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The ontological models framework

We’re going to be working in the ‘ontological models’
framework, which uses the following notation:

▶ Ontic state λ: this represents all of the physical degrees of
freedom (including hidden variables if they exist) in the
system under consideration.

▶ Quantum state ψ.
▶ Probability distribution µP(λ) over ontic states given that

the system is prepared according to P.
▶ (In many cases of interest to us, P is just the quantum

state, so we’ll interested in µψ(λ), which is a probability
distribution over ontic states given some quantum state.)

▶ Probability distribution ϵM(q|λ), which is the probability
distribution of getting some outcome q in measurement M
given that the ontic state is λ.
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The ontological models framework

So what we have, in a nutshell, is this:

▶ The preparation P gives some probability distribution
µP(λ) over ontic states λ.

▶ For each of these ontic states, there is some probability
distribution ϵM(q|λ) over outcomes q in measurement M.
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Ontological models and operational models

▶ When we’re talking about ontic states λ (which might just
be the quantum state, if there are in fact no hidden
variables!), we’re thinking about ontological models.

▶ We can connect this up with purely operational models by
summing over ontic states:

F (q|M,P) =
∑
λ

µP(λ)ϵM(q|λ).

▶ The LHS is a purely operational thing; it has been purged
of any mention of ontic states!

▶ In standard quantum theory (where the preparation just is
the initial quantum state), we of course have

F (q|M,P) = |⟨q|P⟩| 2,

i.e. the Born rule.
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The inevitability of ontological models

▶ A naı̈ve instrumentalist might ask: why bother with all
these λ? Why think that these ‘unobservable’ (careful!)
ontic states really exist?

▶ Provably, for any operational model F (q|M,P), there is
some ontological model compatible with it. (Basically just
interpolation.)

▶ Since ontological models help us to explain the operational
outcomes, why not take them seriously?
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Ψ-epistemic approaches

▶ What we’re going to discuss today is a version of the
hidden variables strategy, but significantly different to what
we’ve seen before (e.g., Bohmian mechanics).

▶ A lot of the most intense research in quantum foundations
in the last decade or so has focussed on these
‘Ψ-epistemic’ positions, first proposed by Harrigan &
Spekkens (2010).

▶ Roughly, according to these positions, there is only ‘extra
structure’; there is no wavefunction.

▶ ‘Ψ-epistemic’ approaches are not anti-realist, because they
seek to model and study this ‘extra structure’.

▶ (Rather, they’re just anti-realist about wavefunction, hence
‘Ψ-epistemic’: at best, the quantum state Ψ encodes our
ignorance; it is not something real.)
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Must ψ be part of λ?

In brief, then, the difference between the positions is this.

Ask: must the quantum state ψ be part of the ontic state λ?

Yes: ‘Ψ-ontic’. (And if λ = ψ, then ‘Ψ-complete’.)
No: ‘Ψ-epistemic’.
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Ψ-complete

Knowing the quantum state ψ nails down the ontic state λ:

So: λ⇔ ψ.



Ψ-ontic

The ontic state λ implies the quantum state ψ but might contain
other things as well.

So: λ⇒ ψ.

(Bohmians live here! Even for the Bohmians who want to treat
Ψ as ‘nomological’, etc.)
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Ψ-epistemic

Now knowing the ontic state doesn’t fix the quantum state,
thereby undermining the ‘ontic’ status of the quantum state Ψ
itself!

Surprisingly, it took until circa 2012 for people to come up with
Ψ-epistemic models! But they are now a focus of significant
investigation and study.



Ψ-epistemic

Now knowing the ontic state doesn’t fix the quantum state,
thereby undermining the ‘ontic’ status of the quantum state Ψ
itself!

Surprisingly, it took until circa 2012 for people to come up with
Ψ-epistemic models! But they are now a focus of significant
investigation and study.



Ψ-epistemic

Now knowing the ontic state doesn’t fix the quantum state,
thereby undermining the ‘ontic’ status of the quantum state Ψ
itself!

Surprisingly, it took until circa 2012 for people to come up with
Ψ-epistemic models! But they are now a focus of significant
investigation and study.



