
Philosophy of Space and Time: Week 4

Minkowski Spacetime

Coordinate transformations

To recap: Last week, we saw that inertial frames (i.e. coordinate systems in which the laws

of physics take their simplest forms) in Newtonian mechanics are related by the Galilean

transformations,

x′ = x− vt,

y′ = y,

z′ = z,

t′ = t,

whereas inertial frames in special relativity are related by the Lorentz transformations,

x′ = γ (x− vt) ,

y′ = y,

z′ = z,

t′ = γ
(
t− vx

c2

)
,

with

γ =
1√

1 − v2

c2

.
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Euclidean metric

• The distance D between two points in Newtonian absolute space at a particular time is

given by

D2 = ∆x2 + ∆y2 + ∆z2

(this is just Pythagoras’ theorem). This quantity is invariant under Galilean transforma-

tions (in fact, it’s invariant under all transformations—but only retains the above form

under Galilean transformations).

• We can write the vector between these two points—call them A and B—as

∆~x =


∆x

∆y

∆z


• Then the above formula for D2 could be rewritten in the form of a matrix equation as

D2 = (∆~x)Th (∆~x) =
(

∆x, ∆y, ∆z
)

1 0 0

0 1 0

0 0 1




∆x

∆y

∆z

 ,

where

h =


1 0 0

0 1 0

0 0 1


is the three-dimensional Euclidean metric.

• Sometimes, a three-dimensional Euclidean metric is identified with Newton’s absolute

space.
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Minkowski metric

• Similarly, in SR, the following quantity—the spacetime interval I—is invariant under

Lorentz transformations (in fact, it’s invariant under all transformations—but only re-

tains the form below under Lorentz transformations):

I2 = ∆x2 + ∆y2 + ∆z2 − c2∆t2

• We can write the vector between these two points—call them A and B—as

∆~x =


∆x

∆y

∆z

c∆t


• Then the above formula for I2 could be rewritten in the form of a matrix equation as

I2 = (∆~x)Tη (∆~x) =
(

∆x, ∆y, ∆z c∆t
)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




∆x

∆y

∆z

c∆t

 ,

where

η =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


is the four-dimensional Minkowski metric.

• Sometimes, a four-dimensional Euclidean metric is identified with spacetime in Ein-

stein’s special relativity.

• Note the minus sign compared with the Euclidean metric!
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Bell’s Rockets

• Two rockets, connected by a taut tether, start at rest with respect to a control tower and

are accelerated to relativistic speeds, keeping the distance between them constant.

• Will the tether between the rockets break? Yes! (NB: Many physicists get this wrong.)

• From the point of view of the control tower, the breakage happens as a result of length

contraction.

• From the point of view of the first rocket, the breakage happens as the second rocket

moves progressively further away (due to the relativity of simultaneity—draw a space-

time diagram!).

• From the point of view of the second rocket, the breakage happens as the first rocket lags

further behind (due to the relativity of simultaneity—draw a spacetime diagram!).

What should we make of these frame-based explanations? Bell wants us to accept contraction-

based explanations as just as physical/good/real as others. Knox concurs:

In SR, reference frames are all as good as one another—it’s wrong to think of the

rocket perspective as somehow offering a ‘real’ explanation! (2016, 4(35))

Many, however, would demur. Maudlin writes:

The surface contradiction between these three accounts of why the thread breaks

illustrates that frame-dependent narrations of events in Relativity can be mislead-

ing. There is one set of events, governed by laws that are indifferent to which

coordinate system might be used to describe a situation. In each frame-dependent

account, the interatomic forces in the thread play a role in determining exactly

when the thread breaks. But how that role is described in a particular reference

frame depends critically on which frame is chosen. (Maudlin, p. 120)
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Twin Paradox, Reprise

Last week, I proffered a geometric explanation of the twins paradox:

• Proper time elapsed along path A: (i.e., time elapsed on A’s clock)

TA =

∫ p1

p0

dτA

• Proper time elapsed along B: (i.e., time elapsed on B’s clock)

TB =

∫ p1

p0

dτB =

∫ p1

p0

(
1 −

(
dx

dτA

)2

−
(
dy

dτA

)2

−
(
dz

dτA

)2
)1/2

dτA < TA

• This explanation just used the invariance of the special relativistic spacetime interval—it

was not relativised to a frame.
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One may also give a frame-based explanation:

• A great deal of time elapses on Earth (i.e., for A) as B’s simultaneity slices shift on her

turnaround.

As with the rockets, we have frame-independent explanations on the one hand, and frame-

dependent explanations on the other. Bell’s point is that we can do physics from the point of

view of a single reference frame (this is his “Lorentzian pedagogy”). In sum:

1. The tendency to think that there’s ‘no physics’ in choices of coordinates can lead us to

think that phenomena like Lorentz contraction aren’t ‘real’, or can’t be explanatory.

2. The frame-independent approach (offering explanations in terms of Minkowski space-

time properties such as the invariance of the interval, etc.), inasmuch as it’s contrasted

with coordinate-based explanations, may exacerbate this tendency.

3. NB: This is not to say that there’s anything wrong with the frame-independent approach

per se.
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Constructive and Principle Theories

Einstein famously distinguished between constructive and principle theories:

• Constructive theories: Theories like the kinetic theory of gases. These theories attempt

to construct the phenomena we see around us ‘from the bottom up’, by modelling the

physical world in terms of fundamental constituents and the laws that govern them.

• Principle theories: Theories like thermodynamics (and special relativity), which start

with a handful of empirically observed principles or phenomena, elevate them to the

status of postulates, and then derive a theory based on what follows from these.

One might worry that only constructive theories offer explanations. If this worry moves

us, we should seek a constructive version of special relativity—one that not only predicts that

relativistic phenomena will happen, but explains why they happen.

Two constructive approaches to special relativity

Two attempts to provide a constructive version of special relativity:

(A) (Geometrical approach) Special relativistic phenomena (in particular Lorentz invariance

of the dynamical laws) are explained by matter being embedded in Minkowski spacetime.

(Maudlin, Janssen)

(B) (Dynamical approach) Special relativistic phenomena (in particular Lorentz invariance of

the dynamical laws) are explained by the fundamental microdynamics of matter. (Brown)

In addition to endorsing the dynamical approach, Brown argues that Minkowski spacetime is

unnecessary in the true constructive version of special relativity:

• Once we know that the laws governing rods and clocks are Lorentz invariant, we know

that they will behave in accordance with the postulates of special relativity.
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• So what we think of as spacetime geometry is reducible to the symmetry properties of

the dynamical laws governing matter fields. (Brown p. 133: “The appropriate structure

is Minkowski geometry precisely because the laws of physics of the non-gravitational

interactions are Lorentz covariant”.)

• For Brown, Minkowski spacetime alone can’t explain anything. (Brown p. 134: “It is

wholly unclear how this geometrical explanation is supposed to work.”)

Two Debates

It’s important to keep distinct in one’s mind the two debates we have discussed:

1. The debate over the legitimacy of frame-dependent/-independent explanations in space-

time theories such as special relativity.

2. The geometrical-versus-dynamical debate over the most appropriate constructive ver-

sion of a given spacetime theory, here special relativity.

Roughly, Brown favours frame-dependent explanations and the dynamical approach; Maudlin

and Friedman favour frame-independent explanations and the geometrical approach; Janssen

favours frame-dependent explanations and the geometrical approach.
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