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Basic quantum formalism

Density operators and entanglement

Decoherence

The measurement problem

Dynamical collapse theories

Bohmian mechanics

Everettian structure

Everettian probability

EPR and Bell’s theorem

The Bell-CHSH inequalities and possible responses

. Contextuality

. The PBR theorem

. Quantum logic

. Pragmatism and QBism

. Relational quantum mechanics
. Wavefunction realism



Today

Contextuality

The Bell-Kochen-Specker theorem introduced

The Clifton-Stairs state-dependent proof

Proof of the Bell-Kochen-Specker theorem

The Klyachko-Can-Binicioglu-Shumovsky inequality

Coda: Gleason’s theorem
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Contextuality

What does it mean for a physical theory to be contextual?

» The outcome of a measurement is associated with the
whole experimental arrangement.

» Different experimental arrangements lead to different
physics.

» So measurements are not simply revealing properties of
the system being measured.
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» The Bohm trajectories are deterministic. The outcomes of
a measurement are fixed in advance.
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» The Bohm trajectories are deterministic. The outcomes of
a measurement are fixed in advance.

» But the outcomes of e.g. Stern-Gerlach experiments also
depend upon the context of how the measurement is
performed.
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Note on terminology

There’s some fiddly terminology here which is worth clarifying:

Outcome determinism: The measurement
reveals a pre-existing property of the system.
Measurement non-contextuality: The property

does not depend upon how the measurement is
performed.

Historical notes on terminology:

» ‘Outcome determinism’ is sometimes known as ‘value
definiteness’.

» The conjunction of ‘outcome determinism’ with
‘measurement non-contextuality’ used to be called
‘non-contextuality’ or ‘non-contextual value definiteness.

» Now it is sometimes called traditional non-contextuality
or ‘Kochen-Specker non-contextuality’.
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Non-contextuality no-go theorems

» Traditionally non-contextual theories are possible in 2D
Hilbert spaces (e.g. the ‘Kochen-Specker gbit’).
» They are provably not possible in any Hilbert space of
larger dimension:
» The Clifton-Stairs state-dependent proof.
» The Bell-Kochen-Specker (BKS) state-independent proof.

» The Klyachko-Can-Binicioglu-Shumovsky (KCBS)
inequality.
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The Bell-Kochen-Specker theorem

» The BKS theorem tells us that any hidden variable theory
which assigns values to all properties represented by
projectors must be contextual.

» Specifically, whether or not a system is found, on
measurement, to possess a given property must depend
upon which other properties are measured simultaneously.

» As Wallace (2007, p. 51) writes, “Contextuality seems
well-nigh inconsistent with the idea that systems
determinately do or do not possess given properties and
that measurements simply determine whether or not they
do”
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Before getting to the full BKS contextuality theorem, we’ll first
look at a simpler, ‘state-dependent’ proof due to Clifton (1993)
and Stairs (1992).
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» In all diagrams to follow, let a circle be a projector onto a
given state.
» Circles are connected by lines just in case their associated
projectors are orthogonal.
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In all diagrams to follow, let a circle be a projector onto a
given state.

Circles are connected by lines just in case their associated
projectors are orthogonal.

The measurement scenario for the Clifton-Stairs proof is
three mutually orthogonal projectors:

€ 1) €{0,1}
1 a(Pk

L (11) + 12)) 1)—12))
V2 V2
PRACHOES
3)

Any triangle is a measurement scenario.

We require that the measurement outcomes are 0 or 1,
and that they sum to 1.

So for any triple of ontic states, one of those states is going
to be 1 and the other two 0.



The Clifton-Stairs proof
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» Now suppose that we have two measurement scenarios
which contain the same projector.

» We link up the two triangles, and non-contextuality
demands that if a circle is red in one measurement
scenario them it had better be red in the other
measurement scenario.
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The Clifton-Stairs proof

So, naturally, the other circles are going to have to be blue:
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The Clifton-Stairs proof

Now consider a scenario like this:

1 1
— (1) +12) — (1) = 12)
V2 V2
13)
€q(drlA) € {0,1}
[1)
S et =1
1 1
(12) + 13)) (12) = |13)
[ V2 €a(P112) = €q/(¢1])

One of the other two circles is going to have to be red...
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Now consider this scenario:
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Notice that the far-left and far-right states are not orthogonal to
each other.
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Suppose that we prepare the right-most state:
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The Clifton-Stairs proof
» Since the leftmost state isn’t orthogonal to the rightmost
state, some of the ontic states which are prepared by the
rightmost state will also be in the leftmost state.
» In that case, we have:
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V 1
L1y +12) +13)
V3
€q(prlA) € {0,1}
1 1
—(2) +13)) (12) = I3)) ©
V2 2 PRACHLES

: 1 T
| ea®Dpp@ =1 P =FlU+1A+ED e@lh) = el
_ :

. (11)=12)+ 13))
1 (p| 2T
| eat@ued) =5 73




The Clifton-Stairs proof
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State-dependent vs state-independent proofs

» So contradiction, the model fails.

» The trick in completing quantum non-contextuality proofs
like this lies in finding the right combination of states.

» It really does bear stressing that the Clifton-Stairs proof is
state-dependent:

» For any given quantum state, there are combinations of
observables that can’t all be traditionally non-contextual.
» Different quantum states require different observables.

» One might desire a proof which doesn’t mention states at
all, but which just has to do with different combinations of
projectors.

» BKS proofs meet this desideratum:

» Contradiction arises for any quantum state.
» Contradiction arises for any ontic state.
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The BKS proof

_ MICHAEL REDHEAD

INCOMPLETENESS,
NONLOCALITY,
AND REALISM

A Prolegomenon to the Philosophy

of Quantum Mechanics
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(Note: Stairs was working after Kochen & Specker, and noticed that
one could use the mini-diagrams for a state-dependent proof.) - . ...
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The BKS proof

(At least one of the blobs for each of the pairs at the bottom has to be

red given that we have a blue at the top.) B e = = = sac
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The BKS proof

(This follows because we’ve seen from Clifton-Stairs that we
can’t have red on both sides of one of the little constructions.) . . . .
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The BKS proof
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Contradiction, because we've already proven that if we’ve got one of

the mini-diagrams then we can'’t have red on both sides! = - = hac
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On the BKS theorem

» The proof here is straightforward.

» Obviously, the ingenuity is in designing this enormous set
of states (117 projectors!).

» Bell (1966) actually did something similar to Kochen &
Specker (1967) one year earlier than them, but nobody
realised until afterwards (hence now the ‘BKS theorem’).
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Later history of BKS-type results

» Since 1967, other sets of uncolourable directions have
been discovered with fewer vectors.

» E.g., Peres (1991) found a set of 33 with cubic symmetry.

» Penrose pointed out that Peres’ set of 33 directions can be
described as follows: take a cube and superimpose it with
its 90-degree rotations about two perpendicular lines
connecting its centre to the midpoints of an edge. Peres’
directions point to the vertices and the centres of the faces
and edges of the resulting set of three interpenetrating
cubes. (Obviously...)



The Penrose cube

(Escher, Waterfall, 1961)
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The Klyachko-Can-Binicioglu-Shumovsky inequality

» The BKS theorem proves that non-contextual hidden
variable theories can’t exist.

» But if we want to do an experimental test, we need to have
an inequality.

» One can derive an inequality for non-contextual hidden
variable theories in the following way.

» ['ll first present this, before discussing its significance.
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The KCBS inequality

Main point: at least one of the outer points in the star must be
red in a configuration like this.
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The KCBS inequality

» Take any quantum state.

» From the five measurement bases (and measure it on that
quantum state), Pr(Outer = R) > 1.



The KCBS inequality

Now here comes quantum theory:

1
P(Outer =R) = -

For any state you like, you can create this diagram around it.



The KCBS inequality
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Experimental violation of the KCBS inequality

» According to quantum theory, for any measurement basis
you pick, Pr(Outer = R) < 1.

» So non-contextual hidden variable theories are ruled out
on the basis of experiments!
» But the KCBS inequality invites some foundational
questions:
1. How does the KCBS inequality (related to the BKS
theorem) compare with the CHSH inequalities (related to
Bell's theorem)?
2. Since the BKS theorem is a logical impossibility proof, isn’t
the KCBS inequality somewhat unnecessary?
3. By contrast, doesn’t the CHSH inequality look integral to
Bell’s theorem?
4. In light of this, do the two inequalities have the same role to
play in ‘experimental metaphysics’?

» The KCBS inequality at least helps us to quantify quantum
non-contextuality (see e.g. Cabello 2013).
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Gleason’s theorem

Theorem (Gleason, 1957)

Let f be any function on projectors on a Hilbert space H of
dimension d > 2 to the unit interval which is additive for any set
of pairwise disjoint projectors on H. Then there exists a unique
density matrix p such that for any P on H, f(P) = Tr(pP).

» (The proof of Gleason’s theorem is notoriously involved
and | won’t present it here.)

» One might think that Gleason’s theorem counts as a
derivaiton of the Born rule in unitary quantum
mechanics—thereby (e.g.) solving (?) Everettians’ worries
about probability without the need to invoke decision
theory etc.



Doubts about Gleason’s theorem and quantum
probabilities

However, as Saunders points out,
Gleason’s theorem is a derivation of part of the Born
rule, but of course it says nothing about ‘measure-
ments’ or ‘experiments’; nor, on reflection, is the
premise of the theorem so clearly motivated. (Saun-
ders 2005, p. 213)



Doubts about Gleason’s theorem and quantum
probabilities

However, as Saunders points out,
Gleason’s theorem is a derivation of part of the Born
rule, but of course it says nothing about ‘measure-
ments’ or ‘experiments’; nor, on reflection, is the
premise of the theorem so clearly motivated. (Saun-
ders 2005, p. 213)

Question: To what extent really is Gleason’s theorem
significant in the philosophy of quantum probabilities?
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Gleason’s theorem and the BKS theorem

» A direct consequence of Gleason’s theorem is that when
the Hilbert space H has dimension d > 3 then there does
not exist a function f that assigns only the values 0 or 1 to
projections P : H — .

» Loosely speaking, this means that it is not possible to
assign true/false values to all elements of the Hilbert space
that represent yes/no events (projections) in such a way
that is compatible with their Boolean properties.

» The BKS theorem is similar in spirit; indeed, the BKS
theorem is provably a special case of Gleason’s theorem.

» Therefore, both theorems rule out non-contextual hidden
variable theories (though, being strictly stronger, Gleason’s
theorem does more).
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Summary

Today, I've:

1. Introduced quantum contextuality.

2. Presented the Clifton-Stairs state-dependent no-go
theorem on quantum non-contextuality, and the BKS
state-independent theorem.

3. Presented the KCBS inequality, related to experimental
tests of and bounds on quantum contextuality.

4. Introduced Gleason’s theorem and indicated briefly how it
relates to the BKS theorem.

Next time: W-ontic and V-epistemic theories and the PBR
theorem.
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