
IPP-SR-7:
Relativity and conventionality of simultaneity

James Read1

1Faculty of Philosophy, University of Oxford, UK, OX2 6GG

HT20



The course

1. Newton’s laws
2. Galilean invariance
3. The Michelson-Morley experiment
4. Einstein’s 1905 derivation of the Lorentz transformations
5. Spacetime structure
6. General covariance
7. Relativity and conventionality of simultaneity
8. Frame-dependent effects
9. The twin paradox

10. Dynamical and geometrical approaches to relativity
11. Presentism and relativity
12. Acceleration and redshift
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Simultaneity in the rest frame

I Which point on the worldline of mirror A is simultaneous
with point B2 on the worldline of mirror B?

I Natural answer was stipulated by Einstein:

tB (B2) = tA (A1) +
1
2
(tA (A3)− tA (A1)) .

I If we apply this in all frames, the relativity of simultaneity
follows.
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The conventionality of simultaneity

I If we understand simultaneity à la Einstein, then the
frame-relativity of simultaneity follows.

I But could it be that, even in one particular frame, there is
no fact about which point on the worldline of mirror A is
simultaneous with point B2 on the worldline of mirror B?

I One who thinks this would have to say that that there are
no facts about simultaneity even in one frame—and thus
that these can be fixed by convention only.

I This is the conventionality of simultaneity, which is
conceptually distinct from the relativity of simultaneity.
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Reichenbach’s ε-factor

I Reichenbach maintained that we are free to make other
stipulations about which point on the worldline of mirror A
is simultaneous with event B2 on the worldline of mirror B.

I To reflect this, he generalised Einstein’s simultaneity
relation by introducing an ε-factor:

tB (B2) = tA (A1) + ε (tA (A3)− tA (A1)) , 0 < ε < 1.

I Reichenbach’s underlying thought: nothing in the formal
structure of SR fixes which synchrony convention we must
use; it is, rather, an additional input choice.
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Choices of ε

I If we choose e.g. ε = 1/4, simultaneity is still
frame-relative.

I But any ε 6= 1/2 will mean that the one-way speed of light
is not isotropic.

I Question: Why did Reichenbach bound ε by 0 and 1?
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Brown on bounding ε

I will have more to say about this Reichenbach fac-
tor ε shortly, but note that it is widely assumed that ε
must be restricted to the closed set [0,1] ... This is to
ensure that in one direction light does not propagate
backwards in time. It is often claimed that such a pos-
sibility would violate the fundamental canons of causal-
ity, but it is a hum-drum experience for airline travellers
flying East across the International Date Line.

... I can testify, having flown from New Zealand to both
North and South America, that arriving before you left
is survivable! ... Come to think of it, every telephone
call from, say Australasia to the UK, involves a signal
arriving before it left, and no one seems the worse for
it. (Brown 2005, p. 97)
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Reichenbach’s synchrony conventions

Building upon the thought that one is free to choose ε 6= 1
2 ,

Reichenbach articulated two different possible synchrony
conventions (‘I’ and ‘II’), which we will now consider.
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Reichenbach-I synchrony

I Suppose we send a light ray out in both directions, with an
ε = 1/4 convention.

I Simultaneity surfaces won’t be flat, and there will be a
preferred position in the reference frame.

I About A, the description of the one-way speed of light is
isotropic but highly non-homogeneous due to the preferred
point.

I C2 and B2 are simultaneous from the point of view of A but
not from the point of view of C ...

I ... so what counts as simultaneous is not just
frame-dependent, but position-dependent.
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Torretti’s objection

I Objection (Toretti 1983): The resulting assignment of
temporal coordinates does not define an inertial timescale.

I A timescale (i.e. an assignment of time coordinates to
spacetime points) is inertial iff, relative to that timescale,
free particles have (or would have) constant velocity.



Torretti’s objection

I Objection (Toretti 1983): The resulting assignment of
temporal coordinates does not define an inertial timescale.

I A timescale (i.e. an assignment of time coordinates to
spacetime points) is inertial iff, relative to that timescale,
free particles have (or would have) constant velocity.



