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Deriving the Bell-CHSH inequalities

Today, we’re going to look at the derivation of the Bell-CHSH
inequalities, a /a (Bell 1976). This is the bread-and-butter of
modern discussions on this topic.
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Key assumptions of the 1976 paper

The derivation in Bell's 1976 paper relies on three key
assumptions:

1. ‘Local causality’
2. ‘Measurement independence’
3. Standard probability theory

| won’t discuss (3) any further, but I'll explain (1) and (2) now.
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Local causality

» Let A\ denote those things in the intersection of the
backwards light cones of two events.

» These may include both observables and hidden variables,
where nothing is said about what specifically A contains.

» The condition of local causality states that if there is a
correlation between two spacelike regions, then this must
be causally explained by things in the \ of those two
spacelike regions.
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Principles underwriting local causality

Local causality follows from three assumptions which were
explicitly formulated by Bell:

1. Lorentz invariance: the temporal order of two events is the
same in all inertial reference frames if and only if they are
separated by a time-like (or null) spacetime interval.

2. Temporal asymmetry of causality: the cause of any event
lies in its temporal past, and not in its temporal future.
3. Reichenbach’s common cause principle: if there are two

correlated variables which do not have direct causal links
then there is common cause of their correlations.



Factorisability

Bell (1976) argued that a key consequence (but not
formulation) of local causality is factorisability:

Pr(A, Bla, b, \) = Pr(A|a, \)Pr(B|b, \),

where Pr(A, Bla, b, \) is the joint probability in the theory for
outcome A in region 1 associated with setting the variable a
(this could be the direction of a spin meter) and outcome B in
region 2 associated with setting the variable b, conditional on A
as specified before.



Measurement independence

Measurement independence states that the choice of variables
a and b is independent of those things in A such that the
following hold:



Combining measurement independence and local
causality

Combining measurement independence and local causality, we
have
Pr(a, b|A\) = Pr(a|\)Pr(b|\) = Pr(a)Pr(b).



Combining measurement independence and local
causality

Combining measurement independence and local causality, we
have
Pr(a, b|A\) = Pr(a|\)Pr(b|\) = Pr(a)Pr(b).

So then using standard probability theory we have
Pr(a,b) = > Pr(a,b|A)Pr())
A

= Pr(a)Pr(b) > Pr())
A

= Pr(a)Pr(b).



More manipulations

Next, one considers the following straightforward
conditionalisation in probability theory:
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Now take the marginal distribution by summing over A and plug
in the expression just derived:

Pr(A,a,B,b) =) Pr(A a,B,b,))
A

= Z Pr(Ala, \)Pr(a)Pr(B|b, \)Pr(b)Pr(\)
A



More manipulations

We also have

Pr(A, a, B, b) = Pr(A, Bla, b)Pr(a, b)
= Pr(A, Bla, b)Pr(a)Pr(b) (M)
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We also have

Pr(A, a, B, b) = Pr(A, Bla, b)Pr(a, b)
= Pr(A, Bla, b)Pr(a)Pr(b) (M)
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More manipulations

We also have

Pr(A, a, B, b) = Pr(A, Bla, b)Pr(a, b)
= Pr(A, Bla, b)Pr(a)Pr(b) (M)

Equating this with the result on the previous slide gives

Pr(A, Bla,b) = > _Pr(Ala, \)Pr(B|b, \)Pr())
A

(To repeat: this is a result derived from just LC, MI, and
probability theory.)
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Deriving the Bell-CHSH inequality

Count a red light flashing as +1; count a green light flashing as
—1. Then we can introduce the following expectation value:

E(A7 B|aa b) = Pr(Aﬂv BH‘aa b) - Pr(AG7 BF!”a7 b)
— Pr(AR, BG\a, b) + PI’(Ag, BG\a, b)

We also have the following ingredients:
Pr(A, Bla,b) = ) _Pr(Ala, A)Pr(B|b, \)Pr())
E(Ala,\) = PAr(AR\a, A\) — Pr(Agla, \)
Combining these will give (exercise: derive it!):

E(A, Bla,b) = ZE Ala, \)E(B|b, \)Pr(\)



Deriving the Bell-CHSH inequality
Now consider the CHSH expression, which considers the
expectation values associated with different possible
measurement settings:
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Deriving the Bell-CHSH inequality
Now consider the CHSH expression, which considers the
expectation values associated with different possible
measurement settings:

CHSH := E(A, B|a, b)+E(A, B|d, b)+E(A, Bla,b')—E(A, B|d, b)

(NB: the structure of the + and - signs here is just engineered
so that we end up deriving an interesting inequality.)

Next we consider magnitudes. Recalling that

<Z\F )| Pr(A

we have

[CHSH| <} ‘E(A|a, ) {E(B|b,\) + E(BIb/, \)}
A

E(Ald, \) {E(B|b,\) — E(B|b/, \)} ‘Pr()\)



Deriving the Bell-CHSH inequality
If we also use

!FG\ = |F| IGI

D (FO) + Z A+ 1G(A

A

we derive

|CHSH| < > {|E(BIb, \) + E(B|t/, \)| + |E(B|b, \) —
A

E(B|b',

) Pr(A),

A)|}Pr(A).



Deriving the Bell-CHSH inequality
If we also use

!FG\ = |F| IGI

D (FO) + Z A+ 1G] Pr(X),

A

we derive

|CHSH| < Z{|E(B\b,)\) + E(B|b', \)| + |E(B|b,\) — E(B|b', \)|} Pr()).
A

Now recalling thatif —1 < X <1and -1 <Y <1 then

0<|X+ Y|+ |X—y| <2, wehave

]E(A, Bla,b) + E(A,B|d,b) + E(A,B|a,b') — E(A, B|d, b’){ <2

This is the Bell-CHSH inequality, which we can test
experimentally!



Quantum theory violates the Bell-CHSH inequality

One can derive (see e.g. (Redhead, 1987) for the details) that
in quantum theory,

E(A,Bla,b) + E(A B|d,b) + E(A,Bla,bt') — E(A,B|d,b)
=1+ 2cos(2¢) — cos(4¢)



Quantum theory violates the Bell-CHSH inequality

But now consider the following chart:
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Quantum theory violates the Bell-CHSH inequality

But now consider the following chart:

2.5

0

Green line cannot be exceeded by any theory which satisfies
LC and MI, but clearly QM exceeds the line for certain ¢!

(The bound on quantum violations of the Bell-CHSH inequality
is called the Tsirelson bound.)
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Recap on assumptions

» Assumptions used in this derivation:
» Local causality
» Measurement independence
» Probability theory
» Assumptions not used in this derivation:
» Determinism
» Perfect correlations
» Hidden variables
» Quantum theory
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Quantum causality?

Look for a new notion of cause-effect? “Quantum causality”?
(See e.g. (Barrett et al., 2020).)

» A long history of attempts to replace ‘Classical X’ with
‘Quantum X’ (cf. quantum logic in Lecture 13).

» Need a principled argument for the new X-notion on its
own terms.

» Not simply a relabelling of quantum theory using
X-language.



Ways out?

There are a few moves which someone wishing to avoid the
Bell-CHSH theorem might make:

1. Argue that local causality can be violated without violating
locality

1.1 New notion of ‘quantum causality’?
1.2 Everett

2. Argue that the factorisability condition can be decomposed
into two components: ‘outcome independence’ and
‘parameter independence’ and that one (or both?) can be
violated.

2.1 Bohmian mechanics
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3. Deny measurement independence.
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EPR chez Everett; locality without LC?

» The key feature of Everett which is relevant for our
purposes today is its non-separability: the fundamental
states of the Everett interpretation are non-separable as a
result of entanglement.

» This means that given two distinct regions A and B, even if
the states of A are completely specified and the states of B
are completely specified, the state of the combined system
AU B will not be completely specified.

» Let’s take a bit of time here to consider how Everett
understands an EPR-Bell experiment without violating
locality. (I largely follow Brown and Timpson (2016); see
also (Wallace 2012, ch. 8).)
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Localised branching on Everett

| 2

>

| 2

Suppose, per EPR, we have two electrons in an entangled
singlet state, separated by some large spatial distance.

Suppose that measurements are performed at both A and
B on their respective systems.

On Everett, branching occurs at both A and B such that at
A, for example, there will be two decoherence-defined
‘worlds’, one in which A’s spin-meter reads spin-up and
one in which A’s spin-meter reads spin-down.

However, in neither of those worlds at A will there be a
definite outcome at B; relative to A, the electron and
measuring device in B remain entangled.

This is because the dynamics of measurement and
branching at A are entirely local (since decoherence
effects travels at the speed of light) and so for the
measuring device and electron at B which are at a
space-like separation from A, these effects will not yet
have reached B.
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Localised branching and interactions on Everett
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the two spin-meters (and electrons) need to be brought
together and a joint measurement performed.
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No common cause principle needed in Everett!

» For the outcomes of the measuring device at A and B to be
compared and for there to be a definite outcome on A’s
spin meter relative to a definite outcome on B’s spin meter
the two spin-meters (and electrons) need to be brought
together and a joint measurement performed.

» Only once the future light-cones of A and B cross, will there
be a definite outcome of one device relative to a definite
outcome of the other and only then will it make sense to
talk about correlations between spin-meter readings.

» Thus, on the Everettian account, correlations appear not as
Reichenbachian common cause but due to local dynamics
acting on an initially entangled non-separable state.
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his inequality, went beyond assuming locality, which is in
fact captured entirely by (1) (Lorentz invariance) and (2)
(temporal asymmetry of causality).



Everettian lessons for Bell’'s theorem

» Thus, according to the Everettian, Bell, in relying on an
assumption of Reichenbach’s common cause principle to
derive his local causality condition (LC) and subsequently
his inequality, went beyond assuming locality, which is in
fact captured entirely by (1) (Lorentz invariance) and (2)
(temporal asymmetry of causality).

» Hence, local causality (LC) and the condition of
factorizability can be violated without a violation of locality.



