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The course

1. Newton’s laws
2. Galilean invariance
3. The Michelson-Morley experiment
4. Einstein’s 1905 derivation of the Lorentz transformations
5. Spacetime structure
6. General covariance
7. Relativity and conventionality of simultaneity
8. Frame-dependent effects
9. The twin paradox

10. Dynamical and geometrical approaches to relativity
11. Presentism and relativity
12. Acceleration and redshift
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Kleinian and Riemannian conceptions of geometry

Spacetime structure in Newtonian mechanics

Spacetime structure in special relativity

Further reflections on spacetime
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The entrance of spacetime...

I In 1905, Einstein published his derivation of the Lorentz
transformations.

I In 1908, Minkowski articulated the spacetime setting of
special relativity, and went on to write:

Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a
kind of union of the two will preserve an independent
reality. (Minkowski 1909)

I What was Einstein’s reaction? He accused Minkowski’s
work of being “superfluous learnedness” (Pais 1982).
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The world-postulate

I In his paper, Minkowski introduced the world-postulate: the
principle that all fundamental physical laws must be
conditioned so as to be Poincaré invariant.

I This, as we have seen, was already to be found in
Einstein...

I ...but by expressing this notion in four-dimensional
geometrical language, Minkowski felt he had shown how

the validity of the world-postulate ... now lies open in
the full light of day. (Minkowski 1909)

I Question: Is this the origin of a Friedman-style
‘geometrical approach’ to physical theories? (Cf. lecture 1.)
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Today’s goal

Our goal for today is to spell out the move from dynamical
symmetries to spacetime structure.
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Two conceptions of geometry

Kleinian conception: Geometry is characterised via the
invariance groups of certain structures under coordinate
transformations.

Riemannian conception: Geometry is characterised via
metric tensors and similar differential-geometric objects.
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Inertial frames and spacetime structure

I We have seen that the inertial frames are those coordinate
systems in which dynamical equations governing matter
take their simplest form, and in which force-free particles
move with uniform velocity.

I Sometimes, people also think about the inertial frames as
those frames which respect spacetime’s ‘inertial structure’
in a certain way.

I Today, we will see how this goes, from the Kleinian
perspective.
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Kleinian approach summarised

I Specify the class of coordinate transformations which
relate the inertial frames in the theory under consideration.

I Identify the structures and quantities which are invariant
under those transformations.

I Regard these structures and quantities as picking out
different kinds of spacetime.
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A hierarchy of structures

Aristotelian spacetime
↓

Newtonian spacetime
↓

Neo-Newtonian/Galilean spacetime
↓

Maxwellian/Newton-Huygens spacetime
↓

Leibnizian spacetime
↓

Machian spacetime

(Throughout the following, R ∈ SO (3) and any functions of t
are smooth.)
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Aristotelian spacetime

t 7→ ±t + τ

x 7→ Rx

In Aristotelian spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.
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Neo-Newtonian/Galilean spacetime

t 7→ ±t + τ

x 7→ Rx + vt + a
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1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.







Maxwellian/Newton-Huygens spacetime

t 7→ ±t + τ

x 7→ Rx + a (t)

In Maxwellian/Newton-Huygens spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.







Leibnizian spacetime

t 7→ ±t + τ

x 7→ R (t) x + a (t)

In Leibnizian spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.







Machian spacetime

t 7→ f (t) (f monotonic)
x 7→ R (t) + a (t)

In Machian spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.







Summary

In each case, enriching the class of transformations (between
inertial frames) deprives the associated spacetime of further
structure.

Question: How does the spacetime structure of special
relativity compare with that of the spacetimes we have just
seen?
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Aside: index notation
I Consider again the coordinate transformations associated

with Galilean spacetime. So far, I’ve written these in vector
notion, as

t 7→ ±t + τ

x 7→ Rx + vt + a.

I The equivalent expression in index notation would be

t 7→ ±t + τ

x i 7→ R i
j x

j + v i t + ai .

I Note that all terms must have the same free indices, and
the Einstein summation convention is used.

I By convention, we use Latin indices (i , j , . . . = 1,2,3) for
spatial indices, and Greek indices (µ, ν, . . . = 0,1,2,3) for
spacetime indices.
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Minkowski spacetime

xµ 7→ Λµ
νxν + aµ (Λµ

ν ∈ SO (1,3))

In Minkowski spacetime, there is:
1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.
7. A notion of spacetime distance.





The interval

I The invariant quantity associated with a notion of
(Minkowksi) spacetime distance in special relativity is the
interval,

I = −c2dt2 + dx2 + dy2 + dz2.

I I is preserved in all inertial frames in special
relativity—i.e., in all frames related by Poincaré
transformations.
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Spacetime and dynamical laws

I In lecture 2, we saw that the laws of Newtonian mechanics
are invariant under Galilean transformations.

I But these are the transformations associated with Galilean
spacetime, as we have seen above.

I It is natural, therefore, to regard Newtonian mechanics as
being set in Galilean spacetime.
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Earman’s adequacy conditions

In (Earman 1989, ch. 3), Earman makes it a very general
principle that the spacetime and dynamical symmetries of a
theory should match, by laying down two conditions:

SP1: Any dynamical symmetry of T is a spacetime
symmetry of T .

SP2: Any spacetime symmetry of T is a dynamical
symmetry of T .

(Some have gone further, by saying that these principles are
analytically true—see e.g. (Myrvold 2017).)
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Newton’s mistake?

I We have neither a priori nor direct empirical access to the
structure of spacetime we live in.

I Our guide to which structure obtains is in the dynamical
laws: we should postulate as much structure as is required
to state (the invariance properties of) the laws of our best
physical theories, and no more. (Cf. Earman’s conditions.)

I With hindsight, Newton violated this requirement:
Newtonian physics can be formulated in (merely) Galilean
spacetime, not Newtonian spacetime (as Newton
maintained). Occam’s razor thus advises against
postulating a standard of absolute rest in addition.
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Correct spacetime setting for Newtonian mechanics

If we follow the methodology of moving from Newtonian to
Galilean spacetime as the correct spacetime setting for
Newtonian mechanics, then (it seems) the discovery of further
invariances of the Newtonian laws would similarly motivate
moving to a different spacetime setting again, with even less
structure than Galilean spacetime.



Newton’s ‘Corollary VI’

I Consider Newton’s ‘Corollary VI’ in the Principia:
If bodies moved in any manner among themselves are
urged, in the direction of parallel lines by equal acceler-
ative forces, they will all continue to move among them-
selves, after the same manner as if they had not been
urged by those forces. (Cajori 1934, p. 21)

I This points out that there is no standard of linear
acceleration in Newtonian mechanics—so perhaps the
correct spacetime setting for the theory should be
Maxwellian spacetime? (Cf. Saunders 2013).

I This is an ongoing matter of some controversy—see (Knox
2013) and (Wallace 2016) for further discussion.
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Spacetime and structure

I If we impose extra structure on Galilean spacetime
(namely, a standard of rest), we can recover Newtonian
spacetime.

I If we impose extra structure on Minkowski spacetime
(namely, again, a standard of rest), we can (again, perhaps
surprisingly) recover Newtonian spacetime.

I So...:
There is a precise sense in which Newtonian space-
time has more structure than both Galilean spacetime
and Minkowski spacetime. But in this same sense,
Galilean and Minkowski spacetime have incomparable
amounts of structure; neither spacetime has less struc-
ture than the other. The progression towards a less
structured spacetime therefore does not continue into
the relativistic setting. (Barrett 2015, p. 37)



Spacetime and structure

I If we impose extra structure on Galilean spacetime
(namely, a standard of rest), we can recover Newtonian
spacetime.

I If we impose extra structure on Minkowski spacetime
(namely, again, a standard of rest), we can (again, perhaps
surprisingly) recover Newtonian spacetime.

I So...:
There is a precise sense in which Newtonian space-
time has more structure than both Galilean spacetime
and Minkowski spacetime. But in this same sense,
Galilean and Minkowski spacetime have incomparable
amounts of structure; neither spacetime has less struc-
ture than the other. The progression towards a less
structured spacetime therefore does not continue into
the relativistic setting. (Barrett 2015, p. 37)



Spacetime and structure

I If we impose extra structure on Galilean spacetime
(namely, a standard of rest), we can recover Newtonian
spacetime.

I If we impose extra structure on Minkowski spacetime
(namely, again, a standard of rest), we can (again, perhaps
surprisingly) recover Newtonian spacetime.

I So...:
There is a precise sense in which Newtonian space-
time has more structure than both Galilean spacetime
and Minkowski spacetime. But in this same sense,
Galilean and Minkowski spacetime have incomparable
amounts of structure; neither spacetime has less struc-
ture than the other. The progression towards a less
structured spacetime therefore does not continue into
the relativistic setting. (Barrett 2015, p. 37)



Summary

In this lecture, we’ve:

1. Distinguished between Kleinian and Riemannian
conceptions of geometry.

2. Witnessed the tower of classical spacetime structures.
3. Compared these classical spacetime structures with the

structure of Minkowski spacetime.
4. Discussed the correct spacetime setting for Newtonian

mechanics.
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