Reichenbach-II synchrony



Reichenbach-II synchrony

I Suppose we set ε = 1/4 on one side, we set
ε = 1− 1/4 = 3/4 on the other side.

I This will yield flat simultaneity surfaces.
I Around A, space will be anisotropic but homogeneous: light

travels faster in the rightwards direction.
I Note that Torretti’s objection does not apply in this case.
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Consequences of non-standard synchrony

The derivation of the Lorentz transformations assumes
standard (ε = 1/2) synchrony. Adopting non-standard
synchrony would require changing:

I The form of the Lorentz transformations.
I Length contraction and distance measurements (typically a

rod will contract differently when moving in different
directions).

I Time dilation.
I How fast something moves relative to a reference frame.

(Anderson et al. 1998, Winnie 1970.)
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Empirical quantities

I Empirically-accessible quantities will have to stay the same
(otherwise our synchrony convention would make an
observable difference, and so no longer be a convention!).

I For example, the time read by two clocks when reunited
after a ‘twin paradox’ journey will have to be the same,
given any synchrony convention (see lecture 9).
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Is simultaneity conventional?

One might wonder: is there no way to save the
non-conventionality of simultaneity in special relativity? We’ll
now consider two attempts to do so, viz.,

1. Arguments from slow clock transportation.
2. Malament’s 1977 (purported) proof of non-conventionality.
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Slow clock transport

I Proposal: define synchrony by the use of clocks
transported between locations A and B in the limit of zero
velocity (Eddington 1924).

I This leads to the same results as those obtained using
standard (ε = 1

2 ) synchrony.
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Objections to the slow clock transport method

I Worry: until the clocks are synchronized, there is no way of
measuring the one-way velocity of the transported clock.

I Bridgman (1962, p. 26) uses the ‘self-measured’ velocity,
determined by using the transported clock to measure the
time interval, to avoid this problem.

I But, like Eddington, he does not see this scheme as
contradicting the conventionality thesis:

What becomes of Einstein’s insistence that his method
for setting distant clocks—that is, choosing the value
1/2 for ε—constituted a ‘definition’ of distant simultane-
ity? It seems to me that Einstein’s remark is by no
means invalidated. (Bridgman 1962, p. 66)

I The point is that using the slow clock method to
synchronise distant clocks is itself just another synchrony
convention.
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Introducing Malament

Let’s now move on to consider Malament’s famous 1977
theorem regarding the conventionality of simultaneity.

As Brown puts it, this is
a result which virtually single-handedly managed to
swing the orthodoxy within the philosophy literature
from conventionalism to anticonventionalism. (Brown
2005, p. 98)
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Norton on Malament

Contrary to most expectations, [Malament] was able to
prove that the central claim about simultaneity of the
causal theorists of time was false. He showed that
the standard [ε = 1

2 ] simultaneity relation was the only
nontrivial simultaneity relation definable in terms of the
causal structure of a Minkowski spacetime of special
relativity. (Norton 1992, p. 222)



Causal structure of Minkowski spacetime

(Penrose 2004, p. 403.)



Malament’s proof

Malament (1977) claims to prove that the simultaneity relation
S (·, ·) picked out by the standard (ε = 1

2 ) convention is the only
such relation

(a) which is invariant under all O-causal automorphisms
(i.e., maps from Minkowski spacetime to itself preserving
the lightcone structure and mapping the worldline of some
observer O to itself).

(b) which is an equivalence relation (i.e., which is symmetric,
transitive, and reflexive).

(c) for which there exist world points p and q, one of which is
on O’s worldline and one of which is not, such that S (p,q).

(d) which is not the universal relation.
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Critiquing Malament

Some, e.g. Janis (2018) and Grünbaum (2010), have been
critical of the claim that Malament proved the conventionality of
simultaneity:

1. Why postulate that the simultaneity relation must be an
equivalence relation? Doesn’t this rule out e.g. the
Reichenbach-I scheme by fiat?