Challenges for Ψ-epistemic approaches

But are Ψ-epistemic approaches actually viable? In the
remainder of this lecture, we’re going to be looking at the
following results, which cast this into doubt:

1. The Pusey-Barrett-Rudolph (PBR) theorem (2012)
2. Hardy’s ontic state indifference theorem (2013)
3. The Barrett-Cavalcanti-Lal-Maroney (BCLM) inequality

(2014)
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The PBR theorem

The PBR theorem implies that Ψ-epistemic approaches suffer
from an extreme form of non-locality.

▶ Suppose you have two people who are performing their
preparation procedures at remote locations from each
other.

▶ (Somewhat akin to the opposite of the Bell scenario—two
spatially separated preparers sending their prepared states
to a joint future where they are measured jointly.)
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The PBR theorem

Alice and Bob prepare non-orthogonal states:

They prepare their states, send them off, and will later compare
outcomes.



The PBR theorem
The measuring procedure measures this joint entangled basis:

This is an orthogonal set of states, so in this sense is a ‘good’
measurement basis.

(Exercise: Confirm this, by writing out the states in the
{|0⟩ , |1⟩} basis.)
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The PBR theorem
We now have the following table of inner products:

From this we see that: (Here, Λα is the space of possible ontic
states λ consistent with the quantum state |α⟩.)

(Zero probabilities of certain outcomes given where the ontic
state λ is located in state space.)
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The PBR theorem

▶ This means that there cannot be any ontic state in
Λ00 ∩ Λou ∩ Λu0 ∩ Λuu, because any state which would be in
this intersection would have to give a zero probability of
giving any of the outcomes.

▶ But we know that for any ontic state λ, if you sum over all
the outcomes, you should get 1:∑

i

ϵM(qi |λ) = 1.

▶ No intersection between the state spaces is equivalent to
saying µ00(λ)µ0u(λ)µu0(λ)µuu(λ) = 0.
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The PBR theorem

▶ Recall that the two states |0⟩ and |u⟩ are being prepared
independently by two spacelike-separated experimenters.

▶ So let’s make the assumption that the probability
distribution of the joint ontic state space factorises into
µij(λ) = µi(λ1)µj(λ2)—i.e., into a preparation on the LHS
and a preparation on the RHS.

▶ Plugging this into µ00(λ)µ0u(λ)µu0(λ)µuu(λ) = 0, we find
that for any pair of ontic states λ1 and λ2,

(µ0(λ1)µu(λ1))
2(µ0(λ2)µu(λ2))

2 = 0.

▶ So either µ0(λ1)µu(λ1) = 0 or µ0(λ2)µu(λ2) = 0.
▶ This means, for both λ1 and λ2, that there is no overlap in

the probability distributions of the |0⟩ or |u⟩ preparations.
▶ But this just means that we are working with a Ψ-ontic

model!
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Upshot of the PBR theorem

▶ The general conclusion from and upshot of the PBR
theorem is this: independent product state preparations
leads us to Ψ-ontic models.

▶ Call this key assumption preparation independence:

µ|α⟩|β⟩(λ) = µ|α⟩(λ1)µ|β⟩(λ2).

▶ Note that this is the only requirement which we’ve added
onto the ontic model!

▶ How bad is the failure of preparation independence?
▶ However one cuts it, the failure seems to be a kind of

non-locality.
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Possible responses to the PBR theorem
1. λ = (λ1, λ2). Choice of preparation |β⟩ affects ontic state

λ1.

▶ Preparation events occur before the two systems are
brought together.

▶ Any other system could have been used!
▶ Preparation of any other system (anywhere!) affects ontic

state λ1??
2. λ = (λ1, λ2). Deny that there is any factorisation in the first

place. Pre-existing correlations? (Cf. the superdeterminism
response to measurement independence.)
▶ Any other system could have been used! (Same problem

as above.)
▶ Pre-existing correlations between all remote systems?

3. λ ̸= (λ1, λ2). Global ontic states?
▶ This is denying that global ontic states are separable—a

more extreme form of non-separability than we’ve seen so
far. (Before, the quantum states might have been
non-separable but the ontic states were still separable.)

▶ How to recover local ontic properties measured in
experiments?
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Hardy’s ontic state indifference theorem
Consider an interferometer:

▶ Consider the |0⟩ state as above.
▶ Consider the ontic state space for the |0⟩ preparation, Λ0.
▶ For this preparation, the system couldn’t have been in the

region of state space where the outcome could have been
recorded as 1, so we have:
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Hardy’s ontic state indifference theorem

If I had inserted a phase shifter π in the lower half of the
interferometer, I would have shifted the entire ontic state to
being somewhere in Λ1:

A mass exodus of ontic states...



Hardy’s ontic state indifference theorem
Now consider the up state |u⟩ = 1√

2
(|0⟩+ |1⟩) with ontic state

space Λu.

▶ This just goes in the upper half of the interferometer.
▶ When it hits the beam splitter, it has a 50/50 chance of

yielding 0 or 1:

Here, that Λu extends into the left-hand box and right-hand box
makes the model Ψ-epistemic, because these are, respectively,
the intersection with the Λ0 and Λ1 (recall the original diagram
illustrating Ψ-epistemic theories.)
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Hardy’s ontic state indifference theorem

Now do the phase shift in the branch of the interferometer
where the wavepacket never goes:

Some ontic states (those in the left-hand box) have to be
shifted over even though the interferometer acted where the
wavepacket never goes (mutatis mutandis the other way).
(‘Remote invasiveness’.)



Hardy’s ontic state indifference theorem

▶ Hardy says: if the interaction doesn’t change the quantum
state, then the ontic states should be indifferent to it.

▶ Given this assumption (‘ontic state indifference’), the ontic
states can only lie in the red region.

▶ In that case, we have to have a Ψ-ontic model!
▶ The reason being that now Λu has no intersection with

either Λ0 or Λ1. (Recall again the original diagram
illustrating Ψ-epistemic theories.)
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How bad is remote invasiveness?

Proponents of Ψ-epistemic models could bite the bullet and
accept remote invasiveness (and so reject ontic state
indifference). How bad would this be?

▶ Ontic state affected by operations performed at remote
locations!

▶ Almost any region which is causally connected with a
common past and common future!

▶ So operations performed almost anywhere can affect the
local ontic properties!
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The BCLM inequality

▶ Unlike the previous two cases, the
Barrett-Cavalcanti-Lal-Maroney (BCLM) inequality (2014)
makes no extra assumptions whatsoever—in particular, it
does not assume preparation independence.

▶ The BCLM inequality doesn’t prove Ψ-ontic, but it does set
a limit on ‘how Ψ-epistemic one can be’; exceeding this
bound leads to an empirically inadequate theory.

▶ (I won’t trouble you with a proof or an explicit statement of
the result, both of which would take us a bit too far afield,
but see the original (short!) paper for the details.)
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Three inequalities for the three no-go theorems

▶ By now, we’ve seen three key no-go theorems:
1. Bell’s theorem
2. The BKS theorem
3. The PBR theorem

▶ Associated with each of these is an
inequality—respectively,

1. The CHSH inequality
2. The KCBS inequality
3. The BCLM inequality

Exercise: Compare the conceptual status of these three
inequalities with respect to their respective no-go theorems.
Which invite us to be doing ‘experimental metaphysics’?
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Whither Ψ-epistemic?

▶ Bite the bullet?

▶ Accept radical non-locality.
▶ Build partially Ψ-epistemic models that push up against the

boundaries of the BCLM inequality. (But does this actually
solve the non-locality issue?)

▶ Change the rules, e.g.:
▶ Superdeterminism?
▶ Globally non-separable ontic states?

▶ Reject the game: “The wavefunction represents neither
part of an ontic state, nor a probability distribution over
such states”. Direction of general anti-realism?
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▶ Distinguished between Ψ-ontic and Ψ-epistemic theories.
▶ Presented the PBR and ontic state indifference theorems

against Ψ-epistemic theories.
▶ Briefly introduced the BCLM inequality.

Next week: quantum logic, QBism, and pragmatism.
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