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The course

1. Basic quantum formalism

2. Density operators and entanglement

3. Decoherence

4. The measurement problem

5. Dynamical collapse theories

6. Bohmian mechanics

7. Everettian structure

8. Everettian probability

9. EPR and Bell’s theorem

10. The Bell-CHSH inequalities and possible responses

11. Contextuality

12. The PBR theorem

13. Quantum logic

14. QBism

15. Pragmatism and relational quantum mechanics

16. Wavefunction realism
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Where things stand
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W. V. O. Quine (1908–2000)



The Quinean web

Famously, Quine held that any part of our theoretical edifice is a
candidate for revision:

Any statement can be held true come what may if
we make drastic enough adjustments elsewhere in the
system. Even a statement very close to the periphery
can be held true in the face of recalcitrant experience
by pleading hallucination or by amending certain state-
ments of the kind called logical laws. Conversely, by
the same token, no statement is immune from revision.
Revision even of the logical law of the excluded middle
has been proposed as a means of simplifying quantum
mechanics; and what difference is there in principle be-
tween such a shift and the shift whereby Kepler super-
seded Ptolemy, or Einstein Newton, or Darwin Aristo-
tle? (Quine 1953, p. 43)
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Tim Maudlin (1958–)



The great pantheon of Temptation

Quine here takes his place in the great pantheon of
Temptation: the apple hangs glistening before us. Ke-
pler, Einstein, Darwin ... all one has to do to become
the next entry on this list is show how a revision in logic
could substantially simplify an empirical theory. He
even points to the theory: quantum mechanics. Who
could resist? ... Fill in the blanks and win immortality!
It’s an offer you can’t refuse. And thereby hangs our
tale. (Maudlin, p. 158, 2007)



Hilary Putnam (1926–2016)



Putnam’s 1968 article

In 1968, Putnam wrote a controversial article which made the
following three claims:

1. Quantum mechanics prompts us to revise our classical
logical notions in favour of ‘quantum logical’ ones. (Cf. the
move from Euclidean to Riemannian geometry.)

2. This revision is ‘global’: quantum logic is the ‘true’ logic.
3. Recognising that logic is quantum solves the measurement

problem of quantum mechanics.

There’s now an almost universal consensus that, even if it were
otherwise justified, a move to quantum logic would not resolve
the puzzles of quantum mechanics.
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On the first claim

“Quantum mechanics prompts us to revise our classical logical
notions in favour of ‘quantum logical’ ones.”

▶ This is perhaps justified in a ‘local’ sense: quantum logic is
suited to describing certain propositions in certain
experimental scenarios.

▶ (Cf. the application of certain intuitionistic or tensed etc.
logics to certain scenarios, e.g. the Sorites paradox or
reasoning about future contingents—see (Sider 2010).)

▶ This is clearly weaker than claiming that quantum logic is
the ‘one true logic’ (on which cf. (Griffiths & Paseau 2022)).

▶ In this sense, the first claim is uncontroversial.
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On the second claim

“Quantum logic is the ‘one true logic’.”

This is much more controversial, and Dummett (1976)
emphasises two issues:

1. Motivating a revision of logic requires not only motivating
the introduction of some non-classical connectives. An
advocate of a revision of logic must also show why these
connectives do not merely sit alongside the classical
connectives, but actually replace them.

2. A Quinean point: empirical considerations alone cannot
force us to revise our logic: a distinctly philosophical
component will be needed in order to justify whether a
revision of logic, as opposed to a revision somewhere else
in our network of beliefs, might be desirable.
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On the third claim

“Recognising that logic is quantum solves the measurement
problem of quantum mechanics.”

This claim is by now recognised to be highly implausible, as
we’ll see.
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‘Is logic empirical?’: A caveat

▶ A lot of the papers on the philosophy of quantum logic
have this title!

▶ But, of course, this is a more general question than
anything to do with quantum mechanics per se.

▶ If quantum logic provides us with an intelligible global
alternative to classical logic, then the case for logic being
empirical might be strengthened.

▶ However, comprehensive assessment of the question of
whether empirical considerations might prompt us to revise
our logic will depend less on the details of the physics and
more on the largely conceptual question of whether the
notion of logical consequence is a priori or is an abstraction
from what appear to be valid inferences in our language.
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Summary so far

▶ Putnam’s claim (1)—that we might sometimes have
occasion to use quantum logic—is not controversial.

▶ His claim (2)—that quantum logic is the ‘one true logic’—is
much more controversial, and must be argued for.

▶ His claim (3)—that quantum logic itself solves the
measurement problem—is also highly questionable, as
we’ll see.
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Quantum logic as a logic of experimental propositions

▶ The easiest way to introduce the concepts of quantum
logic is in terms of a logic of ‘experimental propositions’.

▶ That is, one can define explicitly some non-classical
connectives for a certain special class of propositions,
relating to idealised quantum mechanical tests.

▶ These connectives will arguably be well suited for the
limited subject matter at hand.

▶ If as a result one obtains a logical system satisfying certain
formal requirements, we shall say that one has introduced
a local non-classical logic.
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Warmup: Kolmogoroff on intuitionistic logic

In order to give you a feel for how this works, let’s start off with
a warmup case: Kolmogoroff (1931) on intuitionistic logic.

▶ In this framework, each mathematical proposition p stands
for solving the corresponding mathematical task.

▶ The classical negation of p (not solving the task) is not
itself a mathematical task, so the chosen set of
propositions is not closed under classical negation.

▶ Instead, showing that a task is impossible to solve is again
a mathematical task.

▶ On the basis of the above, the law of excluded middle
p ∨ ¬p breaks down.

▶ From this, one can set up an intuitionistic logical system
(for more on which in general see (Sider 2010, ch. 3)).
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Standard syntax for quantum logic
We adopt a propositional formal language for quantum logic,
consisting of:

▶ a countable collection of propositional variables p,q, r , . . .,
with or without subscripts;

▶ two logical operators: unary negation ¬ and binary
conjunction ∧; and

▶ parentheses () for punctuation.

We define formulae of quantum logic in the usual recursive way:
1. every propositional variable is a formula;
2. for every formula ϕ, ¬ϕ is a formula;
3. for every pair of formulae ϕ and ψ, (ϕ∧ψ) is a formula; and
4. nothing else is a formula.

Note that quantum logic lacks a material conditional! See (Dalla
Chiara & Giuntini 2002, §3).
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Standard semantics for quantum logic

The standard semantics of quantum logic is that it is the logic of
projection operators in a Hilbert space, where a projector p̂ is
associated with the set of quantum states {|ψ⟩} for which p̂
(when measured) has eigenvalue 1. From there:

▶ ¬p̂ is the orthogonal complement of p̂ (since by definition
of the orthogonal complement, for those states the
probability of measuring the physical property associated
with projector p̂ vanishes);

▶ p̂ ∧ q̂ is the intersection of p̂ and q̂; and
▶ p̂ ∨ q̂ = ¬(¬p̂ ∧¬q̂) refers to states that superpose p̂ and q̂.

(Although in previous lectures I was fastidious about not
dropping hats on operators, in the remainder of this lecture I will
actually drop hats.)
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Differences with classical logic: failure of distributivity

The most notable difference between quantum logic and
classical logic is the failure of the propositional distributive law:

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

To illustrate why this law fails, let’s look at an example.



Illustration of failure of distributivity

Consider a particle moving along a 1D line, and let
▶ p = “the particle has momentum in the interval [0,+1/6].”
▶ q = “the particle is in the interval [−1,1].”
▶ r = “the particle is in the interval [1,3].”

We might observe that there is some structure in which the
sentence p ∧ (q ∨ r) is true—in other words, that the state of a
particle is a superposition of momenta between 0 and +1/6 and
positions between −1 and +3.

On the other hand, the propositions (p ∧ q) and (p ∧ r) each
assert tighter restrictions on simultaneous values of position
and momentum than are allowed (they each have uncertainty
1/3, which is less than the allowed minimum of 1/2).

So there are no states that can support either proposition, and
(p ∧ q) ∨ (p ∧ r) is false; hence, propositional distributivity fails.
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(p ∧ q) ∨ (p ∧ r) is false; hence, propositional distributivity fails.
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Algebraic structure of quantum logic

Quantum logic can be axiomatised as the theory of
propositions modulo the following identities:

▶ a ≡ ¬¬a.
▶ ∨ is commutative and associative.
▶ There is a maximal element ⊤, and ⊤ ≡ b ∨ ¬b, for any b.
▶ a ∨ ¬(¬a ∨ b) ≡ a.

Some authors in addition specify the ‘orthomodular law’, which
states that:
▶ If ⊤ = ¬(¬a ∨ ¬b) ∨ ¬(a ∨ b), then a ≡ b.

These axioms yield a system of axiomatic proofs for quantum
logic (for more on axiomatic proofs, see (Sider 2010)).
Alternatively, one can build systems or natural deduction,
tableaux, etc.
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Philosophical significance of quantum logic

▶ Quantum logic was originally constructed as a logic of
quantum mechanical experimental outcomes.

▶ But, as with Putnam (1968), we might seek to move
beyond an operational understanding of the approach, and
regard quantum logic as bearing on the measurement
problem itself.

