
Philosophy of Space and Time: Week 10

Thermodynamics and Statistical Mechanics

Recall from last week that statistical mechanics is the constructive theory corresponding to

thermodynamics, which is a principle theory. Statistical mechanics aims to explain and pre-

dict thermodynamic phenomena by starting from classical or quantum microdynamics and

deriving statements about the large scale, aggregate behaviour of collection of particles. Some

examples of statistical mechanical reductions are:

(a) Temperature in thermodynamics is associated with the mean kinetic energy of particles in

statistical mechanics.

(b) Pressure in thermodynamics is associated with the force per unit area exerted by particle

collisions on the walls of a container, in statistical mechanics.

(c) An increase in temperature tends to lead to an increase in pressure (a phenomenological

result in thermodynamics) because increasing the mean kinetic energy of particles tends

to increase the frequency and force of their collisions with the walls of the container.

Entropy

In the philosophy of thermodynamics and statistical mechanics, there are three key notion of

entropy:

1. Thermodynamic entropy, STD.

2. Boltzmann entropy, SB.

3. Gibbs entropy, SG.

Entropy in thermodynamics, represented by STD, can only increase with time (this is a conse-

quence of the second law of thermodynamics). This is not true for the statistical mechanical
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notion of entropy, SB. We won’t worry about SG (another statistical mechanical notion of

entropy) here—though it’s worth noting that much work has been done recently attempting to

make precise the connections between STD, SB, and SG (see e.g. papers by David Wallace).

Boltzmann entropy

The Boltzmann entropy SB associated with a given distribution of particles can be expressed

as

SB = kBlog Ω,

where kB is Boltzmann’s constant, and Ω is the number of possible particle arrangements (so-

called microstates) associated with a given macroscopic, thermodynamic configuration of the

system in question (a so-called macrostate).

• The more ways there are to arrange the particles of the system in question to produce its

microstate, the higher that system’s Boltzmann entropy.

• Roughly, Boltzmann entropy measures how much (or little) we can know about the

microstate of a system, given its macrostate. (High entropy means we know little about

the system’s exact microstate.)

Time Asymmetry

Recall our puzzle from last week: How can it be that the laws of thermodynamics are time

asymmetric, but the laws of their constructive underpinning—statistical mechanics—are time

reversal invariant (i.e., time-symmetric)? Let’s now explore two possible answers:

1. Boltzmann’s H-theorem.

2. Phase space considerations.
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The H-Theorem

Boltzmann claimed to show, in the proof of his so-called H-theorem, that given a random

distribution of particles interacting with each other, SB must subsequently increase over time.1

• But everything in Boltzmann’s reasoning depends upon the time-symmetric physics of

statistical mechanics! So how does he derive a time-asymmetric law? (This is some-

times known as Loschmidt’s paradox.)

• In his H-theorem proof, Boltzmann implicitly made use of an assumption now known

as the Stosszahlansatz: that the initial velocities of colliding particles are uncorrelated

(i.e., are not related), but the final (i.e. post-collision) velocities are correlated (i.e., are

related in some way).

• It’s now fairly widely accepted that this assumption imported time asymmetry into

Boltzmann’s proof—and that this is what enabled Boltzmann to derive his time-asymmetric

result.

These days, most people back off claims to the effect that statistical mechanical entropy SB

must increase (in light of e.g. the Poincaré recurrence theorem we saw last week), instead

making the weaker claim that SB is only highly likely to increase. Still, many claim that

this is sufficient to recover time-asymmetric thermodynamic behaviour from time-symmetric

statistical mechanical laws. Below, we’ll spell out the details of one argument which is often

given here (sometimes called the neo-Boltzmannian account).

Phase Space

The phase space for a system of N particles is a 6N -dimensional space, of all possible particle

configurations. (Why 6N dimensions? Three dimensions for the position, and three dimen-

sions for the momenta, of all N particles under consideration.) A path through phase space

traces one possible history of the system under consideration.

1Actually, whether Boltzmann was talking about SB in his proof is a subtle matter; we’ll pass over this.
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• An alternative explanation for the emergence of time-asymmetric thermodynamic be-

haviour from time-symmetric statistical mechanical microphysics appeals to the fact that

high Boltzmann entropy macroconditions (by definition) correspond to large volumes of

phase space, while low Boltzmann entropy conditions correspond to small volumes of

phase space.

• If we assume that a system wanders around the phase space in such a way as to spend

equal times in all areas (Question: Is this assumption reasonable? Doesn’t it depend on

the details of the dynamics?), then it’s overwhelmingly likely, given that it starts in a low

entropy region, that it’ll enter a higher-entropy region (Further questions: Doesn’t this

require a probability measure over the initial macrostate? How could one be obtained?

And doesn’t this depend upon the initial state of the system being a low-SB state?)

We could provide an answer to our first question if we could establish ergodicity: that the time

a system spends in a phase space region is proportional to its area. We could answer the final

further question by appeal to some kind of past hypothesis (see below).

The Past Hypothesis

If we want statistical mechanics to underwrite thermodynamic behaviour for all time, then

this seems to require pushing the initial low-entropy state to the start of the universe—this is

Albert’s past hypothesis.

• The idea is that we account for thermodynamic asymmetries by appeal to an asymmetric

boundary condition, even though the micro-laws themselves are symmetric.

• Given a low-SB initial state, it looks like the Bolzmannian phase space story above will

then go through.

But here are some worries:

1. Without specifying the dynamics, there’s no guarantee that a system beginning in a

low-SB microstate will transition to higher-SB states.
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2. To claim that systems beginning in low-SB microstates are likely to transition to higher-

SB states seems to require a probability distribution over the initial low-SB macrostate—

where does this come from?

3. Even if we embrace Albert’s past hypothesis, does this actually guarantee thermody-

namic behaviour?

4. Earman (2006): Can the concept of entropy coherently be applied to the universe as a

whole?

Wallace thinks that we should replace this kind of past hypothesis with (what is effectively)

a simpler, more direct one: the initial conditions of the universe are such as to guarantee

thermodynamic behaviour.
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