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The course

1. Newton’s laws
2. Galilean invariance
3. The Michelson-Morley experiment
4. Einstein’s 1905 derivation of the Lorentz transformations
5. Spacetime structure
6. General covariance
7. Relativity and conventionality of simultaneity
8. Frame-dependent effects
9. The twin paradox

10. Dynamical and geometrical approaches to relativity
11. Presentism and relativity
12. Acceleration and redshift
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Wise words from Galileo

Shut yourself up with some friend in the main cabin be-
low decks on some large ship, and have with you there
some flies, butterflies, and other small flying animals.
Have a large bowl of water with some fish in it; hang
up a bottle that empties drop by drop into a wide vessel
beneath it. With the ship standing still, observe care-
fully how the little animals fly with equal speed to all
sides of the cabin. The fish swim indifferently in all di-
rections; the drops fall into the vessel beneath; and in
throwing something to your friend, you need to throw
it no more strongly in one direction than another, the
distances being equal; jumping with your feet together,
you pass equal space in every direction. ...



Wise words from Galileo (ctnd.)

... When you have observed all these things carefully,
have the ship proceed with any speed you like, so long
as the motion is uniform and not fluctuating this way
and that. You will discover not the least change in all
the effects named, nor could you tell from any of them
whether the ship was moving or standing still. In jump-
ing you will pass on the floor the same spaces as be-
fore, nor will you make larger jumps toward the stern
than toward the prow even though the ship is moving
quite rapidly ...



Wise words from Galileo (ctnd. ctnd.)

... The droplets will fall as before into the vessel be-
neath without dropping toward the stern, although while
the drops are in the air the ship runs many spans.
The fish in the water will swim toward the front of the
bowl with no more effort than toward the back, and
will go with equal ease to bait placed anywhere around
the edges of the bowl. Finally the butterflies will con-
tinue their flights indifferently toward every side, nor will
it ever happen that they are concentrated toward the
stern, as if tired out from keeping up with the course
of the ship, from which they will have been separated
during long intervals in keeping themselves in the air.
(Galileo 1967, pp. 186-187.)



The relativity principle

I We saw in the previous lecture that one can define the
inertial frames as those frames in which the dynamical
equations governing matter take their simplest form, and in
which force-free bodies move with uniform velocity.

I The relativity principle states that the laws of physics take
the same form (their simplest) in all inertial frames.
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frames in special relativity? (Spoiler: no.)



To answer the first question, we must investigate the invariance
properties of the equations of Newtonian mechanics.
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leave coordinate system unchanged.

I Passive transformations: Transform coordinate system;
leave physical system unchanged.

The transformations considered in this lecture can be
understood either actively or passively.
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Active transformations and subsystems

Suppose that we apply an active transformation to a subsystem
of the universe (e.g. Galileo’s ship). Then, assuming:

1. the relativity principle holds, and
2. the physics within the subsystem is isolated from that of

the environment...

...the physics within the subsystem will be unchanged between
the pre- and post-transformed cases.

This—an active boost applied to a subsystem, assuming the
relativity principle and dynamical isolation—is what was going
on in Galileo’s example.
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Poincaré invariance



Galilean transformations

A Galilean transformation is any coordinate transformation that
can be expressed as the composition of a rigid spacetime
translation, a rigid rotation, and a Galilean boost:

Spatial translation ga
(
a ∈ R3) : ga (t ,x) = (t ,x + a) .

Time translation gb (b ∈ R) : gb (t ,x) = (t + b,x) .
Spatial rotation gR (R ∈ SO (3)) : gR (t ,x) = (t ,Rx) .
Galilean boost gv

(
v ∈ R3) : gv (t ,x) = (t ,x− vt) .



Invariance

There are two (equivalent) ways of defining what it means for a
given set of laws to be invariant under a given group of
transformations:

1. Space-of-solutions approach.
2. Form-of-equations approach.
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Invariance: space-of-solutions
I Consider the equation of motion

dr
dt

= −kr .

