in relation

to some curve joining P and Q in region R.

▶ Note that

A · dx = ∇f · dx =
∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz = df .

▶ So, ∫ Q

P
A · dx =

∫ Q

P
df = f (Q)− f (P) = f (Q).

▶ Thus, the line integral is path-independent, and for fixed P
can be taken to be a function f (Q).

▶ Under gauge transformations, then, the wavefunction
transforms as

ψ(Q) → ψ′(Q) = exp (iqf (Q)/ℏ)ψ

= exp

(
iq
ℏ

∫ Q

P
A · dx

)
ψ(Q).
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The AB effect proper
▶ Suppose first that there is zero current in the solenoid. We

can write the value of the wavefunction of each electron at
point Q on the screen as

ψ0(Q) = ψ0
I (Q) + ψ0

II(Q).

▶ Now turn on the current.
▶ Consider the simply connected region RI , containing point

P and Q and slit I.
▶ Since B = ∇× A = 0 everywhere in this region, we can

write:

ψI(Q) = exp

(
ie
ℏ

∫ Q

P
A · dxI

)
ψ0

I (Q).

▶ We have an analogous equation for region II, so overall we
have

ψ(Q) = exp

(
ie
ℏ

∫ Q

P
A · dxI

)
ψ0

I (Q)+exp

(
ie
ℏ

∫ Q

P
A · dxII

)
ψ0

II(Q).
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The AB effect proper
▶ It is crucial to recognise that this is not a mere gauge

transformation!

▶ We can rewrite the previous expression as

ψ(Q) = exp
( ie

ℏ

∫ Q

P
A · dxI

)[
ψ

0
I (Q) + exp

{( ie

ℏ

)(
−

∫ Q

P
A · dxI +

∫ Q

P
A · dxII

)}
ψ

0
II (Q)

]
.

▶ Now,

−
∫ Q

P
A · dxI +

∫ Q

P
A · dxII =

∫ P

Q
A · dxI +

∫ Q

P
A · dxII

=

∮
A · dx.

▶ This loop integral involves both slits I and II, and can be
computed via Stokes’ theorem and shown to be equal to
the gauge-independent magnetic flux Φ:∮

A · dx =

∫∫
(∇× A) · ndS =

∫∫
B · ndS = Φ.
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The AB effect: arriving at the result

▶ Putting this all together, we have:

ψ(Q) = eiα
[
ψ0

I (Q) + exp
(

ie
ℏ

∮
A · dx

)
ψ0

II(Q)

]
= eiα

[
ψ0

I (Q) + exp
(

ieΦ
ℏ

)
ψ0

II(Q)

]
,

where α :=
∫ Q

P A · dxI .

▶ The total phase factor eiα of course has no effect on the
probability density |ψ(Q)| 2, but because of the relative
phase factor exp (ieΦ/ℏ), the interference term contributing
to that of |ψ(Q)| 2 is not equal to that of

∣∣ψ0(Q)
∣∣ 2.
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The AB effect: arriving at the result

▶ Specifically, writing the wavefunctions in the polar form
ψ0

I = R0
I exp (iSI/ℏ), etc., we have at the point Q

|ψ| 2 = (R0
I )

2 + (R0
II)

2 + 2R0
I R0

IIcos (θ + δ) ,

where θ := (SII − SI) /ℏ and δ := eΦ/ℏ.

▶ On the other hand,

|ψ0|2 = (R0
I )

2 + (R0
II)

2 + 2R0
I R0

IIcos(θ).

▶ The effect of turning on the magnetic flux is not to shift the
diffraction envelope, but the position of the interference
fringes within it.
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The puzzle

▶ The puzzling fact is that Φ depends only on Fab—which
vanishes outside the solenoid!

▶ The phase shift of the matter field seems to depend
causally on a field with which it cannot interact locally!

▶ ...hence the move to reify Aa—to think, in the words of
Maudlin (1998), that there is ‘one true gauge’.

▶ But, of course, reifying Aa invites underdetermination and
indeterminism! (Maudlin 1998)

▶ Is there another way out?
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Comparison with the hole argument

▶ There are clear affinities here with the hole argument.