Ways out?

There are a few moves which someone wishing to avoid the
Bell-CHSH theorem might make:
1. Argue that local causality can be violated without violating
locality

1.1 New notion of ‘quantum causality’?
1.2 Everett

2. Argue that the factorisability condition can be decomposed
into two components: ‘outcome independence’ and
‘parameter independence’ and that one (or both?) can be
violated.

2.1 Bohmian mechanics
2.2 GRW

3. Deny measurement independence.

3.1 Superdeterminism
3.2 Retrocausality
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Is factorisability a single condition, or two separate conditions?

Jarrett (1984) argues that there were two conditions: parameter
independence and outcome independence:

Pr(A, a, B,b|\) = Pr
Pr(A,a|B,b,\) = Pr

Pr(A, alb,\) = Pr
Pr(A, a, B,b|\) = Pr

A, a|B, b, \)Pr(B, b|)\)

A alb, \) (Outcome independence)
A al\) (Parameter independence)
A, al\)Pr(B, b|\)

—_~ o~~~

(NB: The terminology of ‘parameter independence’ and
‘outcome independence’ is from Shimony (1986, 1990).)
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is made at spacelike separation from the experiment
on the other, a dependence of the probability of the
outcome of one experiment on the setting of the other
would seem straightforwardly to be an instance of a
nonlocal causal influence. (Myrvold et al. 2024)
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Parameter dependence: Pr(A, alb, \) # Pr(A, a|)).

On the assumption that the experimental settings can
be treated as free variables, whose values are deter-
mined exogenously, if the choice of setting on one wing
is made at spacelike separation from the experiment
on the other, a dependence of the probability of the
outcome of one experiment on the setting of the other
would seem straightforwardly to be an instance of a
nonlocal causal influence. (Myrvold et al. 2024)

» Signaling at the level of the ontic states.

» No-signaling emerges after statistical averaging.
» Relativistic invariance at the statistical level.

» E.g., Bohmian mechanics.
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conditional on the specification A of the complete state
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Outcome dependence

Outcome dependence: Pr(A, a|B, b, \) # Pr(A, alb, \).

For fixed values of the experimental settings, Bell's
Principle of Local Causality entails that the outcomes
of the experiments on the two systems be independent,
conditional on the specification A of the complete state
of the system at the source. (Myrvold et al. 2024)

» No-signaling built in at the level of ontic states.
» Spontaneous remote correlations.

» Still violates local causality.

» E.g., GRW collapse.
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Different views on parameter dependence and
outcome dependence

There are different views on whether parameter dependence
and outcome dependence violate locality:

1. “Only parameter dependence is non-local as only
parameter dependence allows signalling at the level of
ontic states.”

2. “PD and OD are both forms of non-locality.”

» PD is action-at-a-distance
» OD is “passion-at-a-distance” (Shimony) and so (claim)
less bothersome for relativity.

3. “PD and OD are both just violations of local causality”
(Maudlin (2014), who doesn’t like splitting LC up—cf. his
“fallacy of the unnecessary adjective”.)
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Bell-CHSH theorem might make:
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» This option has attracted increasing interest in recent
years.

» Recall that the idea of measurement independence is that
the experimenter can choose settings etc. in a way which
is free from the influence of \: Pr(a|\) = Pr(a), etc.
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Superdeterminism

Superdeterminism denies measurement independence and
insists that

» You can have deterministic physics which still has systems
being statistically independent of each other, but
superdeterminism denies this!

» So free will of the experimenter an illusion?

» Does this require a conspiracy? Can anything be explained
like this?

» (For more on superdeterminism, see a nice debate
between Palmer (for) and Timpson (against) on the Oxford
Philosophy of Physics YouTube channel.)
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Ways out?

There are a few moves which someone wishing to avoid the
Bell-CHSH theorem might make:

1. Argue that local causality can be violated without violating
locality

1.1 New notion of ‘quantum causality’?
1.2 Everett

2. Argue that the factorisability condition can be decomposed
into two components: ‘outcome independence’ and
‘parameter independence’ and that one (or both?) can be
violated.

2.1 Bohmian mechanics
2.2 GRW

3. Deny measurement independence.

3.1 Superdeterminism
3.2 Retrocausality
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Retrocausality

Pr(al\)Pr(X) = Pr(a, \) = Pr(\|a)Pr(a)

Pr(al\)  Pr(\|a)
Pr(a)  Pr()\)

Pr(\) # Pr(A|a)

» Measurement setting a is affecting A!

» The experimenter is free to set the device setting.

» The causal influence propagates backwards in time.
» Need to avoid causal loops!



Retrocausality

p(Ala)#p(2) p(Alb)#p(2)

=] F = = £ DA
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Significance of Bell's theorem

» Quantum theory violates the Bell-CHSH inequality.
» What is shown by experimental violation of the inequality?

» No theory incorporating local causality (LC) and
measurement independence (MI) can be empirically

adequate.
» A constraint on any future theory: experimental

metaphysics?

Next week: the BKS and PBR theorems, which are other no-go
theorems in the foundations of QM!
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