2. “Malament’s theorem leads to a unique (but different)
synchrony relative to any inertial observer, [but] this
latitude is the same as that in introducing Reichenbach’s ε,
and thus Malament’s theorem should carry neither more
nor less weight against the conventionality thesis than the
argument that standard synchrony is the simplest choice.”
(Janis 2018)
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Extra structure

Generally, supporters of Malament (e.g. Friedman 1983) argue
that to use a non-standard synchrony scheme in a given frame
would involve importing extra structure, supererogatory to that
of SR.



Friedman’s argument
So we cannot dispense with standard simultaneity with-
out dispensing with the entire conformal structure of
Minkowski space-time. Second, it is clear that if we
wish to employ a nonstandard [simultaneity] ... we must
add further structure to Minkowski space-time. ... This
additional structure has no explanatory power, how-
ever, and no useful purpose is served by introducing it
into Minkowski space-time. Hence the methodological
principle of parsimony favors the choice of Minkowski
space-time, with its ‘built-in’ standard simultaneity, over
Minkowski space-time plus any additional nonstandard
synchrony.

These considerations seem to me to undercut deci-
sively the claim that the relation of [simultaneity] ... is
arbitrary or conventional in the context of special rela-
tivity. (Friedman 1983, p. 312)



Reflections on Friedman

I Friedman’s point is that, in order to articulate non-standard
synchrony conventions in a given frame in special relativity,
one must introduce extra structure.

I But, just as the extra structure in Newtonian spacetime
(i.e., persisting points of absolute space) is unnecessary to
state the laws of Newtonian mechanics, so too is this extra
otiose in the relativistic case.

I Thus, Friedman is stating that while we could articulate
non-standard synchrony conventions in a given frame, this
would involve introducing extra structure, and we have an
Occamist norm to not do so.

I This is the import of Malament’s result, for Friedman.
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Occamist norm to not do so.

I This is the import of Malament’s result, for Friedman.
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Brown’s response

Brown’s response is very different:

Why should we consider defining simultaneity just
in terms of the limited structures at hand in the
Grunbaum-Malament construction, namely an inertial
world-line W and the causal, or light-cone structure of
Minkowski space-time? (Brown 2005, p. 100)

The thought is: in the real world, there are multiple observers,
each with an associated worldline. What’s wrong with saying
that O is to use the standard simultaneity relation of O′—which
need not be a standard simultaneity relation for O?

(So Brown is echoing here Janis’ point considered above.)
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A geometrician’s response?

Here’s how Malament/Friedman might reply:

There’s an important conceptual distinction between a
world in which there is only one inertial observer (which
is what Malament is countenancing) and a world with
many observers (such as our own). In the latter case,
we do indeed have sufficient structure to ‘push’ a non-
standard simultaneity relation onto O’s worldline (we
just declare that O is to use the standard simultaneity
relation of O′). But in the former case, we are not able
to make this move—in this sense, simultaneity is non-
conventional in SR.



A Brownian comeback?

And here’s a response which could be offered, in turn, on
behalf of Brown:

In the former case, it’s not obvious that we have enough
physical structure to set up coordinates at all (how, op-
erationally, is one to ‘spread time through space’ with
only one worldline—that of O?). There would, for ex-
ample, be no way to set up ‘radar coordinates’ in such
a world. So, given an operational understanding of co-
ordinates, it’s not clear that it is legitimate to speak of
simultaneity relations at all in that world. And in the lat-
ter case, there are many observers and much physical
structure, which should afford ample opportunity to de-
fine non-standard simultaneity relations for O, as the
Malamentarian has already acknowledged. Either way,
Malament’s proof fails to show what is claimed.



In sum

1. Simultaneity is special relativity is arguably not only relative
to a particular frame, but conventional within a frame.

2. One response to this is to appeal to slow clock
transport—but is this just another convention?

3. Malament (1977) claims to prove that standard (ε = 1
2 )

synchrony is the only simultaneity relation definable given
the causal structure of Minkowski spacetime.

4. One might question certain assumptions in the
proof—e.g., why assume that simultaneity must be an
equivalence relation?

5. Even setting this aside, there are questions of (i) why
Malament can’t help himself to more structure, and (ii)
whether it makes sense to speak of simultaneity at all, in
the impoverished Malament-world.
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