▶ In the hole argument, the claim is: if you reify M,
indeterminism follows.
▶ Hole diffeomorphic models are isomorphic—they differ

merely haecceitistically.
▶ So (mainstream claim) anti-haecceitism suffices to

overcome the indeterminism.
▶ In the AB effect, the claim is: if you reify Aa, then

indeterminism follows, given its local gauge symmetry.
▶ Gauge-related models of electromagnetism are not

isomorphic.
▶ So some more involved interpretational strategy is going to

be needed to (a) overcome the indeterminism, while (b)
giving a local narrative about the AB effect.
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▶ F-field electromagnetism explain the AB effect in a
non-local way: the interference pattern is affected by the
Fab, even though this vanishes outside of the solenoid!

▶ This has struck many as rebarbative.
▶ However, this approach still offers an ontology which is

separable and deterministic.
▶ Stepping back, there are some physics reasons to be

concerned about F-field electromagnetism:
▶ dF = 0 is not a mathematical identity! (Jacobs 2023)
▶ Difficult to couple subsystems without Aa (Rovelli 2014).
▶ Problems with quantisation etc.
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Holonomy-based electromagnetism
Holonomy-based electromagnetism gives the following account
of the AB effect:

On this picture, there is a fundamental non-localised
property associated to every closed curve in space-
time. Holonomies are not composed of the field-
values at each spacetime point, but attach to curves
as a whole. When a matter field interacts with these
holonomies, it does so ‘at once’ around a loop. Since
holonomies overlap with the matter field, interactions
are local. (Jacobs 2023, p. 36)

This offers a local ontology which avoids indeterminism (since it
is gauge-invariant, ‘reduced’ version of electromagnetism).

However, the holonomy approach has problems:
1. No dynamics.
2. Non-separability.
3. Cosmic coincidences.
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Problem 1: no dynamics

▶ On the holonomy interpretation, dynamics are still
expressed in terms of Aa, not in terms of H.

▶ Nobody has yet succeeded in an intrinsic formulation of
e.g. the Lagrangian directly in terms of only holonomies.
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Problem 2: non-separability
▶ The holonomy interpretation is non-separable: the intrinsic

facts about a region X and about another region Y don’t
determine all intrinsic facts about the joint region X ∪ Y .

▶ We can easily see that separability fails when we consider
two partially overlapping regions X and Y close to the
solenoid in the Aharonov-Bohm effect.
▶ Since X does not enclose the solenoid, the flux through its

surface is zero, likewise for Y .
▶ But now consider the union X ∪ Y . This region does

enclose the solenoid, so it has a non-zero holonomy value.
▶ Therefore, the intrinsic facts about X and Y fail to

determine the intrinsic facts about X ∪ Y : separability fails.
▶ But is this a problem, given that e.g. many approaches to

quantum mechanics are non-separable?
▶ Maudlin (1998) argues that the entanglement here is of a

different nature.
▶ Dougherty (2017) argues that an version of the holonomy

interpretation is separable.
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Problem 3: cosmic coincidences

▶ Holonomies in the holonomy interpretation must satisfy

H (l1 ◦ l2) = H (l1)H (l2) , (∗)

where l1 ◦ l2 denotes the concatenation of two loops, i.e.,
the result of first going around l1 and then going around l2.

▶ Arntzenius (2012, p. 195): “a fairly obvious explanation of
why [this] hold[s] is that the map H is, roughly speaking,
the integration of a connection around a loop”.

▶ But of course, one can’t say this if one takes holonomies to
be the primitives in one’s theory.
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Problem 3: cosmic coincidences

▶ As an illustration of Arntzenius’ point: note that if we define
holonomies in terms of loop integrals of vector potentials
as before, then:

H(l1)H(l2) = exp
(
−iq
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Aµdxµ

)
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)
= H(l1 ◦ l2).

▶ Hence we can explain (∗) if we posit the existence of a
local four-potential, but it is a ‘cosmic coincidence’ on the
holonomy interpretation.
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Summarising so far, we have the following table of verdicts for
our three different approaches to electromagnetism:

A-field F-field Holonomy
Local Y N Y

Separable Y Y N
Deterministic N Y Y

(This, of course, sets aside the various intrinsic challenges for
each of the approaches.)

Next, I want to turn to turn to a different approach: Wallace’s
‘field monism’.



Summarising so far...