I This has general solution:

r (t) = Ae−kt , A ∈ R.

I For any such r and any time translation gb, we can form
the transformed structure gbr :

(gbr) (t) = r (t − b)

= Ae−k(t−b)

=
(

Ae+kb
)

e−kt .

This is another solution of the same equation.
I So we say that our equation is time-translation invariant.
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1. Identify the set Θ of equations to be investigated.

2. Identify a set S of structures for Θ; i.e., identify the type of
object that is mathematically appropriate to be a candidate
solution to Θ.

3. Identify the group G of transformations whose effects on Θ
we will be interested in investigating.

4. For general g ∈ G, identify the action of g on S.
5. Ask whether this action of G preserves the subset D ⊂ S

of solutions to Θ.
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Toy example of non-invariance

I Let the equation of motion (and hence Θ and S) be as
before.

I Let G be the group B1 of one-dimensional boosts
gv : x 7→ x − vt .

I Action of any such gv on S:

(gv r) (t) = r (t)− vt .

I For the general solution r (t) = Ae−kt , the transformed
structure is given by

(gv r) (t) = Ae−kt − vt ,

which is not identical to Be−kt for any B ∈ R, i.e., is not a
solution of our original equation.

I So our equation is not Galilean boost invariant.
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Form-invariance: general method

1. Identify the set of equations Θ to be investigated.

2. Identify the group G of transformations whose effects on Θ
we will be interested in investigating.

3. Identify an action of G on each of the ingredients in each
equation in Θ.

4. Write down the equations with the transformed (‘primed’)
quantities in place of the untransformed ones.

5. If the result is a set of equations equivalent to the original
Θ, then Θ is G-invariant.
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Galilean boost invariance of Newtonian gravitation

I Newtonian gravity for two particles is given by (combining
N2L and the law of gravitation):

r̈i =
GNm1m2

|r1 − r2|3
(ri − ri+1) , i = 1,2.

I Let G be the group B3 of three-dimensional boosts,{
(gv : r 7→ r− vt) : v ∈ R3}.

I The quantities in our equation transform as

r′i (t) := (gvri) (t) = ri (t)− vt ,
r̈′i (t) := ( ¨gvri) (t) = r̈i (t) ,

m′i := gvmi = mi .
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Galilean boost invariance of Newtonian gravitation

I The transformed equation is:

r̈′i =
GNm1m2∣∣r′1 − r′2

∣∣3 (r′i − r′i+1
)
, i = 1,2.

I Eliminating the primes, we have

r̈i =
GNm1m2

|r1 − r2|3
(ri − ri+1) , i = 1,2.

I So the equation is form-invariant under Galilean boosts!
I Exercise: Generalise this to the N-body problem.
I Exercise: Show that Newtonian gravitation is invariant

under Galilean boosts using the space-of-solutions
approach.
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Space-of-solutions versus form-invariance approaches

I The two approaches are equivalent (Exercise: prove
this!), but often the form-invariance method is easier,
because it doesn’t involve having to figure out what the
solutions of the equation under consideration are.

I In each case above, we began with an ansatz about what
the symmetry group of our equation. Figuring out the full
symmetry group of a set of equations is highly non-trivial.

I While there is no general method for doing this, the task
can be aided by formulating our theories in certain ways,
using certain objects which have familiar symmetry
properties. (See lecture 6.)
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Newton’s ‘Corollary V’

I Newton claims to infer Galilean invariance from his laws of
motion.