▶ Let’s explore how Putnam’s argument proceeds, and
where it goes wrong.
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Putnam and the paradoxes of quantum mechanics

▶ The paradox of Schrödinger’s cat is that the cat is neither
alive nor dead. (This of course is the popular way of putting
the measurement problem, which is the problem of
macroscopic superpositions—recall Lecture 4.)

▶ Putnam’s way of resolving the paradox is to choose a
strictly quantum logical reading: ‘dead’ is interpreted as
‘not alive’ in the quantum logical sense of
orthocomplementation, and the cat is then indeed alive or
dead, but in the sense of the quantum logical disjunction.

▶ Putnam, however, seems to want to go further, namely he
claims that, since the cat is alive or dead (quantum
logically), there is a matter of fact about the biological state
of the cat.

▶ This last step should already be setting alarm bells
ringing...!
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Putnam’s dissolution(?) of the measurement problem
▶ Consider an n-dimensional Hilbert space and take an

orthonormal basis {|xi⟩} in the Hilbert space, associated
with some observable X̂ .

▶ Denoting the propositions corresponding to the
one-dimensional projectors onto the basis vectors as
x1, . . . , xn, the following is a true proposition under all truth
valuations: x1 ∨ . . . ∨ xn.

▶ The truth of this proposition is understood by Putnam as
meaning that the observable X̂ indeed has a value
corresponding to one of the xi .

▶ Putnam (1968, pp. 184–5) concludes that the system
possesses values for all observables. (???)

▶ He then interprets measurements as simply revealing
those pre-existing values, thus proposing that the
measurement problem of quantum mechanics is solved by
a move to quantum logic.
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Responding to Putnam’s argument

▶ As Bacciagaluppi says, this is “rather bewildering” (2013, p.
22).

▶ The truth valuations in this semantics are such that the
proposition x1 ∨ . . . ∨ xn can be true without any of the xi
being true.

▶ Any quantum state that is a non-trivial linear combination
of the basis vectors will define such a truth valuation.

▶ In the case of entangled systems, a quantum logical
proposition can be true without any of the one-dimensional
projectors spanning it being true.

▶ In this sense, Putnam’s argument seems to rest on a
technical mistake.
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Quantum logic and quantum interpretations

So much for Putnam’s argument. But there are still a number of
other issues relating to quantum logic which are worth shoring
up. In this section, I’ll consider:

1. The relationship between classical and quantum logics and
how the former might emerge from the latter.

2. The significance of quantum logic for
instrumentalism/Bohr-type views.

3. The significance of quantum logic for the three main realist
approaches to quantum mechanics (GRW, Bohm, Everett).

In general, we’ll see that the significance of quantum logic will
depend upon the interpretation of quantum mechanics which
one favours.
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The revision of logic

▶ If we want to argue that quantum logic is the ‘one true
logic’ (recall Putnam’s aim (2)), then we need to argue that
the connectives of quantum mechanics replace the
connectives of classical logic.

▶ Even if one does this, one needs to explain the
effectiveness of classical logic—so even embracing
quantum logic as the ‘true’ logic still leaves an explanatory
gap.

▶ Plausibly, decoherence can help here—but the devil, of
course, is in the details. (See e.g. (Fortin & Vanni 2014).)

▶ And in any case, as we’ll see, different interpretations of
quantum mechanics will have different things to say on this
matter.
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Quantum logic and instrumentalism

Let’s move on now to task (2): how quantum logic interacts with
instrumentalist/Bohrian views.

▶ If one takes an instrumentalist position, then quantum
mechanics just provides us with the means of calculating
the probabilities for the results of our experiments.

▶ The resulting procedure is certainly different from that in
any classical framework, but there seems to be little need
to revise anything but our algorithmic procedures for
predicting experimental results.

▶ So it is not clear why this logic should be even a candidate
for a revised global logic.
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Quantum mechanics and Bohrian positions

▶ If one adopts a subtler Bohrian position (recall Lecture 4),
then the language of classical physics becomes a
prerequisite for the description of quantum experiments, so
that the very formulation of quantum mechanics would
seem to require classical logic.

▶ Clearly—to repeat—more than empirical considerations
are needed in order to mount a case for the revision of
logic at the global level.
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Quantum logic in realist approaches to QM

Let’s now think about the status of quantum logic on the three
main realist approaches to quantum mechanics: dynamical
collapse approaches, Bohmian mechanics, and Everett.

These approaches should give us some resources to explain
why classical logic is effective in certain domains of a world in
which quantum mechanics is true.
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Bohmian mechanics
▶ Since Bohmian mechanics reproduces the

phenomenology of quantum mechanics, physical systems
have the same dispositions to elicit measurement results in
Bohmian mechanics as in standard quantum mechanics.

▶ The introduction of quantum logical connectives at the level
of the experimental propositions goes through unaltered.

