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1 Set theory and induction

1.1 Important concepts

These are the concepts introduced in this week’s class and readings. Check that
you understand them all.

• Sets: members and elements; extensionality; the empty set (or null set);
singletons; intersection, union, relative complement; disjointness; subset
and superset, proper subset and proper superset; power set; Russell’s
paradox.

• Sequences: the set-theoretic definition of an ordered pair; the criterion of
identity for ordered pairs; sequences (or n-tuples); the Cartesian product.

• Relations: relations over a set; binary relations; domain and range; reflex-
ive, irreflexive and non-reflexive; symmetric, asymmetric, anti-symmetric
and non-symmetric; transitive, intransitive and non-transitive; the tran-
sitive closure (or ancestral) of a relation; equivalence relations and parti-
tions; the identity relation; predicates determining a relation.

• Functions: argument and value; domain and range; total vs. partial func-
tions on a set; criterion of identity for functions; one-to-one (or injective);
into; onto (or surjective); one-to-one correspondences (or bijections); the
inverse of a function; n-place functions (including n = 0); truth func-
tions; enumeration; equinumerosity and cardinality; Cantor’s theorem;
countability, denumerability and uncountability.

• Induction and recursion: inductive definition of a set (base case, generat-
ing relation and closure condition); recursive definition of a function (base
case and recurrence relation); proof by induction (base cases and induc-
tive steps); the Weak Principle of Induction (or ordinary induction), the
Strong Principle of Induction (or complete induction), the Least Number
Principle.

1.2 Required exercises

1. Diagnose the following fallacious inductive “proofs”:

(a) Claim: All horses are the same colour. Proof: By induction on the
number n of horses.

• Base case: n = 1. Trivial: the single horse is the same colour as
itself.

• Inductive hypothesis: Assume the claim for all sets of n horses;
now consider any set of n + 1 horses.
Assume some enumeration of the n + 1 horses. By the inductive
hypothesis, the first n horses are the same colour. By the induc-
tive hypothesis again, the last n horses (horse 2 to horse n+1) are
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the same colour. So then the first horse is the same colour as the
middle n − 1 horses, which are the same colour as the (n + 1)th
horse. So then all n + 1 horses are the same colour.

By induction, all horses are the same colour. QED.

(b) Claim: π is rational. Proof: By induction on the number of decimal
places n of π.

• Base case: n = 0. x0 := 3 is rational.
• Inductive hypothesis: Assume that the decimal expansion of π

truncated to the nth decimal place, xn, is rational; now consider
the expansion truncated to the (n + 1)th decimal place, xn+1.
xn+1 = xn + m

10n+1 for some m ∈ {0, 1, . . . , 9}. By the inductive
hypothesis, xn is rational. m

10n+1 is clearly rational. The sum of
any two rational numbers is rational. Therefore xn+1 is rational.

By induction, π = x∞ is rational. QED.

2. Prove the following:

(a) ⊆ is a partial order, i.e. it is reflexive, anti-symmetric and transitive.

(b) ⊂ is a strict order, i.e. it is irreflexive and transitive (and therefore
asymmetric).

(c) ⊆ can be defined in terms of ⊂, or vice versa.

3. Prove the following:

(a) A ⊆ B iff A ∩ B = A, iff A ∪ B = B.

(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

4. Provide an example for which ℘(A) ∪ ℘(B) , ℘(A ∪ B).

5. (a) Prove that a function f : A→ B has an inverse f−1 : B→ A iff it is a
bijection.

(b) Give an example of a function that:

i. is into but not onto;
ii. is one-to-one but not a bijection;

iii. is a bijection but has disjoint domain and range;
iv. has no inverse;
v. is its own inverse.

(c) For each of the following sets, say whether or not it is denumerable:

i. {〈x, y〉 ∈N ×N | x + y = 12};
ii. N ×N;

iii. the set of all finite sequences of natural numbers;
iv. the set of all binary expansions of real numbers in the interval

[0, 1].
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6. State and prove Cantor’s theorem.

7. Letϕ be anL1-sentence containing only zero or more instances of the con-
nective ¬ and the sentence letter P. Show using induction on complexity
of ϕ that either ϕ ≡ P or ϕ ≡ ¬P.

8. Let ϕ be an L1-sentence containing only the connectives ∧ and ∨. Show
using induction on the complexity of ϕ that

∣∣∣ϕ∣∣∣
A

= F whenever |Φ|A = F
for each sentence letter Φ in ϕ and that

∣∣∣ϕ∣∣∣
A

= T whenever |Φ|A = T for
each sentence letter Φ in ϕ.

9. Prove the following claims about L1:

(a) The number of occurrences of parentheses in a sentence is twice the
number of occurrences of binary connectives.

(b) LetA be a structure such that |α|A = T for each sentence letter α. For
any sentence ϕ with no occurrences of negation,

∣∣∣ϕ∣∣∣
A

= T.

(c) If ϕ contains at most one occurrence of each sentence letter then
there is a structureA such that

∣∣∣ϕ∣∣∣
A

= T and a structure B such that∣∣∣ϕ∣∣∣
B

= F.

(d) If ϕ contains at most one occurrence of any sentence letter, then 2 φ.

1.3 Optional exercises

1. Prove that, according to Kuratowski’s definition, 〈x, y〉 = 〈u, v〉 iff x = u
and y = v.

2. In axiomatic set theory, the Axiom of Separation (in fact an axiom schema)
says that, for any (n + 1)-place formula ϕ, any items y1, . . . , yn and any
set A, there is a set B := {x ∈ A | ϕ(x, y1, . . . , yn)}. Show, using Russell’s
paradox, that the Axiom of Separation is inconsistent with the existence
of the universal set Ω (the set of all sets).

3. Prove that the Weak Principle of Induction (WPI), the Strong Principle of
Induction (SPI) and the Least Number Principle (LNP) are all equivalent.
[Hint: only three claims need to be proven: (LNP)⇒ (SPI), (SPI)⇒ (WPI)
and (WPI)⇒ (LNP); the first two claims are particularly easy.]
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2 Truth functions, DNF/CNF, and substitution

2.1 Important concepts

These are the concepts introduced in this week’s class and readings. Check that
you understand them all.

• Syntax: alphabet (sentence letters, logical connectives, parentheses); in-
ductive definition of L1-sentence (L1-formula); atomic vs. complex sen-
tences; literals; the parenthesis matching theorem.

• Semantics: truth values; L1-structures; truth tables; recursive definition
of truth in aL1-structure; proof by induction on complexity of sentences.

• Entailment: satisfaction; satisfiability (or semantic consistency); entail-
ment (or semantic entailment); sequents (the meaning of ‘Σ � ϕ’); tau-
tologies; structural rules (permutation, contraction, weakening); logical
equivalence; equivalence theorem; cut, transitivity, contraposition; the
deduction theorem.

• Substitution: uniform substitution of sentence letters; substitution in-
stances; the substitution theorem; logical equivalence of sentences with
logically equivalent subsentences.

• Truth functions and their expression: truth functions; connectives (n-
place, for any n ∈ N); truth-functional connectives (the expression of a
truth function); disjunctive normal form (DNF); conjunctive normal form
(CNF); the DNF and CNF theorems.

2.2 Required exercises

1. For each of the following claims, either offer a proof or a counterexample.

(a) If Γ � ¬ϕ, then Γ 2 ϕ.

(b) Either Γ � ϕ or Γ � ¬ϕ.

(c) If ϕ � χ and ψ � χ, then (ϕ ∨ ψ) � χ.

(d) If ϕ,¬ψ � and ¬ϕ,ψ �, then � ϕ↔ ψ.

2. (a) How many n-place truth functions are there?

(b) For each 2-place truth function, and using the sentence letters P and
Q, offer the least complex L1-sentence which expresses it. (Recall
that all sentence letters have complexity 0 and the complexity of any
sentence is 1 more than the complexity of its most complex proper
subsentence.)
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(c) Let’s call two truth functions equivalent iff they are expressed by
logically equivalent L1-sentences. Further, let’s call an n-place truth
function redundant iff it is equivalent to some m-place truth function,
where m < n.
How many non-redundant 0, 1, 2, and 3-place truth functions are
there?

3. For each of the following L1-sentences, offer a logically equivalent sen-
tence in disjunctive normal form. [Hint: first draw their truth-tables and
consider how the DNF Theorem is proved.]

(a) (P→ (¬Q→ ¬P))

(b) ((P ∧ ¬Q)→ (¬P ∧ R))↔ ((R→ P)→ (P→ Q))

(c) (P↔ Q)→ (R↔ ¬Q)

(d) ((P↔ (¬Q ∧ R)) ∨ (R→ (P↔ Q)))

4. Prove, by induction, the generalised De Morgan equivalences,

¬

(
φ1 ∧ . . . ∧ φn

)
≡

(
¬φ1 ∨ . . . ∨ ¬φn

)
,

¬

(
φ1 ∨ . . . ∨ φn

)
≡

(
¬φ1 ∧ . . . ∧ ¬φn

)
.

5. The CNF Theorem states that

Every truth function is expressed by anL1-sentence in conjunc-
tive normal form.

Prove this theorem in two different ways:

(a) Using the DNF theorem and the generalised De Morgan equiva-
lences.

(b) Directly, in the style of Eagle’s proof of the DNF theorem.

6. Crucial to proving the Substitution Theorem is the Substitution Lemma,
which is as follows:

Let ϕ and ψ be any L1-sentences, and let X be some sentence
letter. For any L1-structureA, define the L1-structureAψ/X as
follows:

Aψ/X(Y) =

{ ∣∣∣ψ∣∣∣
A

iff Y = X;
A(Y) iff Y , X.

Then
∣∣∣ϕ∣∣∣
Aψ/X

=
∣∣∣ϕ[ψ/X]

∣∣∣
A

.

Prove this lemma.
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2.3 Optional exercises

1. (a) Prove that if ϕ and ψ are nonempty sequences of characters of the
alphabet of L1, such that ϕψ (i.e., the sequence of characters con-
sisting of the sequence ϕ followed immediately by the sequence ψ)
is a sentence, then ϕ is not a sentence. [Hint: use the parentheses
matching theorem and the fact that if ϕψ is a sentence, then ϕ must
have mismatched parentheses.]

(b) Prove that if ϕ is a non-atomicL1-sentence, then there is exactly one
formation clause from the inductive definition of ‘L1-sentence’ that
could have been applied to existing sentences to produce ϕ. [Hint:
you need to show that, e.g., (ϕ ∨ ψ) cannot be the same sentence as
(χ ∧ ξ).]

(c) The Unique Readability Theorem states that

EveryL1-sentence is uniquely readable; i.e. everyL1-sentence
can be produced from sentence letters in accordance with
the formation clauses of L1 in exactly one way.

Prove this theorem.

2. Take any L1-sentence ϕ whose only connectives are in {¬,∧,∨}. For any
sentence letter X, we say that X is positive in ϕ iff X does not occur in
the scope of a negation symbol. Prove that if X is positive in ϕ and
(ψ→ ξ) is a tautology, then (ϕ[ψ/X]→ ϕ[ξ/X]) is a tautology. (You may
not assume the logical equivalence of sentences with logically equivalent
subsentences.)
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3 Duality, interpolation, and compactness

3.1 Important concepts

These are the concepts introduced in this week’s class and readings. Check that
you understand them all.

• Expressive adequacy: De Morgan equivalences; functional completeness;
expressive adequacy; the Sheffer stroke (↑, or NAND) and the Peirce
arrow (↓, or NOR).

• Duality: the duals of ∧ and ∨; the dual of an arbitrary connective; self-
dual connectives; self-dual sets of connectives; the recursive definition
of the dual of an L−1 -sentence (where L−1 is like L1, but only has the
connectives ¬,∧,∨); the dual of an L−1 -structure; the Duality Lemma; the
Duality Theorem.

• Interpolation: an interpolant of a sequent; the Interpolation Theorem.

• Compactness: satisfiability vs. finite satisfiability; the Compactness The-
orem for L1.

• Decidability: effective procedures; decidability; positive and negative
decidability; the positive decidability of unsatisfiability in L1; the unde-
cidability of unsatisfiability in L1.

3.2 Required exercises

1. For each of the following sets of connectives, either prove that it is ex-
pressively adequate or prove that it isn’t.

(a) {¬,∧}

(b) {¬,→}

(c) {→,⊥}, where⊥ is the 0-place connective which expresses the 0-place
truth function f⊥ = 0.

(d) {→,→?
}, where→? is the connective dual to→.

(e) {↔,↔?
}, where↔? is the connective dual to↔.

(f) {∧,∨,→,↔}

2. Define every 2-place connective which is expressively adequate on its
own (by giving its truth table) and show that it is expressively adequate.

3. For any n-place connective c, its dual c? is defined as the connective which
expresses the truth function fc? , where

fc? (t1, . . . , tn) :=
(

fc(t?1 , . . . , t
?
n )

)?
,
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where each ti ∈ {1, 0} (i.e. true or false), 0? = 1 and 1? = 0, and fc is the
truth function expressed by c.

Use this fact to find all of the self-dual 2-place connectives.

4. Consider any propositional logic LC, whose connectives are given by the
set C, which is self-dual (i.e. C? := {c? | c ∈ C} = C) and expressively ade-
quate. The truth rules forLC are as follows: for all c ∈ C, allLC-structures
A, and all LC-sentences ϕ1, . . . , ϕn (where c is an n-place connective),∣∣∣c(ϕ1, . . . , ϕn)

∣∣∣
A

:= fc
(
|ϕ1|A, . . . , |ϕn|A

)
,

where fc is the truth function expressed by c. Also recall the definition of
fc? in Q3.

(a) Offer a sensible recursive definition for the dual ϕ? of any LC-
sentence ϕ.

(b) Let n(ϕ) be some LC-sentence formed from the LC-sentence ϕ such
that |n(ϕ)|A = 1 iff |ϕ|A = 0, for all LC-structures A. (Since C is
expressively adequate, we are guaranteed that n(ϕ) exists for each
ϕ.)
Let ϕ̃ be the LC-sentence constructed from the LC-sentence ϕ by
substituting each of its sentence letters with its corresponding “nega-
tion”; i.e.

ϕ̃ = ϕ[n(P)/P][n(Q)/Q][n(R)/R][n(P1)/P1] · · · .

Prove the Duality Lemma forLC, which states that ϕ? ≡ n(ϕ̃), for all
LC-sentences ϕ.

(c) Prove the Duality Theorem for LC, which states that if ϕ � ψ, then
ψ? � ϕ?, for all LC-sentences ϕ and ψ.

(d) For any LC-structure A, define its dual A? so that, for all sentence
letters X,

A
?(X) := (A(X))? .

Prove that |ϕ|A =
(
|ϕ?|A?

)?, for all LC-sentences ϕ.

5. Determine interpolants for the following sequents. In each case give the
simplest interpolant (i.e. the interpolant of least complexity).

(a) ((Q ∨ P)→ R) � ((P1 ∧ ¬R)→ ¬Q)

(b) (¬(P ∨Q) ∧ (P↔ R)) � ((R→ P) ∨ (¬P1 ∧ R))

(c) ((Q2 ↔ Q) ∧ ¬((R→ ¬P1) ∨ ¬(P→ Q))) � (R1 → (P2 → (¬P ∨Q)))

6. Prove Craig’s interpolation theorem. [The proof can be found in Eagle—
but write it in your own words, and make sure you understand every
step!]
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7. (a) Let Γ be a possibly infinite set of sentences of L1 such that Γ �.
Show that there is a finite disjunction δ, each disjunct of which is the
negation of a sentence in Γ, and such that � δ. (You may assume the
Compactness Theorem.)

(b) Consider the following relation holding between sets of sentences:

Where Γ and ∆ are any sets ofL1-sentences, Γ �∞ ∆ iff every
L1-structure which satisfies every sentence in Γ is also one
which satisfies at least one sentence in ∆.

Show that if Γ �∞ ∆, then there is a finite conjunction ofL1-sentences
in Γ,

Φ = (ϕ1 ∧ . . . ∧ ϕm) ,

and a finite disjunction of L1-sentences in ∆,

Ψ = (ψ1 ∨ . . . ∨ ψn) ,

such that Φ � Ψ.

3.3 Optional exercises

1. (a) Formulate a notion of satisfiability and compactness for natural lan-
guages, such as English.

(b) Is English compact? Justify your answer.

(c) What, if anything, does you answer to (b) say about the expressive
capabilities of L1?
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4 Natural deduction for L1

4.1 Important concepts

These are the concepts introduced in this week’s class and readings. Check that
you understand them all.

• Proofs: provability (or syntactic entailment); syntactic sequents (the
meaning of ‘Σ ` ϕ’); assumptions (premises) and conclusion; theorems.

• Natural Deduction: introduction and elimination rules for ND; discharg-
ing assumptions; the Deduction Theorem for ND; alternative natural de-
duction rules: double negation elimination, ex falso quodlibet, tertium non
datur (non-constructive dilemma).

• Soundness: the statement of the Soundness Theorem for ND and L1;
the proof of the Soundness Theorem for ND and L1 (by induction on the
complexity of proofs).

• Completeness: the statement of the Completeness Theorem for ND
and L1; (syntactic) consistency; maximal consistency; deductive closure;
negation completeness, conditional completeness, etc.; the Satisfiability
Theorem (satisfiability of maximal consistent sets); the proof of the Com-
pleteness Theorem for ND and L1 (by the construction of a maximally
consistent set); compactness via soundness, completeness and the fini-
tude of proofs.

• Axioms: Hilbert-style axiomatic proof systems; axioms and axiom schemata;
soundness and completeness for axiomatic systems and L1.

4.2 Required exercises

1. The compactness ofL1 has a ‘quick’ proof, which goes via soundness and
completeness. Outline this proof.

2. Give proofs of the soundness and completeness of ND for L1 (and make
sure you understand them!).

3. In this question we consider modifications to ND, the natural deduction
system for L1.

(a) Let’s replace ¬-Elim with ex falso quodlibet:

ϕ ¬ϕ
EFQ

ψ

Is the resulting system equivalent to ND? Justify your answer.

(b) In addition, let’s replace ¬-Intro with tertium non datur:
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[ϕ]n

...

ψ

[¬ϕ]n

...

ψ
TND, n

ψ

Is the resulting system equivalent to ND? Justify your answer.

4. Consider the language L→,⊥, whose only connectives are material impli-
cation→ and ⊥, the 0-place connective which expresses the 0-place truth
function f⊥ = 0. Also consider the languageL¬,∨, whose only connectives
are ¬ and ∨.

(a) Devise a translation scheme between sentences of L→,⊥ and L¬,∨.

(b) A sound and complete natural deduction system ND→,⊥ for L→,⊥
needs only three rules. What are they?

(c) ND¬,∨ is the (sound and complete) natural deduction system forL¬,∨
(i.e., it is the fragment of ND which governs the connectives ¬ and
∨).
Show that ND→,⊥ and ND¬,∨ are equivalent. (This involves provid-
ing several proof schemata: some to show that if Γ `→,⊥ ϕ, then
Γ∗ `¬,∨ ϕ∗, where ϕ∗ is the L¬,∨-translation of the L→,⊥-sentence ϕ,
etc.; and some to show that if Γ `¬,∨ ϕ, then Γ† `→,⊥ ϕ†, where ϕ† is
the L→,⊥-translation of the L¬,∨-sentence ϕ, etc.)

5. (a) A mystery connective ⊕ has the following introduction and elimina-
tion rules:

ϕ
⊕I

ϕ ⊕ ψ

ϕ ⊕ ψ
⊕E

ψ

Are these rules sound? Justify your answer.

(b) A mystery connective 	 has the following introduction and elimina-
tion rules:

ϕ
	I

ϕ 	 ψ

ϕ 	 ψ
	E

ϕ

Suggest truth rules for 	 for which these rules are sound.

(c) Using your answers to Parts (a) and (b), and your knowledge of the
rules of ND, suggest a rule of thumb that ensures that the introduc-
tion and elimination rules governing a connective are sound.
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4.3 Optional exercises

1. (a) Check, by means of truth tables, that (((P → Q) → P) → P) is a
tautology.

(b) Give a natural deduction proof of (((P→ Q)→ P)→ P).
(c) Every valid argument involving only sentences containing∧ as their

only connective can be proved valid using just the rules ∧-Intro and
∧-Elim. In that sense, ∧ is completely characterised by its introduc-
tion and elimination rules. What do your results in Parts (a) and (b)
show about→ in this connection?

2. Devise introduction and elimination rules for a natural deduction system
for the language L↑, which has the Sheffer Stroke as its only connective.
Prove that your system is sound and complete. You may prove these
directly, or else use the fact that ND¬,→, which is the fragment of ND
governing ¬ and→, is sound and complete for the language L¬,→.

3. Consider the language L¬,→, whose only connectives are ¬ and →. We
define the natural deduction system ND¬,→ to be the fragment of ND
governing ¬ and→.

We also define the natural deduction system NDŁ as follows. Its only rules
are: →-Elim (a.k.a. Modus Ponens); and that any instance of Łukasiewicz’s
three axiom schemata (see Parts (e)–(g) in Q1) may be discharged, which
we could represent as follows:

[ϕ→ (ψ→ ϕ)]Ł1

...

[(ϕ→ (ψ→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ))]Ł2

...

[(¬ψ→ ¬ϕ)→ (ϕ→ ψ)]Ł3

...

(a) Show that for any L¬,→-sentence ϕ, `Ł ϕ → ϕ. (‘`Ł’ refers to proofs
in NDŁ). [Hint: Look at Eagle, p. 61 for inspiration.]

(b) Show that for any L¬,→-sentence ϕ, `Ł ϕ → α, where α is any
instance of one of Łukasiewicz’s axiom schemata. [Hint: Ł1 will
come in useful.]

(c) Show that for anyL¬,→-sentences ϕ and γ, where γ ∈ Γ, Γ `Ł ϕ→ γ.
(d) Using your results in Parts (a)–(c), prove the Deduction Theorem for

NDŁ: i.e., Γ, ϕ `Ł ψ iff Γ `Ł ϕ → ψ. [Hint: for the left-to-right
direction, Ł2 will come in useful.]
(It follows that→-Intro is a derived rule of NDŁ.)

(e) Show that NDŁ obeys Cut; i.e. if Γ `Ł ϕ and ∆, ϕ `Ł ψ, then Γ,∆ `Ł ψ.
(f) Show that Ex Falso Quodlibet (EFQ) is a derived rule of NDŁ; i.e.ϕ,¬ϕ `Ł

ψ.
(g) Show that Double Negation Elimination (DNE) is a derived rule of NDŁ;

i.e. ¬¬ϕ `Ł ϕ. [Hint: Start with the fact that ϕ,¬ϕ `Ł ¬(ϕ→ ϕ), due
to EFQ. You will also need your result in Part (a).]
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(h) Show that ϕ→ ¬ψ `Ł ψ→ ¬ϕ.

(i) Show that ϕ→ ¬ϕ `Ł ¬ϕ.

(j) Show that ¬-Intro is a derived rule of NDŁ; i.e. if Γ, ϕ `Ł ψ and
∆, ϕ `Ł ¬ψ, then Γ,∆ `Ł ¬ϕ. [Hint: Use your result in Part (i).]

(k) Show that ¬-Elim is a derived rule of NDŁ; i.e. if Γ,¬ϕ `Ł ψ and
∆,¬ϕ `Ł ¬ψ, then Γ,∆ `Ł ϕ. [Hint: Use your result in Part (j) and
DNE.]

(l) Using your results in Parts (d)–(k) and Q1 Parts (e)–(g), show that
ND¬,→ and NDŁ are equivalent; i.e., Γ `¬,→ ϕ, iff Γ `Ł ϕ.

(m) Offer an argument that NDŁ is equivalent to Łukasiewicz’s “Hilbert-
style” axiomatic proof system, presented in Eagle, Section 4.5, and
therefore (by Part (l)) that Łukasiewicz’s proof system is equivalent
to ND¬,→.

14



5 Meta-theory for L2

5.1 Important concepts

These are the concepts introduced in this week’s class and readings. Check that
you understand them all.

• Syntax of L2: terms (constants and variables); universal and existential
quantifiers; atomic formulae; the inductive definition of a (well-formed)
formula; free vs. bound variables; open vs. closed formulae (sentences).

• Semantics ofL2: L2-structures; domain; interpretation; semantic values;
extensions; variable assignments over structures; the satisfaction of a
formula by a variable assignment over a structure; the truth of a sentence
in a structure.

• Simple metatheorems of L2: interdefinability of quantifiers; Substitu-
tion of Co-designating Terms; satisfaction of sentences in every variable
assignment; introduction and elimination of the existential and universal
quantifiers; Satisfaction of Sentences; Substitution of Equivalent Formu-
lae.

• Alternative semantics for L2: Semantics for sentences only; substitu-
tional quantification; truth defined for open formulae.

5.2 Required exercises

1. Briefly explain the difference between satisfaction and truth in L2.

2. Which of the following equivalence claims are true? For any invalid
sequents, give a counterexample.

(a) ∀x(Px ∧Qx) ≡ (∀xPx ∧ ∀xQx)

(b) ∀x(Px ∨Qx) ≡ (∀xPx ∨ ∀xQx)

(c) ∃x(Px ∧Qx) ≡ (∃xPx ∧ ∃xQx)

(d) ∃x(Px ∨Qx) ≡ (∃xP1x ∨ ∃xQx)

(e) ∀x∀y(Px→ Qy) ≡ (∃xPx→ ∀yQy)

(f) ∀x∃yRxy ≡ ∃y∀xRxy
(g) ∀x(Px→ ∃yRxy) ≡ ¬∃x∀y(Px ∧ ¬Rxy)

3. Any binary relation R on a set S is dense iff, for any a, b ∈ S such that
〈a, b〉 ∈ R, there is some c ∈ S such that both 〈a, c〉 ∈ R and 〈c, b〉 ∈ R.

(a) Show that if R is reflexive on S, then it is dense on S.

(b) R is idempotent on S iff R is both dense and transitive on S. Give
an example of: (i) a non-empty idempotent relation; and (ii) a non-
empty, non-idempotent, transitive relation.
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(c) R is a strict dense order on S iff it is both irreflexive and idempotent
on S. Suppose there is a non-empty strict dense order on S. What is
the minimum number of objects in S?

(d) Using the dictionary:

R2 : 〈. . .1 , . . .2〉 ∈ R

Write down anL2-sentence σ that is true in a structure iff the relation
R is a strict dense order on that structure’s domain.

(e) With σ the sentence above, show that

2 (σ ∧ ∃x∃yR2xy)→ ∃x∀y¬R2xy

[Hint: < is a strict dense order on Q, the set of rational numbers.]

(f) What do you think the prospects are for constructing an effective
procedure which (correctly) answers whether � ∃x∀yϕ(x, y), where
ϕ(x, y) is an arbitrary L2-formula with only variables x and y free?
What are the consequences for the decidability of validity in L2?
[I’m not asking for a rigorous proof! An educated guess will do.]

4. (a) Show that L2 obeys ∃-Introduction and ∀-Elimination:
Let ϕ be any L2-formula in which only the variable v occurs free,
and let τ be any constant. Then:

(∃-Intro) ϕ[τ/v] � ∃vϕ.
(∀-Elim) ∀vϕ � ϕ[τ/v].

(b) Show that L2 obeys ∃-Elimination and ∀-Introduction:
Let Γ be any set of L2-sentences, let ϕ be any L2-formula in which
at most the variable v occurs free, and let τ be any constant not
occurring in Γ or ϕ. Then:

(∃-Elim) If Γ, ϕ[τ/v] � ψ, then Γ,∃vϕ � ψ, where τ does not occur in ψ.
(∀-Intro) If Γ � ϕ[τ/v], then Γ � ∀vϕ.

(c) Prove that, for anyL2-formulaϕ, allL2-structuresA and all variable
assignments α overA, |∃vϕ|α

A
= |¬∀v¬ϕ|α

A
.

(d) Use your result to explain briefly the similarities between: (i) ∃-
Introduction and∀-Elimination; and (ii)∃-Elimination and∀-Introduction.

5. Supposeψ andχ are any formulae, in which possibly (but not necessarily)
v1, . . . , vn occur free. Let ϕ be any sentence and let Φτ1 · · · τm be any
atomic formula whose only free variables are among the v1, . . . , vn. Using
induction on the complexity of ϕ, establish the result that ∀v1 · · · ