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The course

1. Basic quantum formalism

2. Density operators and entanglement

3. Decoherence

4. The measurement problem

5. Dynamical collapse theories

6. Bohmian mechanics

7. Everettian structure

8. Everettian probability

9. EPR and Bell’s theorem

10. The Bell-CHSH inequalities and possible responses

11. Contextuality

12. The PBR theorem

13. Quantum logic

14. Pragmatism and QBism

15. Relational quantum mechanics

16. Wavefunction realism
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Boston: Harvard University Press, 1994.

▶ Tim Maudlin, Philosophy of Physics Volume II: Quantum
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▶ Tim Maudlin, Quantum Non-Locality and Relativity, third
edition, Oxford: Wiley-Blackwell, 2011.

▶ David Wallace, The Emergent Multiverse, Oxford: Oxford
University Press, 2012.

▶ John S. Bell, “Against Measurement”, in Speakable and
Unspeakable in Quantum Mechanics, second edition,
Cambridge: Cambridge University Press, 2004.

▶ David Wallace, “Philosophy of Quantum Mechanics”, in
D. Rickles (ed.), The Ashgate Companion to Contemporary
Philosophy of Physics, London: Routledge, 2008.
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Formalism

The first three lectures are going to be a lot of formalism...

...but I’ll still try to make it fun!

Highly recommended are:

▶ David Wallace, “The Formalism of Quantum Mechanics”,
2005.

▶ David Wallace, “The Formalism of Quantum Mechanics II –
Density Operators and Entanglement”, 2005.

▶ Guido Bacciagaluppi, “Density Operators in Quantum
Mechanics”, 1998.

▶ Frederic P. Schuller, “Lectures on Quantum Theory”, 2015.

(All on Canvas.)
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States

▶ Suppose that we have some (quantum) system.

▶ Suppose that we have some measurable quantity M for
that system.

▶ M is maximally specific iff whenever we know the value of
M with certainty for the system, then we know everything
else (which is knowable) about that system.

1. if the system is a one-dimensional spinless particle then
position is maximally specific;

2. if the system is the spin dofs of a neutron, then spin in the z
direction is maximally specific.

3. energy isn’t always maximally specific, because two distinct
states can have the same energy.

▶ Write the states of definite m as |m1⟩ , |m2⟩ , . . . , |mn⟩.
▶ |mi⟩ is a state such that, if we measure M when the system

is in that state (assuming that we have an ideal measuring
device), then we definitely get the result mi .
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Superpositions
▶ In classical physics, this would be the whole story:

quantities always have measurable values, so the system
would be in one of the |mi⟩, and we just ask which.

▶ But quantum mechanics permits superpositions, e.g.

|ψ⟩ = α1 |m1⟩+ α2 |m2⟩+ . . .+ αn |mN⟩ , ∀αi ∈ C.

▶ What these superposition states mean, or represent, is
part of the great puzzle of quantum mechanics.

▶ But operationally, we can make sense of them via the Born
rule: If |ψ⟩ is the state of the system, and we measure M,
then the probability of getting result mi is |αi |2.

▶ Because probabilities sum to one, this implies that
quantum states must be normalised,

N∑
i=1

|αi |2 = 1.
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Hilbert spaces

▶ Mathematically, to what kind of space do quantum states
belong?

▶ For the quantum system under consideration, call its
Hilbert space the space

H :=

{∑
i

αi |mi⟩ : all complex numbers αi

}
.

▶ Elements of a Hilbert space needn’t be normalised (only
the physical ones are), and are called vectors.
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Hilbert space inner product
▶ We can define an inner product on Hilbert space. Like all

inner products, this eats two vectors and spits out a (here
complex) number.

▶ (Actually, technically a Hilbert space is defined as having
an inner product—I’ll come back to this.)

▶ If |ψ⟩ =
∑

i αi |mi⟩ and |ϕ⟩ =
∑

i βi |mi⟩ are vectors, then
their inner product is defined as

⟨ψ|ϕ⟩ :=
∑

i

α∗
i βi .

▶ Properties of the inner product:
1. Linear: ⟨ϕ| (α |ψ1⟩+ β |ψ2⟩) = α ⟨ϕ|ψ1⟩+ β ⟨ϕ|ψ2⟩
2. Satisfies: ⟨ϕ|ψ⟩ = (⟨ψ|ϕ⟩)∗.
3. Positive: If |ψ⟩ ≠ 0 then ⟨ψ|ψ⟩ ∈ R+.

▶ We can write the normalisation condition on states as: |ψ⟩
is normalised iff ⟨ψ|ψ⟩ = 1.
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Mathematical approaches to Hilbert space

▶ Here, I’ve presented the Hilbert space and the inner
product by starting with a particular set of vectors and
building the rest of the space from them.

▶ In more mathematically formal literature, one defines
Hilbert space in a more abstract way:

A Hilbert space is a real or complex inner product
space that is also a complete metric space with respect
to the distance function induced by the inner product.

▶ See e.g. the Schuller notes for more details.
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Bases for Hilbert space
▶ A basis for a Hilbert space H is a set of vectors in H s.t.:

1. Any vector in H can be written as a superposition of basis
vectors;

2. No basis vector is a superposition of other basis vectors.

▶ It is typical to insist that a basis be orthonormal, which
means that it also satisfies:

1. If |ψ⟩ and |ϕ⟩ are (distinct) basis vectors, then ⟨ψ|ϕ⟩ = 0.
2. If |ψ⟩ is a basis vector, then ⟨ψ|ψ⟩ = 1.

▶ Exercise: Prove that any two bases for H have the same
number of vectors.

▶ Let |ψ⟩ ∈ H and let {|i⟩} be any orthonormal basis. By
definition, there will be complex numbers {αi} s.t.
|ψ⟩ =

∑
i αi |i⟩. Because the basis is orthonormal,

⟨i |ψ⟩ = αi ; that is, we have the useful expansion

|ψ⟩ =
∑

i

|i⟩ ⟨i |ψ⟩

.
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Bases and measurement

▶ Suppose K is another maximally specific measurement on
the same system, and suppose that the states with definite
values of K are |k1⟩ , . . . , |kN⟩.

▶ If |ψ⟩ is an arbitrary state, what’s the probability of getting
result ki when we measure K ?

▶ It’s a postulate of ‘standard’, textbook quantum mechanics
that the probability is |⟨ki |ψ⟩|2.
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Summary so far

▶ A physical system is represented by a Hilbert space.

▶ States of that system are represented by normalised
vectors in that Hilbert space.

▶ A maximally specific measurement is represented by a
basis of the Hilbert space.

▶ If K is a maximally specific measurement and |ki⟩ has
definite value ki of K , then the probability is of getting ki
when we measure K on the state |ψ⟩ is |⟨ki |ψ⟩|2.
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Subspaces

▶ Suppose we pick some subset {|n1⟩ , . . . , |nP⟩} of a basis,
and consider all those vectors which can be expressed as
superpositions of the members of that subset.

▶ This set is a Hilbert space in its own right!
(Exercise: prove this! You just need to show that it
satisfies the definition of a Hilbert space...)

▶ It’s a smaller Hilbert space, entirely contained within the
original one.

▶ Such spaces are called subspaces.
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Global phase transformations

▶ The probability rule defined previously gives the same
probabilities for all measurements if we carry out a global
phase transformation of all states,

|ψ⟩ → exp(iθ) |ψ⟩ .

▶ As such, it’s standard to regard the physical system as
unchanged by such transformations.

▶ So strictly, it isn’t states in Hilbert space which represent
physical systems—it’s equivalence classes of states
related by global phase, sometimes called rays.

▶ Practically, however, it’s easier to just carry on working with
vectors in Hilbert space.
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On the reality of the global phase

▶ Denying the reality of the global phase is, to put it mildly,
entirely mainstream.

▶ A few philosophers have resisted this, though. Stepping
back, it’s related to Leibniz shifts, and the general literature
on symmetry transformations in physics.

▶ For defences of the mainstream, see (Wallace 2022) or
(Gao 2024); I won’t question it further in these lectures.
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Linear operators

▶ A linear operator Â is a map from Hilbert space to itself
which has the linearity property:

Â (α |ψ⟩+ β |ϕ⟩) = αÂ |ψ⟩+ βÂ |ϕ⟩ .

