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Locality and separability

The first thing to get clear on today are two key terms which are
ubiquitous in the foundations of quantum mechanics: locality
and separability.



Locality

What does it mean for a theory to be local?

▶ The objects of the world can only be affected by objects in
the neighbourhood of their location?

▶ The objects and properties of the world have well defined
spatial locations?

▶ We cannot produce observable effects on objects not in
our neighbourhood?

Is locality the conjunction of these? Or some subset or other?
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Action-at-a-distance

▶ One thing which locality could mean is this: no action at a
distance.

▶ If a physical theory allows one system to directly change,
influence, alter, or otherwise interact with another system
at a remote location, unmediated by some material
connection, this is action-at-a-distance.
▶ Newtonian mechanics allows action-at-a-distance.
▶ Maxwell’s equations and Einstein’s relativity: mediated by

fields and potentials with finite propagation speeds, so no
action-at-a-distance.

▶ What about quantum mechanics?
▶ Dirac/von Neumann collapse dynamics is non-local in this

sense.
▶ Bohmian dynamics involves action-at-a-distance, as we

saw in Lecture 6.
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Signal locality

▶ If there is action-at-a-distance why can’t we observe it?

▶ Why can’t we use it to send superluminal signals?
▶ In particular contexts (of e.g. particular collapse

mechanisms), people show that this is not possible by
proving ‘no signalling theorems’.

▶ So you might have action-at-a-distance at the fundamental
ontological level, but still signal locality at the
empirical/operational level.
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Three senses of ‘at-a-distance’

Einstein locality: ‘At-a-distance’ means at a spacelike
separation between spacetime events. This
assumes at minimum special relativity theory.

Bell locality: ‘At-a-distance’ means beyond causal influences
recognised by current physical theories.

EPR locality: “A physical theory is EPR-local iff according to
the theory procedures carried out in one region do
not immediately disturb the physical state of
systems in sufficiently distant regions in any
significant way.”

(The first two of these are from Redhead (1987), while the third
is from Maudlin (2014).)
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Comparing the three senses of action-at-a-distance

▶ Einstein locality imposes the strongest restrictions on
locality; EPR locality is the weakest due e.g. to the
vagueness of ‘do not immediately disturb’ and ‘sufficiently
distant’.

▶ A failure of EPR locality implies a failure of Bell locality and
Einstein locality.

▶ If it is assumed there can be causal influences between
events only if those events are not separated by a
spacelike spacetime interval, then Bell locality reduces to
Einstein locality.

▶ Thus, Bell locality can be distinguished from Einstein
locality in that it does not explicitly assume relativity theory.
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Separability

▶ Unlike locality (which, roughly, is a thesis about the action
that one system can exert upon another distant system),
separability is a metaphysical thesis.

▶ Roughly, separability says something like this: the
properties of a system supervene upon the properties of its
subsystems.

▶ There is clearly, then, a strong connection between
quantum entanglement and non-separability.

▶ That said, some authors (e.g. Ney (2021), see Lecture 16)
do try to maintain that one can have entanglement without
non-separability.
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The Einstein-Podolsky-Rosen argument

▶ In 1935, Einstein, Podolsky and Rosen (EPR) presented a
dilemma: either quantum mechanics is incomplete, or it is
non-local.

▶ EPR took the ‘incomplete’ horn of the dilemma.
▶ Let’s see how their argument goes.
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The EPR dilemma
Consider the singlet two-electron spin state (NB: this is Bohm’s
(1951) version of the EPR setup),

|ψ−⟩12 =
1√
2
(|↑z⟩1 |↓z⟩2 − |↓z⟩1 |↑z⟩2) .

Recalling that

|↑z⟩ =
1√
2
(|↑x⟩+ |↓x⟩) ,

|↓z⟩ =
1√
2
(|↑x⟩ − |↓x⟩) ,

we see that |ψ−⟩12 could also be written

|ψ−⟩12 =
1√
2
(|↑x⟩1 |↓x⟩2 − |↓x⟩1 |↑x⟩2)

(In fact, the singlet is spherically symmetric, i.e. it takes the
same form for all spin directions.)
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The EPR dilemma
▶ Now consider an experiment in which a pair of electrons is

prepared in this joint state at one location at time t0, before
being widely separated.

