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Decoherence introduced

▶ Suppose some system interacts with its environment.

▶ Decoherence is a phenomenon in unitary quantum
mechanics whereby (a) the system becomes entangled
with its environment, and thereby (b) is such that quantum
interference effects within the system are suppressed.

▶ Decoherence is ubiquitous in quantum mechanics and (all
parties agree) of great foundational importance!

▶ Today, I’ll introduce some of the details of decoherence.
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The double slit experiment

▶ The two-slit experiment is a paradigm example of an
interference experiment.

▶ One repeatedly sends electrons or other particles through
a screen with two narrow slits, the electrons impact upon a
second screen, and we ask for the probability distribution
of detections over the surface of the screen.

▶ One might naı̈vely try to calculate them by summing over
the probabilities of detection at the slits multiplied by the
probabilities for detection at the screen conditional on
detection at the slits.

▶ But in general in quantum mechanics there is an additional
so-called interference term in the correct expression for the
probability, and this term depends on both the wave
components that pass through the slits.
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The double slit experiment

▶ Quanitatively, the density distribution of particles on the
screen ϱ(x) is given by (see e.g. Schlosshauer 2007, ch.
2):

ϱ(x) =
1
2
|ψ1(x) + ψ2(x)| 2

=
1
2
|ψ1(x)| 2 +

1
2
|ψ2(x)| 2 + Re {ψ1(x)ψ∗

2(x)}

▶ But if we measure which slit the particle goes through, then
the interference on the screen is suppressed!

▶ Decoherence allows us to make sense of this within the
framework of ‘standard’ quantum mechanics, and without
any obscure ‘collapse-on-measurement’-like invocations.

▶ (For a nice discussion, see (Maudlin 2019, p. 58).)
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Some history

▶ Dynamical suppression of interference has featured in
many papers since the beginning of quantum mechanics,
such as Mott’s (1929) analysis of α-particle tracks.

▶ The modern foundation of decoherence as a subject in its
own right was laid by H.-D. Zeh in the early 1970s (Zeh
1970, 1973).

▶ Equally influential were the papers by W. Zurek from the
early 1980s (Zurek 1981, 1982).

▶ A concise and readable introduction to the theory is
provided by Zurek in Physics Today (1991).

▶ More recent surveys are given in Zeh (2003a), Zurek
(2003), and in the books by Giulini et al. (1996, second
edition Joos et al. 2003), and by Schlosshauer (2007).
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Decoherence

▶ ‘Decoherence’ is the process by which the environment of
a system continually interacts with, and becomes
entangled with, the system.

▶ Its best-known property is the suppression of coherence
(i.e., quantum mechanical interference effects) in
superpositions of states for the system (in a particular
basis picked out by the subsystem-environment
interaction).
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A simple model

▶ Suppose that we have two one-particle systems, the first
much heavier than the other.

▶ Suppose moreover that the first system is prepared in a
superposition of two localised wavepackets separated from
one another by some large distance compared to the
packet width. (NB: this makes sense for a one-particle
Hilbert space...)

▶ In other words, let the first system be in state

|ψ⟩ = α |ψq1⟩+ β |ψq2⟩ ,

where |ψqi ⟩ is localised around qi (i = 1,2).
▶ Suppose that the Hamiltonian of the system contains some

interaction term Ĥint = V (X̂ − x̂), where X̂ and x̂ are the
position operators of the first and second particles,
respectively.
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A simple model
▶ If one of α or β is zero, then to a good approximation this

reduces to a standard scattering problem: the second
particle is scattering off a scattering centre at x = qi , and
the first particle does not change at all.

▶ So the dynamics is

|ψqi ⟩ ⊗ |ϕ0⟩ −→ |ψqi ⟩ ⊗ |ϕ+i ⟩ ,

where |ϕ+i ⟩ is some post-scattering state.
▶ By the linearity of the Schrödinger equation, then, the

general evolution has the form

|ψqi ⟩ ⊗ |ϕ0⟩ −→ |ψq1⟩ ⊗ |ϕ+1 ⟩+ |ψq2⟩ ⊗ |ϕ+2 ⟩ .