Summarising so far, we have the following table of verdicts for
our three different approaches to electromagnetism:

A-field F-field Holonomy
Local Y N Y

Separable Y Y N
Deterministic N Y Y

(This, of course, sets aside the various intrinsic challenges for
each of the approaches.)

Next, I want to turn to turn to a different approach: Wallace’s
‘field monism’.



Summarising so far...

Summarising so far, we have the following table of verdicts for
our three different approaches to electromagnetism:

A-field F-field Holonomy
Local Y N Y

Separable Y Y N
Deterministic N Y Y

(This, of course, sets aside the various intrinsic challenges for
each of the approaches.)

Next, I want to turn to turn to a different approach: Wallace’s
‘field monism’.



Introducing field monism
▶ ‘Field monism’ isn’t an interpretation of pure EM, but an

interpretation of EM coupled to the wavefunction ψ (which
of course is the case under consideration in the AB effect
anyway).

▶ On this view, “the electromagnetic and scalar fields cannot
be thought of as separate entities”, but jointly “[represent]
aspects of a single entity” (Wallace 2014, p. 15).

▶ Instead of a complex matter field ψ, Wallace’s fundamental
fields are the real scalar field ρ = |ψ| and the covariant
derivative Dµψ = ∂µθ − Aµ, where θ is the phase of ψ.

▶ Since ρ and Dµθ are both gauge-invariant quantities
defined in terms of the old theory’s variant quantities, field
monism is another example of reduction.

▶ The joint distribution of these fields uniquely corresponds
to equivalence classes of gauge-related models of
electromagnetism.

▶ Wallace (2014) argues that field monism is local,
separable, and deterministic!
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First worry: lack of generality

But the main issue with field monism is that it does not
easily extend to more complex gauge theories. Wal-
lace [...] admits that this is a problem, writing that “in
general, I know of no comparably simple set of local
gauge-invariant quantities in the non-Abelian case that
can serve as a gauge-invariant representation”. This
suggests that it is no more than a fortunate accident
that we can represent the simple U(1) gauge theory
Wallace considers in terms of a unique set of gauge-
invariant local quantities. (Jacobs 2023, p. 37)



Second worry: lack of unique representation

Jacobs (2023, p. 37) also worries that even more complex
Abelian theories needn’t have a unique gauge-invariant
representation:

▶ Consider a pair of complex-valued fields ψ1 and ψ2 with
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Jacobs on the second worry

Therefore, on one way of understanding Wallace’s ob-
servation with respect to the unitary gauge, it implies a
form of theoretical underdetermination: the choice be-
tween these two ontologies is arbitrary. This is hardly
better than the underdetermination of theory by the em-
pirical data implied by the existence of gauge symme-
tries. Therefore, in these more complex scenarios Wal-
lace’s account for finding a gauge-invariant representa-
tion is inadequate. (Jacobs 2023, p. 37)
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Summary so far

▶ In light of the AB effect, none of the original three
approaches to EM which we considered (A-field, F-field,
holonomies) had all of the features which one would ideally
desire of a physical theory (i.e., locality, separability, and
determinism).

▶ Moreover, these approaches has their own intrinsic
problems (e.g., lack of dynamics for the holonomy
approach).

▶ Wallace’s field monism seems to meet all three desiderata,
but it only works in some very specific contexts.

▶ Are we at an an impasse, then?
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Looking forward
▶ Jacobs (2023) makes a compelling case that another

version of electromagnetism—written using fibre
bundles—is the best way of interpreting EM.

▶ It is local, deterministic, and separable.
▶ It’s a ‘sophisticated’ theory (in the sense of Week 1)—so a

datum in favour of the merits of sophisticating symmetries
(in the sense of Dewar (2019)).

▶ Others, e.g. Krátký (2024), have questioned the
idealisations involved in the setup of the AB effect.
▶ In realistic, de-idealised scenarios, will Fab really vanish

outside of the solenoid?
▶ So, is F-field electromagnetism really non-local?
▶ So can’t we just hang onto this more ‘standard’

understanding of EM?
▶ Non-quantum AB effects? Non-Abelian AB effects? With

trivial topologies? (Gomes 2025)

Despite its being by now an ‘old chestnut’, there remains much
interesting to be said about the AB effect!
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