▶ At time t1 the systems 1 and 2 are far apart and no longer
interacting and we consider performing measurements on
one of them, say system 1.

▶ z-spin measurement: before measurement, neither system
has a definite value of spin in the z-direction. At t > t1 we
obtain a definite value of spin for system 1. But not only
has the property of system 1 changed, but so also have
the properties of the far away system 2 (“instantaneous
action at a distance”—Einstein: “spooky action”).

▶ Similarly if we had performed an x-spin measurement on
system 1 at time t > t1. Our choice of which measurement
to perform in the region of system 1 affects at a distance
the properties of system 2.
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Two possibilities

So two possibilities:

Either: Quantum mechanics is non-local: the effect of
measurement is to cause a collapse which has an
instantaneous causal effect at a distance.

Or: Quantum mechanics is incomplete: the genuine
properties of systems should not behave like this,
which means that the quantum state cannot be the
whole story. (This was EPR’s preferred horn of the
dilemma.)

Naturally, the second of these options invites thinking about
quantum mechanics in terms of hidden variable theories.
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Hidden variables
▶ Recall that hidden variables are additional ‘elements of

reality’ about whose values we are ignorant (hence
‘hidden’) and which explain why we get the particular
outcomes we do when we perform (quantum) experiments.

▶ On hidden variable theories, the statistical features of
quantum mechanics just arise as ‘ignorance’ probabilities
regarding the hidden variables.

▶ In general, incompatible properties such as position and
momentum are definite at the same time, it’s just that we
are ignorant of what their values are.

▶ Introducing hidden variables might help us with the
measurement problem: the value of the hidden variable will
determine which outcome of the experiment is definite,
even if the quantum state happens to be left in a
superposition of distinct measurement outcomes.

▶ Of course, we saw a lot of this already in Lecture 6 in the
context of Bohmian mechanics.
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Bell’s 1964 theorem

▶ In 1964 the landscape changed: embracing
incompleteness cannot avoid non-locality.

▶ Bell (1964) made the discovery that if a hidden variable
theory is to be consistent with the empirical predictions of
quantum mechanics, it must be non-local (‘Bell’s theorem’).

▶ Therefore, taking the incompleteness horn of the EPR
dilemma does not lead us away from non-locality after all.

▶ Today, I’ll show you how Bell’s 1964 theorem works; in the
next lecture, I’ll present some later, arguably more powerful
(and intricate) versions of Bell’s theorem.
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Setup for the 1964 result

▶ Begin by considering a deterministic theory which ascribes
definite values to the results of all experiments we might
perform on a system (‘deterministic hidden variable
theory’).

▶ Specifying the initial state leads to deterministic predictions
about what the results of any measurement will be.

▶ Assume, furthermore, that the theory satisfies a locality
condition: the values for the outcomes of experiments on a
system depend only on the initial state and on the
particular experiment performed on that system.
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The aim of the game

▶ The aim is to show that the statistical predictions of any
such theory will satisfy a certain inequality (a ‘Bell
inequality’) regarding the correlations in EPR-type
experiments.

▶ Such an inequality will be violated by the predictions of
quantum mechanics.

▶ Conclusion: The results predicted by quantum mechanics
cannot be modelled by any local deterministic hidden
variable theory.
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The setup for Bell’s theorem

▶ We will consider an experiment testing the correlations
between various spin measurements on a pair of spin-half
systems prepared in an initial entangled singlet state
(Bohm’s version of the EPR setup).

▶ Measurements of spin will be made in the direction a or a′

on system 1; and in the direction b or b′ on system 2.
▶ The hidden variable theory will assign definite values to all

four spin quantities at the same time, i.e. a and a′ for
system 1 possess a definite value just before
measurement, as do b and b′.
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The setup for Bell’s theorem

▶ Denote these definite values of quantities by a, a′, b, b′,
respectively. They represent the values that would be
observed if one were to perform the measurement of that
quantity on the given system.

▶ On each run of the experiment, all four spin quantities
possess a definite value. For run n, denote these
quantities by an, a′

n, bn, b′
n.

