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The course

1. Basic quantum formalism

2. Density operators and entanglement

3. Decoherence

4. The measurement problem

5. Dynamical collapse theories

6. Bohmian mechanics

7. Everettian structure

8. Everettian probability

9. EPR and Bell’s theorem

10. The Bell-CHSH inequalities and possible responses

11. Contextuality

12. The PBR theorem

13. Quantum logic

14. Pragmatism and QBism

15. Relational quantum mechanics

16. Wavefunction realism
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Motivating the Born rule

▶ Suppose we have 1̂ =
∑

i |ϕi⟩ ⟨ϕi |, where {|ϕi⟩} is the set
of eigenstates of some physical quantity of interest.

▶ Associate each projector |ϕi⟩ ⟨ϕi | with some outcome i of
measurement, this outcome registering the response that
the system being measured has the i th eigenvalue of the
property in question.

▶ Let |ψ⟩ be the state of the system prior to measurement.
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Motivating the Born rule

▶ Notice that

⟨ψ| 1̂ |ψ⟩ = ⟨ψ|

(∑
i

|ϕi⟩ ⟨ϕi |

)
|ψ⟩ = 1,

since |ψ⟩ is normalised.

▶ Writing this out, we have

⟨ψ|ϕ1⟩ ⟨ϕ1|ψ⟩+ . . .+ ⟨ψ|ϕn⟩ ⟨ϕn|ψ⟩ = 1,

i.e.
|⟨ψ|ϕ1⟩|2 + . . .+ |⟨ψ|ϕn⟩|2 = 1.

▶ Hence if |ψ⟩ is normalised, then we can interpret the
quantities |⟨ψ|ϕi⟩|2 as probabilities, as they are positive
real numbers ≤ 1 which sum to 1.
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The Born rule

Born rule: For a measurement of some physical quantity
represented by the self-adjoint operator Â,
specified by a resolution of the identity in terms of
the projectors P̂(ai) onto subspaces of H
corresponding to particular eigenvalues ai of Â,
the probability Pr(ai) of getting outcome i ,
corresponding to P̂(ai) is given by ⟨ψ| P̂(ai) |ψ⟩, for
a system in the state |ψ⟩.

Note that at this point this is an operational prescription! Also,
note that the projection postulate—closely associated with
‘wavefunction collapse’—is an optional extra here...
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Trace of an operator

▶ Let’s introduce the trace of an operator Â, denoted Tr(Â).

▶ This is defined as the sum of the diagonal elements of Â
(in any basis).

▶ So, if we choose a basis {|ψi⟩} in the Hilbert space, we
have

Tr(Â) =
∑

i

⟨ψi | Â |ψi⟩ .

Exercise: Check that this definition is indeed independent
of the basis chosen.

▶ Two other properties of the trace:
1. Linearity: Tr(αÂ + βB̂) = αTr(Â) + βTr(B̂).
2. Cyclicity: Tr(ÂB̂) = Tr(B̂Â).
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▶ This is defined as the sum of the diagonal elements of Â
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Density operators

▶ Define a density operator (or density matrix, if one is
working in a particular basis) to be a self-adjoint positive
operator ρ̂ with Tr(ρ̂) = 1. (An operator’s being positive
means that its eigenvalues are all positive.)

▶ A special case is ρ̂ = |ψ⟩ ⟨ψ| for some vector state |ψ⟩.
▶ In this way, any vector state can be represented by a

density operator.
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Pure and mixed states
▶ A system is in a pure state when its density operator is

given by the projector |ψ⟩ ⟨ψ| onto the 1D subspace
spanned by the vector state |ψ⟩.

▶ A system is said to be in a mixed state when the density
operator associated with it is not given by a 1D projector;
that is, when it is given by some weighted sum of
projectors P̂i (in general these projectors needn’t be onto
orthogonal subspaces),

ρ̂ =
∑

i

λi P̂i ,

where more than one of the λi is non-zero.
▶ Note that whenever we write a vector state |ψ⟩ in the form

|ψ⟩ ⟨ψ|, the (redundant) overall phase cancels out, so in a
sense this representation is more accurate physically than
the one given by vectors in Hilbert space.

▶ Exercise: Show that ρ̂ is pure iff ρ̂2 = ρ̂, iff det(ρ̂) = 0.
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Proper and improper mixtures
▶ When a system is really in some pure state, but we don’t

know which one, then it is said to be properly mixed, or
part of a proper mixture.

▶ If a range of options is some set of (potentially
non-orthogonal) states {|ψi⟩}, and the probability of being
in the i th state is Pr(i), then the density operator describing
the mixed state is

ρ̂ =
∑

i

Pr(i) |ψi⟩ ⟨ψi | ;

since the system really is in one of the |ψi⟩, we say that the
density operator in this case has an ignorance
interpretation.

▶ We’ll come in due course to examples where systems do
not have pure states at all, only mixed ones (i.e., a
non-pure density operator is the only way in which they can
be described) and where an ignorance interpretation is not
possible. These systems are called improper mixtures.
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Trace form of the Born rule
Density matrices and the trace operation give us a nice way of
writing the Born rule:

Born rule: For a measurement specified by a resolution of
the identity 1̂ =

∑
i P̂i , the probability of getting

outcome i , associated with positive operator P̂i , for
a system with density operator ρ̂, is

Pr(i) = Tr(ρ̂P̂i).

It’s easy to see that this recovers the previous version of the
Born rule. Consider some basis {|ϕk ⟩}, let P̂i be the projector
|ϕi⟩ ⟨ϕi |, and let ρ̂ be associated with a system in a pure state
|ψ⟩, so that ρ̂ = |ψ⟩ ⟨ψ|. Then:

Tr(ρ̂P̂i) =
∑

k

⟨ϕk | ρ̂ |ϕi⟩ ⟨ϕi |ϕk ⟩ =
∑

k

⟨ϕk | ρ̂ |ϕi⟩ δij

= ⟨ϕi |ψ⟩ ⟨ψ|ϕi⟩ = |⟨ϕi |ψ⟩| 2
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Product systems

▶ Suppose we have two quantum systems A and B with
respective Hilbert spaces HA and HB. We want to consider
how to combine these descriptions into a single description
for the combined system, A × B.

▶ That combined system is still a quantum system, so we
represent it with the ‘tensor product Hilbert space’,
HA ⊗HB.

▶ We want to understand how HA ⊗HB is built up from HA
and HB.
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Product systems

▶ Recall that a basis of states {|mi⟩} for HA can be thought
of as defining a maximally specific measurement M on A:
each |mi⟩ always gives some particular result mi on
measuring M.

▶ Suppose we pick some such M, and suppose similarly that
we pick an N for B, defined by another basis {|ni⟩} for HB.

▶ We now make the assumption that the pairs |mi⟩ ⊗ |nj⟩ of
vectors from these two bases form a basis for HA ⊗HB:
|mi⟩ ⊗ |nj⟩ gives mi as a result of measuring M on A and nj
as a result of measuring N on B.

▶ An arbitrary state of HA ⊗HB can now be built up from
these basis vectors—a completely general expression is

|ψ⟩ =
∑

i

∑
j

αij |mi⟩ ⊗ |nj⟩ .
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Specifying the state of a combined system

▶ In classical physics, we can always give the state of a
combined system just by giving the states of the
component systems.

▶ But is the same true in quantum mechanics?
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Tensor product of states

▶ Suppose |χ⟩ and |ϕ⟩ are states of A and B respectively,
given by

|χ⟩ =
∑

i

ci |mi⟩ , |ϕ⟩ =
∑

j

dj |nj⟩ .

▶ Then we can define their tensor product |χ⟩ ⊗ |ϕ⟩ by
linearity:

|χ⟩ ⊗ |ϕ⟩ =

(∑
i

ci |mi⟩

)
⊗

∑
j

dj |nj⟩


=:
∑

i

∑
j

cidj |mi⟩ ⊗ |nj⟩
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Entanglement

▶ But not all states can be written in this way! Compare∑
i
∑

j cidj |mi⟩ ⊗ |nj⟩ with the more general expression∑
i
∑

j αij |mi⟩ ⊗ |nj⟩ which we saw before.

▶ States which cannot be written in the product form are
called entangled.

▶ Entangled states can be found in even the smallest
systems.

▶ For example, if we have two spin-half particles each of
which has z-spin eigenstates |+⟩, |−⟩, then the ‘singlet’
state

1√
2
(|+⟩ ⊗ |−⟩ − |−⟩ ⊗ |+⟩)

is entangled. (Exercise: Convince yourself of this.)
▶ What’s the spin state of system 1 or system 2 in the above

joint ‘singlet’ states? Answer: undefined!
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Intermezzo: tensor product of operators
To get a grip on the meaning of ‘⊗’:

▶ If Â acts on H1 and B̂ acts on H2 ...
▶ ... then Â ⊗ B̂ acts (linearly) on H1 ⊗H2:

(
Â ⊗ B̂

)
|Ψ⟩12 =

(
Â ⊗ B̂

)∑
ij

αij |ϕi⟩1 ⊗ |χj⟩2


=
∑

ij

αij Â |ϕi⟩1 ⊗ B̂ |χj⟩2 .

Note: It is always possible to write any linear operator Ô12
acting on H1 ⊗H2 in the form

Ô12 =
∑

kl

ckl Âk ⊗ B̂l .
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▶ If Â acts on H1 and B̂ acts on H2 ...
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A qualitatively new phenomenon

▶ If there’s no way to write the state |Ψ⟩12 as a product of a
state in H1 and a state in H2 then we have a qualitatively
new phenomenon.

▶ The individual systems do not have states of their
own—only the global system does.

Entanglement shows that there are global properties of
a joint system which are not reducible to properties of
subsystems!

As we’ll see in Lecture 9, this is closely related to
‘non-separability’.
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Entanglement and mixed states

▶ Alice and Bob are going to do experiments involving
measuring the spin of a single electron.

▶ Alice asks Bob to prepare an electron in an x-spin
superposition state (specifically, the state
|ψ⟩ = 1√

2
(|↑x⟩+ |↓x⟩)).

▶ Bob is lazy, and just prepared the electron in a probabilistic
state (so it has x-spin or down definitely, but he makes sure
there’s a 50/50 chance of each).

▶ Alice knows Bob well, and is suspicious. She doesn’t have
an interferometer to hand. What could she do to check up
on Bob?
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The example continued
▶ Suppose Alice can perform linear transformations on the

state that effectively rotate it: spin up states in the x
direction become spin up states in the z direction (which
are superpositions of x-spin states), etc.:

|↑x⟩ → |↑z⟩ =
1√
2
(|↑x⟩+ |↓x⟩) ,

|↓x⟩ → |↓z⟩ =
1√
2
(|↑x⟩ − |↓x⟩) .

▶ What happens if Alice performs this transition on her
desired superposition state? She gets a definite |↑x⟩ state.
(Do the calculation!)

▶ What happens when she performs this transformation on
one of Bob’s fake superpositions/really definite states?
She gets a superposition state in the x basis.
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The example continued

▶ So Alice can use the relationship between bases to
uncover Bob’s ploy!

▶ If she performs her transformation but continues to get a
50/50 mix of up and down results, she’ll know they were
never really superposition states!

▶ How could Bob circumvent this problem?
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The example continued

▶ Bob could agree in advance with Alice to entangle the
electrons with another electron in the singlet state:

|Ψ⟩ = 1√
2
(|↑x⟩1|↓x⟩2 − |↓x⟩1|↑x⟩2)

▶ But recall that the singlet state is spherically symmetric:

|Ψ⟩ = 1√
2
(|↑z⟩1|↓z⟩2 − |↓z⟩1|↑z⟩2)

▶ Now if Alice tries to perform her rotations, she won’t get a
definite spin state, so she won’t expect to see a difference.
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Moral

Entanglement can make probabilisitic mixtures indistin-
guishable from superpositions (if we’re not doing inter-
ference experiments)!
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Back to density operators

A density matrix with vanishing off-diagonals can represent:

1. A true probabilistic mixture of states (a ‘proper mixture’), or
2. A superposition of states which are not interfering (an

‘improper mixture’).

We’ve seen that if the quantum state of some (sub)system can
be written only using density operators (not vectors), it is
‘impure’, otherwise it is ‘pure’.
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Entanglement and density operators

When we have entanglement, there will be no vector state for
subsystems, but it turns out that one can assign them density
operators.

▶ These are called the reduced states (reduced density
operators) of a subsystem.

▶ When we have entanglement these reduced states will be
mixed (by definition).

▶ But these are not mixtures which can be given an
ignorance interpretation: we cannot think of these mixtures
as telling us that there is some underlying pure state of
which we are ignorant.
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Reduced states

▶ Take a composite of two systems, with Hilbert spaces H1
and H2, say in a state

|Ψ⟩ =
∑

i

αij |ψi⟩ ⊗ |ϕj⟩ .

▶ This state, as we know, defines expectation values for all
the observables of the composite system H1 ⊗H2.

▶ Special cases of these observables are ones of the form
Â ⊗ 1̂ and 1̂ ⊗ B̂, where Â is an observable on H1 and B̂ is
an observable on H2, and 1̂ denotes the identity operator
on either space.

▶ The state |Ψ⟩ on H1 ⊗H2 defines two (possibly impure)
states on H1 and H2, respectively.
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The mathematics of reduced states
▶ We shall now discuss how to calculate the (density

operators corresponding to) reduced states. This is done
by means of the partial trace.

▶ Recall that the trace of an operator is given by

Tr(Â) =
∑

i

⟨ψi | Â |ψi⟩ ,

where {|ψi⟩} is any orthonormal basis in the Hilbert space
on which Â acts.

▶ Applied to the space H1 ⊗H2, the basis
{
|ϕi⟩ ⊗ |ψj⟩

}
and

the pure state |Ψ⟩, this yields for any observable Ĉ on
H1 ⊗H2:

Tr
(
|Ψ⟩ ⟨Ψ| Ĉ

)
=
∑
i,j

⟨ϕi | ⊗ ⟨ψj |
[
|Ψ⟩ ⟨Ψ| Ĉ

]
|ϕi⟩ ⊗ |ψj⟩
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Obtaining reduced states
If, say, Ĉ has the form Â ⊗ 1̂, then this simplifies to

Tr
(
|Ψ⟩ ⟨Ψ| Â ⊗ 1̂

)
=
∑
i,j

⟨ϕi | ⊗ ⟨ψj |
[
|Ψ⟩ ⟨Ψ| Â ⊗ 1̂

]
|ϕi⟩ ⊗ |ψj⟩

=
∑

i

⟨ϕi |

∑
j

⟨ψj |Ψ⟩ ⟨Ψ|ψj⟩

 Â |ϕj⟩

And defining
ρ̂1 :=

∑
j

⟨ψj |Ψ⟩ ⟨Ψ|ψj⟩ ,

we can rewrite this as

Tr
(
|Ψ⟩ ⟨Ψ| Â ⊗ 1̂

)
= Tr

(
ρ̂1Â

)
,

where the trace on the RHS is the trace in H1.
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Obtaining reduced states

▶ We have thus found the density operator describing the
reduced state of H1.

▶ This yields the expectation values for any observable on
H1 when the state of the total system is |Ψ⟩—for recall the
affinity between our previous expression and how we
stated the Born rule.

▶ This operation is known as the partial trace over H2.
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ρ̂1 is an operator!

Notice that, despite the notation, ⟨ψj |Ψ⟩ ⟨Ψ|ψj⟩ is not a complex
number but an operator on H1, since

|Ψ⟩ =
∑
m,n

αmn |ϕm⟩ ⊗ |ψn⟩ .

In fact, we can write explicitly:

ρ̂1 =
∑

j

⟨ψj |

(∑
m,n

αmn |ϕm⟩ ⊗ |ψn⟩

)(∑
p,q

α∗
pq ⟨ϕq| ⊗ ⟨ψq|

)
|ψj⟩

=
∑
j,m,p

αmjα
∗
pj |ϕm⟩ ⟨ϕp| ,

using the fact that ⟨ψi |ψj⟩ = δij .
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Matrix representation of a reduced density operator

In matrix representation, choosing
{
|ϕj⟩
}

as a basis, we have

ρ̂1 =


∑

j

∣∣α1j
∣∣ 2 ∑

j α1jα
∗
2j · · ·

∑
j α1jα

∗
nj∑

j α2jα
∗
1j

∑
j

∣∣α2j
∣∣ 2 · · ·

∑
j α2jα

∗
nj

...
...

. . .
...∑

j αnjα
∗
1j

∑
j αnjα

∗
2j · · ·

∑
j

∣∣αnj
∣∣ 2

 ,

and we have something similar for ρ̂2 too.



Relative states

▶ The expressions we found can be made to look simpler
and can often be applied more directly if we write the state
of the composite,

|Ψ⟩ =
∑
i,j

αij |ϕi⟩ ⊗ |ψj⟩

in terms of relative states.

▶ To do this, we first perform the sum over j :

|Ψ⟩ =
∑

i

|ϕi⟩ ⊗

∑
j

αij |ψj⟩

 .
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Relative states, continued

The state in round brackets is generally not normalised, so we
set

αi :=
∑

j

∣∣αij
∣∣ 2,

and write

|Ψ⟩ =
∑

i

αi |ϕi⟩ ⊗

 1
αi

∑
j

αij |ψj⟩


=:
∑

i

αi |ϕi⟩ ⊗ |ψ̃i⟩ .

The states |ψ̃i⟩ are the relative states with respect to the |ϕi⟩ in
a given state |Ψ⟩.



Making use of relative states

If we calculate the reduced state ρ̂1 by partially tracing over H2
we now obtain, using this notation,

ρ̂1 =
∑

j

⟨ψj |

(∑
i

αi |ϕi⟩ ⊗ |ψ̃i⟩

)(∑
k

⟨ϕk | ⊗ ⟨ψ̃k |

)
|ψj⟩

=
∑
i,j,k

αiαk ⟨ψj |ψ̃i⟩ ⟨ψ̃k |ψj⟩ |ϕi⟩ ⟨ϕk |

=
∑
i,k

αiαk ⟨ψ̃k |

∑
j

|ψj⟩ ⟨ψj |

 |ψ̃k ⟩ |ϕi⟩ ⟨ϕk |

=
∑
i,k

αiαk ⟨ψ̃k |ψ̃i⟩ |ϕi⟩ ⟨ϕk | ,

since
∑

j |ψj⟩ ⟨ψj | = 1̂.



Another convenient representation of reduced density
operators

Thus we can write ρ̂1 in matrix form as:

ρ̂1 =


α2

1 α1α2 ⟨ψ̃2|ψ̃1⟩ · · · α1αn ⟨ψ̃n|ψ̃1⟩
α2α1 ⟨ψ̃1|ψ̃2⟩ α2

2 · · · α2αn ⟨ψ̃n|ψ̃2⟩
...

...
. . .

...
αnα1 ⟨ψ̃1|ψ̃n⟩ αnα2 ⟨ψ̃2|ψ̃n⟩ · · · α2

n



Clearly, the off-diagonal elements are proportional to the inner
products of the relative states.

This formulation of the reduced density matrix will be very
useful when we look at decoherence next time!
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Reduced states as mixed

▶ We known that any such state, say on H1, is represented
in general by a density operator acting on H1.

▶ That this state, call it ρ̂1, must in general be mixed can be
shown by example.

▶ Consider for instance two electrons in the singlet state,

|Ψ⟩ = 1√
2
(|+⟩ |−⟩ − |−⟩ |+⟩) ,

where |+⟩ and |−⟩ are the up and down spin states in (say)
the x direction.

▶ One can compute

ρ̂1 = ρ̂2 =
1
2

1̂,

so the subsystems cannot be in pure states!
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Application to the measurement procedure

▶ Unitary measurement interactions create entanglement.

|ψ⟩S |r0⟩A 7→
∑

i

βi |ai⟩S |ri⟩A .

▶ But: calculate the reduced state for the system alone:

TrA
(
|Ψ′⟩ ⟨Ψ′|

)
=
∑

i

|βi | 2 |ai⟩ ⟨ai | .

Exercise: Check that this is an improper mixture!
▶ Again, we’ll see lots more about this next time, when we

look at decoherence.
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Summary

Today, I:

1. Reminded you of some facts about the Born rule.
2. Introduced density operators.
3. Introduced quantum entanglement as a qualitatively new

phenomenon.
4. Showed how one can associate reduced density matrices

with subsystems even in the presence of quantum
entanglement.
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