▶ Simple example: |ϕ⟩ ⟨χ|, where |ψ⟩ and |χ⟩ are arbitrary
(normalised) vectors; this is defined as follows:
(|ϕ⟩ ⟨χ|) |ψ⟩ = |ϕ⟩ × ⟨χ|ψ⟩.
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Projectors

▶ An important sub-class of linear operators are
one-dimensional projectors, which can be written |ϕ⟩ ⟨ϕ|,
for arbitrary normalised |ϕ⟩.

▶ They’re called ‘projectors’ because, when they act on a
vector, they project out the |ϕ⟩ component of the vector and
throw the rest away.

▶ E.g., acting on |ψ⟩ = α |ϕ⟩+ β |χ⟩ with |ϕ⟩ ⟨ϕ| yields α |ϕ⟩
(where |ϕ⟩ and |ψ⟩ are part of an orthonormal basis for the
Hilbert space).

▶ More general (i.e., higher-dimensional) projectors don’t just
project out one particular component of a vector: they
project out all components in some particular subspace.
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Resolutions of the identity

▶ The limiting case of a projector is one which projects onto
the entire Hilbert space—and so leaves the vector alone!

▶ The identity operator can be written in the same way as
any other projector:

1̂ =
∑

i

|ni⟩ ⟨ni | ,

where {|ni⟩} is any basis. An expression like this for 1̂ is
called a resolution of the identity.
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Resolutions of the identity

▶ By construction, for any vector 1̂ |ψ⟩ = |ψ⟩.

▶ This means that we can insert resolutions of the identity
into quantum expressions wherever we please, e.g.:
▶ |ψ⟩ = 1̂ |ψ⟩ =

∑
i (|ni⟩ ⟨ni |) |ψ⟩ =

∑
i |ni⟩ ⟨ni |ψ⟩ .

▶ Â = 1̂Â1̂ = (
∑

i |ni⟩ ⟨ni |) Â
(∑

j |nj⟩ ⟨nj |
)
=∑

i,j |ni⟩ ⟨nj | ⟨ni | Â |nj⟩ .

▶ The later of these is called a matrix representation of Â,
and we can write Aij := ⟨ni | Â |nj⟩.

▶ This gives us the components Aij of the matrix associated
with the operator Â in the {|ni⟩} basis.
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and we can write Aij := ⟨ni | Â |nj⟩.
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Eigenvalues and eigenvectors

▶ Recall that an eigenvector v of a matrix M is a column
vector satisfying Mv = λv, and the number λ is called the
eigenvalue associated with v.

▶ This translates to Hilbert space in the obvious way: |ψ⟩ is
an eigenvector of an operator M̂ iff for some λ ∈ C,
M̂ |ψ⟩ = λ |ψ⟩.

▶ If M̂ has more than one eigenvector with the same
eigenvalue, it is called degenerate. The set of all
eigenvalues of M̂ is called the spectrum of M̂.

▶ An eigensubspace of an operator is the subspace defined
by all those eigenvectors with some particular eigenvalue.

▶ (So, non-degenerate operators have only one-dimensional
eigensubspaces.)
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Adjoint operators

▶ Recall that the adjoint A† of a complex matrix is defined as
the complex conjugate of its transpose: A†

ij := (Aji)
∗.

▶ We can define an abstract version of this: Â† is defined by
⟨ψ| Â† |χ⟩ :=

(
⟨χ| Â |ψ⟩

)∗
.

▶ Operators which commute with their adjoints (i.e.
ÂÂ† = Â†Â) are called normal. These are significant
because of the spectral theorem:
Spectral theorem: If Ĉ is a normal operator, then there is

an orthonormal basis for the Hilbert space
made up entirely of eigenvectors of Ĉ.

▶ (For further details on the spectral theorem, see e.g. the
Schuller notes.)

▶ If Ĉ is non-degenerate, then there’s a unique such basis.
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Spectral resolutions
▶ Suppose Ĉ is a normal operator, and let {|ci⟩} be an

orthonormal basis comprised of its eigenvectors (so
Ĉ |ci⟩ = ci |ci⟩).

▶ In that case, the spectral resolution of Ĉ is

Ĉ =
∑

i

ci |ci⟩ ⟨ci | .

▶ The function f (Ĉ) of a normal operator Ĉ can be written

f (Ĉ) =
∑

i

f (ci) |ci⟩ ⟨ci | .

(Exercise: Prove this!)
▶ If Â and B̂ are normal operators which commute, then

there exists a normal operator Ĉ and functions f , g such
that Â = f (Ĉ) and B̂ = g(Ĉ).
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▶ Suppose Ĉ is a normal operator, and let {|ci⟩} be an

orthonormal basis comprised of its eigenvectors (so
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A zoo of operators

▶ A normal operator commutes with its adjoint: ÂÂ† = Â†Â.

▶ Self-adjoint operators are such that Â = Â†.
▶ All self-adjoint operators are normal, but not vice versa.
▶ (E.g., unitary operators—for which ÂÂ† = 1̂—are normal

but not self-adjoint.)
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Self-adjoint operators and measurements
▶ Recall that a maximally specific measurement M is

specified by an orthonormal basis {|mi⟩} of states with
definite values of M, together with the value mi of M for
each state.

▶ We can codify M into an operator by defining

M̂ =
∑

i

mi |mi⟩ ⟨mi | .

▶ This operator has the following two properties:
1. M̂ is self-adjoint: M̂† = M̂. (Exercise: Show that an

operator is self-adjoint iff its eigenvalues are all real.)
2. M̂ is non-degenerate. (This follows from the definition of a

maximally specific measurement.)
▶ Conversely, the spectral theorem means that every

non-degenerate self-adjoint operator determines a
maximally specific measurement.
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The orthodoxy on self-adjoint operators

▶ It’s for these reasons that textbook quantum mechanics
orthodoxy has it that self-adjoint operators are associated
with the measurement of physical quantities.

▶ However, for a recent and philosophically rich article
arguing that other normal operators could serve just as
well (despite having complex eigenvalues!), see (Roberts
2017).
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The projection postulate

▶ The reason that the operator representation of
measurements is useful is the following theorem:

If X̂ is a self-adjoint operator, then the expected value
of making the associated measurement on a state |ψ⟩
is ⟨ψ| X̂ |ψ⟩.

(Exercise: prove this.)
▶ The projection postulate is the postulate that after

measurement a system will be found in one of the
eigenstates of the quantity being measured.

▶ This has to be treated with some care, and is wrong in its
simplest form: in general, measurements disrupt the
system being measured.
▶ For example, a photon detector destroys a photon

completely when measuring its location!
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Commuting measurements

▶ Suppose I know how to perform a measurement of Â.

▶ I can immediately, and with no further work, perform a
measurement of f (Â): all I do is measure Â and apply the
function f to the result.

▶ Now suppose that Â and B̂ are commuting self-adjoint
operators. Then we already know that there is some Ĉ s.t.
Â and B̂ are functions of Ĉ.

▶ So if we measure Ĉ then we automatically measure Â and
B̂, just by applying the appropriate functions to the
outcome.

▶ We conclude that commuting operators can be measured
simultaneously.

▶ Conversely, if two operators don’t commute then it’s at best
unclear what it would mean to measure them
simultaneously.
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Unitary operators

▶ We have seen that self-adjoint operators can be defined as
those satisfying Â† = Â, or equivalently those whose
eigenvalues are real.

▶ Similarly, unitary operators can be defined either as (i)
operators satisfying Â†Â = 1̂, or (ii) operators whose
eigenvalues all have modulus 1 (so of the form eiθ).

