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The course

1. Newton’s laws
2. Galilean invariance
3. The Michelson-Morley experiment
4. Einstein’s 1905 derivation of the Lorentz transformations
5. Spacetime structure
6. General covariance
7. Relativity and conventionality of simultaneity
8. Frame-dependent effects
9. The twin paradox

10. Dynamical and geometrical approaches to relativity
11. Presentism and relativity
12. Acceleration and redshift



If only I knew more mathematics! (Schrödinger, 1925)
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Laws in index notation

I Last time, I introduced briefly the four-dimensional index
notation.

I Let us now consider how to write some familiar physical
laws using this index notation.
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Example 1: Klein-Gordon equation
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Example 2: Newton-Poisson equation
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hµν∂µ∂νφ = 4πρ.



Example 3: Maxwell’s equations

∇ · E = ρ

∇ · B = 0

∇× E = −∂B
∂t

∇× B = J +
∂E
∂t



Example 3: Maxwell’s equations

Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B1 B2
E2/c B3 0 −B1
E3/c −B2 B1 0

 ,

Jµ =

(
ρ

J i

)
.

Then Maxwell’s equations can be written:

ηµλ∂
λFµν = Jν ,

∂µFνλ + ∂νFλµ + ∂λFµν =: ∂[µFνλ] = 0.

(Exercise: Plug in components into the above two equations in
order to derive Maxwell’s equations in their 3-vector forms.)
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A ‘manifestly invariant form’ — Poincaré invariance

I The Klein-Gordon theory (example 1) and Maxwell theory
(example 3) feature explicit coupling to ηµν .

I The simplest form of these equations will be preserved
under coordinate transformations which preserve the
diagonal form of ηµν , i.e. coordinate transformations such
that ΛσµΛλνησλ = ηµν .

I These are just the Lorentz transformations!
(Exercise: show this.)

I The equations are also invariant under translations,
making them invariant under the full Poincaré group.

I One sometimes hears the claim that writing a theory using
four-dimensional indices makes the symmetries of one’s
equations ‘manifest’.
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A ‘manifestly invariant form’ — Galilean invariance

I The Newton-Poisson equation (example 2) features explicit
coupling to hµν .

I The simplest form of this equation will be preserved under
coordinate transformations which preserve the diagonal
form of hµν , i.e. coordinate transformations such that
Mµ

σMν
λhσλ = hµν .

I Assuming that the transformations are linear, these are just
the Galilean transformations!1 (Once we also include
translations.) (Exercise: Show this.)

1Well, almost—up to a constant rescaling of t—see lecture for the working!
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Invariance properties

I So far, we have just repackaged these dynamical
equations—we have not fundamentally changed their
symmetry properties.

I In fact, the index notation makes it pretty easy to transform
to an arbitrary (rather than inertial) coordinate system, and
see these equations in their general (and ugly!) form.

I (Recall from lecture 1 N2L in an arbitrary frame.)
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Explicit illustration: Klein-Gordon equation
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Note the extra term in the non-inertial frame (cf. fictitious
forces).
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General covariance

I Can we write theories in a generally covariant form, which
holds in an arbitrary frame?

I (Note that the terminology ‘general covariance’ is
confusing here—it should really be ‘general invariance’, but
to mesh with the literature I’ll use the standard term.)

I Einstein c. 1915 thought that the answer to this question
was no, and that this is what made his newly-developed
general relativity special.

I But Kretschmann said in 1917 to Einstein: yes.
I Two ways to render an arbitrary theory generally covariant:

1. Write its equations in an arbitrary frame, with all extra terms
included.

2. Write the theory in a coordinate-independent language.
I We’ve seen option (1); let’s now think a bit more about

option (2).
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Coordinate-independent formulations

I To write a theory in a coordinate-independent way, we
move from using coordinate indices (µ, ν, . . .), which
represent the components of objects in a particular
coordinate basis, to abstract indices (a,b, . . .), which
directly represent the objects themselves.

I E.g., move from
ηµν∂

µ∂νφ = 0

to
ηab∇a∇bφ = 0.

I This involves no reference to a coordinate system at
all—so a fortiori holds in all coordinate systems.

I The details are beyond the scope of this course, but see
e.g. (Friedman 1983) and (Malament 2012) for details.
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Ontological commitments

I Sometimes, one finds the claim that writing our theories in
a coordinate-independent language makes manifest the
full ontological commitments of those theories.

I For example, in the case of Klein-Gordon theory,
coordinate-independent presentations make manifest the
commitment of our theory not just to the field φ, but also to
another field, ηab—Minkowski spacetime.

I But should this be regarded as an autonomous entity
(object in our ontology), or just a codification of the
symmetries of the coordinate-based dynamical equations
from which we began?

I We will address this issue in lecture 10. (Cf. also lecture 1.)
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Two conceptions of geometry

Kleinian conception: Geometry is characterised via the
invariance groups of certain structures under coordinate
transformations.

Riemannian conception: Geometry is characterised via
metric tensors and similar differential-geometric objects.
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Aristotelian spacetime

t 7→ ±t + τ

x 7→ Rx

In Aristotelian spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Riemannian approach: 〈M, tab,hab,∇a, σ
a, ζ〉.
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Newtonian spacetime

t 7→ ±t + τ

x 7→ Rx + a

In Newtonian spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Riemannian approach: 〈M, tab,hab,∇a, σ
a〉.



Neo-Newtonian/Galilean spacetime

t 7→ ±t + τ

x 7→ Rx + vt + a

In Neo-Newtonian/Galilean spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Riemannian approach: 〈M, tab,hab,∇a〉.



Maxwellian/Newton-Huygens spacetime

t 7→ ±t + τ

x 7→ Rx + a (t)

In Maxwellian/Newton-Huygens spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Riemannian approach: 〈M, tab,hab, [∇a]〉.



Leibnizian spacetime

t 7→ ±t + τ

x 7→ R (t) + a (t)

In Leibnizian spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Riemannian approach: 〈M, tab,hab〉.



Machian spacetime

t 7→ f (t) (f monotonic)
x 7→ R (t) + a (t)

In Machian spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Riemannian approach: 〈M,hab〉.



Minkowski spacetime

xµ 7→ Λµνxν + aµ (Λµν ∈ SO (1,3))

In Minkowski spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.
7. A notion of spacetime distance.

Riemannian approach: 〈M, ηab〉.



Connections

The groups specified in the Kleinian conception of geometry
are those transformations which would leave invariant the
structures presented on the Riemannian conception of
geometry, if they were to be written in a coordinate basis.

E.g., write ηab in a coordinate basis, becomes ηµν ; this matrix is
preserved under Poincaré transformations.
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Today

Physical laws

General covariance

Kleinian and Riemannian conceptions of geometry

What is special relativity?



What is special relativity?

At least three possible answers to this question:

1. “Special relativity consists of the RP, the LP, whatever
supplementary principles are needed to derive the Lorentz
transformations therefrom, and the said derivation of the
Lorentz transformations.”

2. “Special relativity is the statement that the laws of physics
(in standard formulation) are Poincaré invariant.”

3. “Special relativity is the statement that spacetime structure
(over and above topological and differentiable structure) is
exhausted by Minkowski spacetime.”

Question: Which of the above captures the ‘essence’ of
special relativity?
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Summary

In this lecture, we’ve:

1. Seen how to write physical theories in index notation.
2. Seen how to write physical theories in arbitrary frames,

using that index notation.
3. Seen (something of) how to write physical theories in a

coordinate-independent manner.
4. Witnessed the Riemannian approach to geometry and

spacetime structure.
5. Considered the question of the essence of special relativity.
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