▶ In other words, when the first particle is in a superposition,
but not when it is not, the scattering interaction causes the
two particles to become entangled.

▶ We might even say that the second particle has ‘measured’
the position of the first.
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Quantifying the entanglement
▶ The level of entanglement can be quantified by considering

the density operator for the first particle in the |ψqi ⟩ basis.

▶ If we idealise it as having exactly two possible position
states, |ψq1⟩ and |ψq2⟩, then the first particle’s density
operator evolves as

ρ0 =

(
|α|2 αβ∗

α∗β |β|2
)

−→ ρ+ =

(
|α|2 αβ∗ ⟨ϕ+2 |ϕ

+
1 ⟩

α∗β ⟨ϕ+1 |ϕ
+
2 ⟩ |β|2

)
.

(Exercise: Derive this by computing the partial trace.)
▶ The off-diagonals quantify the coherence (i.e., interference)

between the two possible positions of the first particle:
▶ when they have magnitude |α∗β|, the first particle is in a

pure state and so not at all entangled with the second
particle;

▶ if they are equal to zero, then the entanglement is maximal,
and the quantum measurement algorithm gives the same
predictions as it would were the first particle’s state to be in
a probabilistic mixture of the two positions.
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Important point of clarification

▶ When subsystems interact with their environments, they
generally become entangled with them. (So the overall
system becomes ‘more quantumy’.)

▶ One effect of this is that coherence (i.e. interference)
effects between terms of a superposition for the subsystem
are suppressed (so the subsystem becomes ‘less
quantumy’—more like a classical mixture).

▶ This, to repeat, is really decoherence in a nutshell.
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Weak and strong scattering

▶ Hence, if the scattering is very weak, then ⟨ψ+
2 |ψ+

1 ⟩ ≈ 1,
and the systems become only slightly entangled.

▶ On the other hand, if the scattering is strong then
⟨ψ+

2 |ψ+
1 ⟩ ≈ 0, and the entanglement is almost maximal.
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Repeated scattering events

▶ Suppose that the subsystem is measured n times.

▶ Then its evolution can be modelled as:

ρ0 =

(
|α|2 αβ∗

α∗β |β|2
)

−→ ρn
+ =

(
|α|2 αβ∗(⟨ϕ+2 |ϕ

+
1 ⟩)n

α∗β(⟨ϕ+1 |ϕ
+
2 ⟩)n |β|2

)
.

▶ Sufficiently many scattering events will suffice to remove
the coherence.

▶ It can be shown (Joos et al. 2003, pp. 63–7) that the rate is
approximately given by

⟨x1| ρ(t) |x2⟩ = ⟨x1| ρ(0) |x2⟩exp
[
−Λt(x1 − x2)

2
]
,

where Λ ∼ k2Fσ/λ2, where F is the incoming particle flux,
σ is the interaction cross-section, and λ is the wavelength.
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Some decoherence timescales

Environment Dust grain Large molecule
CMB 1 1024

Photons at room temp. 10−18 106

Best laboratory vacuum 10−14 10−2

Air at normal pressure 10−31 10−19

Estimates of decoherence timescales (in seconds) for the
suppression of spatial interferences over a distance ∆x equal
to the size a of the object. (From Schlosshauer 2007, p. 135)



Decoherence is fast!

Needless to say, the shortness of these timescales is
truly astonishing and indicates the extreme speed and
efficiency of decoherence. Our estimates demonstrate
that spatial interference effects are extremely difficult
to observe for “ordinary” objects (such as dust grains)
immersed into similarly “ordinary” environments (such
as thermal photons). (Schlosshauer 2007, pp. 134–5)



The decoherence basis
▶ The system gets entangled with the environment, but the

states between which interference is suppressed are the
ones that would themselves get least entangled with the
environment under this interaction.