I After setting out the latter, he infers several ‘corollaries’; his
‘Corollary V’ is:

The motions of bodies included in a given space are
the same among themselves, whether that space is at
rest, or moves uniformly forward in a right line without
any circular motion. (Cajori 1934, p. 20)

I This essentially states that the laws of physics are Galilean
invariant.
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Newton’s argument for Corollary V

For the differences of the motions tending towards the
same parts, and the sums of those that tend toward
contrary parts, are, at first (by supposition), in both
cases the same; and it is from those sums and dif-
ferences that the collisions and impulses do arise with
which the bodies mutually impinge one upon another.
Wherefore (by Law II) the effects of those collisions will
be equal in both cases; and therefore the mutual mo-
tions of the bodies among themselves in the one case
will remain equal to the mutual motions of the bodies
among themselves in the other. A clear proof of which
we have from experiment of a ship; where all motions
happen after the same manner, whether the ship is at
rest, or is carried uniformly forwards in a right line. (Ca-
jori 1934, p. 20)



Two non sequiturs in Newton’s argument

I It does not follow from the laws of motion alone that ‘it is
from those sums and differences that the collisions and
impulses do arise with which the bodies mutually impinge
upon one another’. This requires the additional assumption
that forces depend only on (vectorial) differences of
positions and/or velocities, not on absolute positions or
absolute velocities. (Consider a particle affected by the
force F = −kv.)

I It does not follow that “the effects of those collisions will be
equal” unless we further assume that the mass of a given
body is independent of the body’s absolute position and
absolute velocity. (Consider particles whose masses are
proportional to their absolute speeds.)
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Repairing Newton’s argument

With these two auxiliary assumptions in place, Galilean
invariance of the laws does follows from N2L (by essentially
Newton’s argument).

(For more on this, see (Brown 2005, §3.2).)
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Poincaré invariance



Poincaré transformations

We saw that a Galilean transformation can be expressed as the
composition of a rigid spacetime translation, a rigid rotation,
and a Galilean boost.

A Poincaré transformation is any coordinate transformation that
can be expressed as the composition of a rigid spacetime
translation, a rigid rotation, and a Lorentz boost:

Spacetime translation gaµ
(
aµ ∈ R4) : gaµ (xν) = xν + aν .

Spatial rotation and Lorentz boost gΛ
µ
ν

(
Λµ

ν ∈ SO (1, 3)
)

: gΛ
µ
ν

(xν) = Λν
σxσ .
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Galilean versus Lorentz transformations

I In both cases, we have a rigid translation, a rigid rotation,
and a boost.

I But the boosts are different in the two cases.
I Galilean boosts in x direction:

t ′ = t ,
x ′ = x − vt .

I Lorentz boosts in x direction (γ := 1/
√

1− v2/c2):

t ′ = γ
(

t − vx
c2

)
,

x ′ = γ (x − vt) .

I Exercise: Show that we recover the Galilean boosts from
the Lorentz boosts when v � c.
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Maxwell’s equations

∇ · E = ρ

∇ · B = 0

∇× E = −∂B
∂t

∇× B = J +
∂E
∂t

Question: What are the invariance properties of these
equations?
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Precipitating a crisis

I Exercise: Show that Maxwell’s equations are invariant
under Poincaré transformations, and that they are not
invariant under Galilean transformations.

I One might say that it was the discovery of a set of
dynamical laws which were Poincaré invariant, rather than
Galilean invariant, which precipitated the crisis which led to
the development of special relativity.

I We will see more of this next time.
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Summary

In this lecture, we’ve:

1. Introduced the relativity principle.

2. Distinguished (a) active vs. passive, and (b) global
vs. subsystem transformations.

3. Presented two methods to test the invariance properties of
dynamical equations.

4. Distinguished Galilean invariance from Poincaré
invariance.

5. Argued that, with corrections, Newton was right to say that
the dynamical equations of Newtonian mechanics are
Galilean invariant.

6. Seen that Maxwell’s equations of electromagnetism are
Poincaré invariant.
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Poincaré invariant.



Summary

In this lecture, we’ve:

1. Introduced the relativity principle.
2. Distinguished (a) active vs. passive, and (b) global

vs. subsystem transformations.
3. Presented two methods to test the invariance properties of

dynamical equations.
4. Distinguished Galilean invariance from Poincaré
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