▶ The significance of unitary operators is that they map
physical states to physical states, for if a map is to do this
then it must preserve normalisation: if |ψ⟩ is a physical
state, then |ψ′⟩ = Û |ψ⟩ is a physical state only if

1 = ⟨ψ′|ψ′⟩ = ⟨ψ| Û†Û |ψ⟩ ,

which is true for all states only if Û†Û = 1̂.
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Significance of unitary operators

There are two important sorts of transformation described by
unitary operators:

1. Time evolution: It’s a postulate of textbook quantum
mechanics that states evolve linearly (in accordance with
the Schrödinger equation, to be discussed later): so if |ψ⟩
evolves into |ψ′⟩ and |ϕ⟩ evolves into |ϕ′⟩, then α |ψ⟩+ β |ϕ⟩
evolves into α |ψ′⟩+ β |ϕ′⟩. This means that time evolution
is described by unitary operators: for any times t , t0, there
must be a unitary operator Û(t , t0) which evolves states at
time t0 into states at time t :

|ψ(t)⟩ = Û(t , t0) |ψ(t0)⟩ .

2. Symmetry transformations: Symmetries of quantum
systems, such as rotations or translations, are described
by (anti-)unitary operators. (See e.g. Weinberg 1995)
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The Schrödinger equation

Consider a very short time evolution:

|ψ(t0 + δt)⟩ = Û(t0 + δt , t0) |ψ(t0)⟩ .

Then in the limit δt → 0, we obtain

|ψ(t0)⟩+
d
dt

|ψ(t0)⟩ δt =
(

1̂ +
d
dt

Û(t , t0)
)
|ψ(t0)⟩ .

Define the (self-adjoint) operator

Ĥ(t0) = iℏ
d
dt

∣∣∣∣
t0

Û(t , t0),

We obtain:
d
dt

|ψ(t)⟩ = − i
ℏ

Ĥ(t) |ψ(t)⟩ ,

which is the time-dependent Schrödinger equation.
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Infinite-dimensional Hilbert spaces

▶ Recall that the dimension of a Hilbert space is the number
of vectors in a basis for that space.

▶ In general, this could be infinite!
▶ Consider e.g., the energy levels of an atom—here, there

must be an infinity of eigenstates.
▶ To represent these systems, we need to make use of

infinite-dimensional Hilbert spaces.
▶ The only reason why we can often get away with using

finite-dimensional Hilbert spaces is that we abstract away
some of the system’s degrees of freedom.

▶ Mathematically, infinite-dimensional Hilbert spaces are
difficult to work with! We’ll follow a ‘physics approach’ (i.e.,
generally ignore the problems).

▶ (For more, see the seminal (von Neumann 1955).)
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Operators with continuous spectra
▶ Not all observables have discrete spectra—consider e.g.

position or momentum.

▶ We represent these observables with continuous
self-adjoint operators: operators whose spectra include all
real numbers in some range, or perhaps just all real
numbers full stop.

▶ E.g., the spectral representation of the position operator is

X̂ =

∫ +∞

−∞
dxx |x⟩ ⟨x | .

▶ Then the probability rule for finding some quantum system
in (for this case) some position interval is

Pr(x1 < x < x2) =

∫ x2

x1

dx |⟨x |ψ⟩|2.

▶ The wavefunction is defined as ψ(x) := ⟨x |ψ⟩.
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Ontology of the wavefunction
▶ It’s tempting to think of the wavefunction of a particle as a

field on space.

▶ After all, it’s a function of three coordinates, labelled
‘positions’, and when it is concentrated in some region, the
probability is very high that a measurement of position will
give a result in that region.

▶ But this is a mistake! Consider the wavefunction for two
particles: this must be a (complex-valued) function of six
variables: three for the position of the first particle, and
three for the position of the second.

▶ So, the wavefunction can’t straightforwardly be thought of
as living on space at all.

▶ Rather, the wavefunction is a complex-valued field on
configuration space, which is the space of all possible
coordinates of all particles, with 3N dimensions for an
N-particle system.
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▶ So, the wavefunction can’t straightforwardly be thought of
as living on space at all.

▶ Rather, the wavefunction is a complex-valued field on
configuration space, which is the space of all possible
coordinates of all particles, with 3N dimensions for an
N-particle system.
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Summary for today

▶ Today, I’ve introduced:
1. Quantum states
2. Hilbert spaces
3. Operators and their connections with measurements
4. Wavefunctions

▶ Tomorrow, we’ll look at density operators and
entanglement.
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