▶ What states are preferred will depend on the details of the
interaction, but in many cases, interactions are
characterised by potentials that are functions of position,
so preferred states are often related to position.

▶ For the harmonic oscillator, one should think of the
environment ‘measuring’ approximate eigenstates of
position, or rather approximate joint eigenstates of position
and momentum, so-called ‘coherent states’.

▶ It can be helpful to think in terms of ‘inertial frames’ (recall
IPP-SR): the decoherence basis is like an ‘inertial frame in
Hilbert space’, in which the description of the subsystem
simplifies maximally.
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Decoherence and the foundations of quantum
mechanics

▶ Of course, absent some non-unitary dynamical process of
a kind for which we have no evidence, a
cat-plus-environment system remains in a superposition of
live-cat and dead-cat states, even after decoherence!

▶ Decoherence gives us only improper mixtures, not proper
mixtures!

▶ So decoherence alone does not solve the foundational
problems of quantum mechanics! (Contrary to what one
sometimes hears people saying!)
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Internal versus external ‘environments’

▶ Although all these examples involve an external
environment, there’s no need to make this distinction.

▶ There is, in fact, every reason to think that the microscopic
degrees of freedom of even an isolated system suffice to
destroy coherence between macroscopic superpositions of
that system’s macroscopic degrees of freedom.



Internal versus external ‘environments’

▶ Although all these examples involve an external
environment, there’s no need to make this distinction.

▶ There is, in fact, every reason to think that the microscopic
degrees of freedom of even an isolated system suffice to
destroy coherence between macroscopic superpositions of
that system’s macroscopic degrees of freedom.



Today

Decoherence introduced

Decoherence formalised

Decoherence and branching

Wigner functions

Further applications of decoherence



The branching quantum state

A decohering quantum state can be understood to be
branching:

The importance of decoherence is: when it occurs,
quantum-mechanical systems (approximately) develop a
particularly natural branching structure. For decoherence is
a process which constantly and (on sub-Poincaré-recurrent
timescales) irreversibly entangles the environment with the
system so as to suppress interference between terms of
the decoherence-preferred basis. (We might say that the
environment constantly measures the system and records
the result.) If we idealize the dynamics as discrete, then at
each branching event, the environment permanently records
the pre-branching state, so that at each time the universal
state is a superposition of states each of which encodes a
complete record of where ‘its weight’ comes from. (Wallace
2012, p. 88)
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Decoherence and branching

Branching is caused by any process which magnifies
microscopic superpositions up to the level where decoherence
kicks in, and there are basically three kinds of such process:

1. Deliberate human experiments: Schrödinger’s cat, the
two-slit experiment, Geiger counters, etc.

2. ‘Natural quantum measurements’, e.g. when radiation
causes cell mutation.

3. ‘Classically chaotic’ processes: i.e., processes governed
by Hamiltonians whose classical analogues are chaotic.

The first is a relatively recent and rare phenomenon, but the
other two are ubiquitous.
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Branch counting and its discontents

▶ There is no ‘finest’ choice of branching structure.

▶ As we fine-grain our decoherent history space, we will
eventually reach a point where interference between
branches ceases to be negligible, but there is no precise
point where this occurs.

▶ As such, the question ‘How many branches are there?’
does not, by wide (but not universal! See Lecture 8), make
sense.
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Summary from Wallace

Decoherence causes the Universe to develop an emer-
gent branching structure. The existence of this branch-
ing is a robust (albeit emergent) feature of reality;
so is the mod-squared amplitude for any macroscop-
ically described history. But there is no non-arbitrary
decomposition of macroscopically-described histories
into ‘finest-grained’ histories, and no non-arbitrary way
of counting those histories. (Wallace 2012, pp. 101–2)
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The Wigner function

▶ The Wigner function is sometimes used as an alternative
to the density matrix for systems described by continuously
many degrees of freedom.

▶ Typically, this degree of freedom is position x , and I’ll focus
on this case.

▶ Given the (pure-state or mixed-state) position-space
density matrix ρ(x , x ′) ≡ ⟨x | ρ̂ |x ′⟩ of the system, the
Wigner function is defined as

W (x ,p) =
1

2π

∫ +∞

−∞
dyeipyρ(x + y/2, x − y/2),

where p is the conjugate momentum.
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The Wigner function and probability distributions

▶ The Wigner function bears some similarities to a (classical)
probability distribution in phase space.

▶ For example, W (x ,p) is a real-valued function of x and p,
and the probability distributions Pr(x) ≡ ρ(x , x) and
Pr(p) ≡ ρ̃(p,p) = ⟨p| ρ̂ |p⟩ for x and p can be recovered as
the marginals of W (x ,p):

Pr(x) = ρ(x , x) =
∫

dpW (x ,p),

Pr(p) = ρ̃(p,p) =
∫

dxW (x ,p),

with
∫

dx
∫

dpW (x ,p) = Tr(ρ̂) = 1.
▶ However, the Wigner function will in general take on

negative values in some regions, so it cannot represent a
proper probability distribution!
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The Wigner function and decoherence

▶ To get a feel for what the Wigner function looks like,
consider a superposition of two Gaussian wave packets
separated by a distance ∆x in position space.

▶ The corresponding Wigner function looks like this:

▶ Note: two main peaks together with an oscillatory pattern.
▶ The main peaks, sometimes called the direct peaks are

located in the classically-expected phase-space regions.
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The Wigner function and decoherence

▶ These oscillations encode quantum interference effects.

▶ As the system interacts with its environment, these are
suppressed. E.g.:
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Further applications of decoherence

▶ Zeh (2003b) argues that decoherence can explain the
appearance of particle detections within quantum field
theory. (But decoherence in QFT is a tricky—but
interesting!—ongoing business.)

▶ Another claim about the significance of decoherence
relates to time asymmetry. Insofar as apparent collapse
(branching) is indeed a time-directed process,
decoherence will have direct relevance to the emergence
of this ‘quantum mechanical arrow of time’.

▶ Finally, it has been suggested that decoherence should be
a useful ingredient in a theory of quantum gravity, as
discussed e.g. by Kiefer (1994).
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Summary

▶ Decoherence is the dynamical suppression of quantum
interference effects.

▶ In this lecture, I’ve shown how to model decoherence
quantitatively...

▶ ...I’ve also argued that it is (a) ubiquitous, and (b) generally
very fast.

▶ We’ve seen that decoherence is naturally associated with
the branching of the quantum state.

▶ I’ve also introduced Wigner functions as one way of
visualising decoherence.

▶ Finally, we’ve seen a number of further anticipated
applications for decoherence in physics.

▶ Next time: the measurement problem.



Summary

▶ Decoherence is the dynamical suppression of quantum
interference effects.

▶ In this lecture, I’ve shown how to model decoherence
quantitatively...

▶ ...I’ve also argued that it is (a) ubiquitous, and (b) generally
very fast.

▶ We’ve seen that decoherence is naturally associated with
the branching of the quantum state.

▶ I’ve also introduced Wigner functions as one way of
visualising decoherence.

▶ Finally, we’ve seen a number of further anticipated
applications for decoherence in physics.

▶ Next time: the measurement problem.



Summary

▶ Decoherence is the dynamical suppression of quantum
interference effects.

▶ In this lecture, I’ve shown how to model decoherence
quantitatively...

▶ ...I’ve also argued that it is (a) ubiquitous, and (b) generally
very fast.

▶ We’ve seen that decoherence is naturally associated with
the branching of the quantum state.

▶ I’ve also introduced Wigner functions as one way of
visualising decoherence.

▶ Finally, we’ve seen a number of further anticipated
applications for decoherence in physics.

▶ Next time: the measurement problem.



Summary

▶ Decoherence is the dynamical suppression of quantum
interference effects.

▶ In this lecture, I’ve shown how to model decoherence
quantitatively...

▶ ...I’ve also argued that it is (a) ubiquitous, and (b) generally
very fast.

▶ We’ve seen that decoherence is naturally associated with
the branching of the quantum state.

▶ I’ve also introduced Wigner functions as one way of
visualising decoherence.

▶ Finally, we’ve seen a number of further anticipated
applications for decoherence in physics.

▶ Next time: the measurement problem.



Summary

▶ Decoherence is the dynamical suppression of quantum
interference effects.

▶ In this lecture, I’ve shown how to model decoherence
quantitatively...

▶ ...I’ve also argued that it is (a) ubiquitous, and (b) generally
very fast.

▶ We’ve seen that decoherence is naturally associated with
the branching of the quantum state.

▶ I’ve also introduced Wigner functions as one way of
visualising decoherence.

▶ Finally, we’ve seen a number of further anticipated
applications for decoherence in physics.

▶ Next time: the measurement problem.



Summary

▶ Decoherence is the dynamical suppression of quantum
interference effects.

▶ In this lecture, I’ve shown how to model decoherence
quantitatively...

▶ ...I’ve also argued that it is (a) ubiquitous, and (b) generally
very fast.

▶ We’ve seen that decoherence is naturally associated with
the branching of the quantum state.

▶ I’ve also introduced Wigner functions as one way of
visualising decoherence.

▶ Finally, we’ve seen a number of further anticipated
applications for decoherence in physics.

▶ Next time: the measurement problem.



Summary

▶ Decoherence is the dynamical suppression of quantum
interference effects.

▶ In this lecture, I’ve shown how to model decoherence
quantitatively...

▶ ...I’ve also argued that it is (a) ubiquitous, and (b) generally
very fast.

▶ We’ve seen that decoherence is naturally associated with
the branching of the quantum state.

▶ I’ve also introduced Wigner functions as one way of
visualising decoherence.

▶ Finally, we’ve seen a number of further anticipated
applications for decoherence in physics.

▶ Next time: the measurement problem.



References I

E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch and I. O. Stamatescu,
Decoherence and the Appearance of a Classical World in Quantum
Theory, Berlin: Springer, 2003.

Claus Kiefer, “The Semiclassical Approximation to Quantum Gravity”, in
J. Ehlers and H. Friedrich (eds.), Canonical Gravity: From Classical to
Quantum, Berlin: Springer, pp. 170–212, 1994.

Tim Maudlin, Philosophy of Physics: Quantum Theory, Princeton, NJ:
Princeton University Press, 2019.

Nevill Francis Mott, “The Scattering of Fast Electrons by Atomic Nuclei”,
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 124(794), 1929.

Maximilian Schlosshauer, Decoherence and the Quantum-to-Classical
Transition, Berlin: Springer, 2007.

David Wallace, The Emergent Multiverse, Oxford: Oxford University
Press, 2012.

H. D. Zeh, “On the Interpretation of Measurement in Quantum Theory”,
Foundations of Physics 1, pp. 69–79, 1970.



References II

H. D. Zeh, “Toward a Quantum Theory of Observation”, Foundations of
Physics 3, pp. 109–116, 1973.

H. D. Zeh, “Basic Concepts and Their Interpretation”, in Joos et al.
(2003), pp. 7–40, 2003.

H. D. Zeh, “There is no “First” Quantization”, Physics Letters A 309, pp.
329–34, 2003.

W. H. Zurek, “Pointer Basis of Quantum Apparatus: Into what Mixture
does the Wave Packet Collapse?”, Physical Review D 24, pp. 1516–25,
1981.

W. H. Zurek, “Environment-Induced Superselection Rules”, Physical
Review D 26, pp. 1862–80, 1982.

W. H. Zurek, “Decoherence and the Transition from Quantum to
Classical”, Physics Today 44 (October), pp. 36–44, 1991.

W. H. Zurek, “Decoherence, Einselection, and the Quantum Origins of
the Classical”, Reviews of Modern Physics 75, pp. 715–75, 2003.


	Decoherence introduced
	Decoherence formalised
	Decoherence and branching
	Wigner functions
	Further applications of decoherence