▶ Although the initial quantum state of the joint system is the
same for each run, the hidden variable takes different
values and therefore a spread of outcomes is observed.
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Average values, correlation coefficients, and γn

Average values and correlation coefficients are given by,
respectively,

ā =
1
N

N∑
n=1

an,

c (a,b) =
1
N

N∑
n=1

anbn.

Now consider the following function:

γn := anbn + anb′
n + a′

nbn − a′
nb′

n

= an
(
bn + b′

n
)
+ a′

n
(
bn − b′

n
)
.

Since each of a, a′, b, b′ can be equal to ±1, γn must be equal
to ±2.
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Deriving the Bell inequality
Now calculate the average value of γn for a large number of
runs of the experiment,

1
N
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n=1
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1
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(
anbn + anb′

n + a′
nbn − a′

nb′
n
)
.

Given that on each run γn = ±2, this average must lie between
±2, so its modulus will be less than or equal to 2:∣∣∣∣∣ 1

N

N∑
n=1

(
anbn + anb′

n + a′
nbn − a′

nb′
n
)∣∣∣∣∣ ≤ 2.

In terms of correlation coefficients, this gives us the Bell
inequality:∣∣c (a,b) + c

(
a,b′)+ c

(
a′,b

)
− c

(
a′,b′)∣∣ ≤ 2.
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Comparison with standard quantum mechanics

How does this compare with the predictions that standard
quantum mechanics makes for the correlations between spin
measurement outcomes that would be observed in the
EPR-type experiment?

When the quantum mechanical values for the correlation
coefficients are calculated, we instead obtain∣∣c (a,b) + c

(
a,b′)+ c

(
a′,b

)
− c

(
a′,b′)∣∣ ≤ 2

√
2.

That is, the quantum mechanical correlations are stronger than
any correlations that can be obtained in a local hidden variable
model.
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Illustration of the quantum mechanical inequality

This can be illustrated in a special case—suppose for example
that:

1. Measurements of a and b are along the same axis.
2. Measurements of a and b′ or b and a′ are at an angle θ.
3. Measurements of a′ and b′ are at an angle 2θ.

Quantum mechanics has its own predictions of correlation
coefficients. If ϕ is the angle between directions a and b, then
c (a,b) = cosϕ.
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Illustration of the quantum mechanical inequality

Using the above assumptions, we therefore have

|c (a,b) + c (a,b′) + c (a′,b)− c (a′,b′)| = |cos (0) + 2 cos (θ)− cos (2θ)|
=

∣∣2 (
1 + cos θ − cos2 θ

)∣∣
> 2

(Note: It’s not that standard quantum mechanics predicts
different inequalities to local hidden variable theories. It’s that
some of its specific predictions involve correlations that violate
the Bell inequalities.)

So no local hidden variable model can be empirically
equivalent to quantum mechanics!
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Empirical evidence for standard quantum mechanics

▶ Which is right—quantum mechanics, or local hidden
variable theories?

▶ We need to do the experiment and see whether the
quantum predictions or the local hidden variable
predictions for the correlations hold.

▶ The overwhelming evidence is that standard quantum
mechanics is correct.

▶ The most famous of these experiments is Aspect’s
experiment, which won the Nobel Prize in Physics in 2022.

▶ For a more comprehensive list of tests, see e.g. (Redhead
1987, p. 108) or (Myrvold et al. 2024).

So no local hidden variable model is empirically ade-
quate!
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Conclusions so far

▶ Thus we conclude that any acceptable deterministic
hidden variable theory must be non-local.

▶ But note that this doesn’t imply anything about quantum
mechanics being non-local, just that any hidden variable
theory put in its place must be.

▶ We know that collapse in quantum mechanics gives rise to
action-at-a-distance, but what if we deny that collapse is a
real physical process?

NB: Bell’s theorem does not force us to accept “the bare
formalism of quantum mechanics” sans interpretation, as some
(physics texts) claim. We still need to solve the measurement
problem!
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Prospectus

Next time, I’ll:

1. Present later versions of Bell’s theorem.
2. Think about what different interpretations of quantum

mechanics have to say about the EPR scenario.
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