▶ At the level of ontic states, configuration-space properties
obey classical logic no less than phase-space properties in
classical physics.

▶ Indeed, Bohmian mechanics can be viewed as a theory
that is entirely classical at the level of kinematics (particles
moving in space and time—see (Albert 1992)).

▶ Thus, the way in which Bohmian mechanics explains the
effectivenesss of classical logic at the macroscopic level is
that it is already the logic that is operative at the hidden
(‘untestable’) level of the particles.
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Bacciagaluppi on quantum logic and Bohmian
mechanics

Thus, if one takes the pilot-wave approach to quantum
mechanics, although quantum logic may be introduced
as a local logic at the level of experimental proposi-
tions, it cannot be taken as the basis for justifying the
everyday use of classical logic, and thus cannot aspire
to replace classical logic as the ‘true’ logic. (Baccia-
galuppi 2013, p. 31)



Dynamical collapse theories

Arguably, in dynamical collapse theories there’s no explanation
for how classical logic can be grounded in quantum logic:

Thus, also in spontaneous collapse theories (as in
pilot-wave theory), the quantum connectives do not
provide the basis for the effectiveness of the classical
connectives. There is no story explaining that the cat
is dead or alive classically because it is dead or alive
quantum logically. The cat is first fleetingly (if at all)
dead or alive quantum logically, then the dynamics in-
tervenes and ensures the cat is dead or alive classi-
cally. Either a hit on the dead component takes place
or one on the alive component does. (Bacciagaluppi
2013, p. 34)
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Decoherence and quantum logic in Bohmian
mechanics and GRW

▶ What I quoted Bacciagaluppi as saying about Bohmian
mechanics and quantum logic sounds correct—if one
focusses on the corpuscles, which indeed behave like
classical particles.

▶ What I quoted Bacciagaluppi as saying about GRW and
the transition to classicality also sounds correct—if one
ignores the problem of the tails!

▶ But of course, in both cases, one in fact still has a quantum
state, and so the ‘Everett in denial’ charge.

▶ Perhaps the right way to make sense of the emergence of
classical logic in both cases, then, is instead via
decoherence, à la (e.g.) Fortin & Vanni (2014).
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The Everett interpretation

▶ In Everett, the challenge of explaining how classical logic
‘emerges’ from quantum logic is met by decoherence.

▶ To repeat: decoherence can play this kind of explanatory
role in Bohmian mechanics and in dynamical collapse
theories too!
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Bacciagaluppi on the Everett interpretation

Thus, while the structure of the intrinsic properties of
physical systems supports a non-distributive logic at
the fundamental level (even in the individual worlds),
one can claim that, unlike the case of pilot-wave the-
ory or spontaneous collapse, the perspectival element
characteristic of the Everett interpretation introduces a
genuine emergence of the classical connectives from
the quantum connectives. In this sense, it is only the
Everett interpretation, among the major approaches to
quantum mechanics, that is compatible with a revision
of logic. (Bacciagaluppi 2013, p. 36)

Questions: What kind of ‘perspectivalism’ does Bacciagaluppi
have in mind here? And does the last claim follow, given what I
said previously about decoherence and Bohmian
mechanics/GRW?
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Maudlin’s final take

The horse of quantum logic has been so thrashed,
whipped and pummeled, and is so thoroughly de-
ceased that [...] the question is not whether the horse
will rise again, it is: how in the world did this horse get
here in the first place? The tale of quantum logic is
not the tale of a promising idea gone bad, it is rather
the tale of the unrelenting pursuit of a bad idea. [...]
Many, many philosophers and physicists have become
convinced that a change of logic (and most dramati-
cally, the rejection of classical logic) will somehow help
in understanding quantum theory, or is somehow sug-
gested or forced on us by quantum theory. But quan-
tum logic, even through its many incarnations and vari-
ations, both in technical form and in interpretation, has
never yielded the goods. (Maudlin 2007, pp. 184–5)



Is quantum logic even logic?

▶ Most philosophers find quantum logic an unappealing
competitor to classical logic.

▶ It is far from evident that quantum logic is a logic, in the
sense of describing a process of reasoning (remember, it
doesn’t have a material conditional!)...

▶ ...as opposed to a particularly convenient language with
which to summarise the operational results of quantum
mechanical experiments.
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Summary

Today, I’ve:

1. Introduced the formalism of quantum logic.
2. Demonstrated that, pace Putnam (1968), quantum logic

does not solve the measurement problem.
3. Seen that one’s account of the emergence of a classical

logic from a fundamentally quantum logic might differ
depending upon one’s preferred interpretation of quantum
mechanics (but in all cases decoherence seems key).

Next time: QBism.
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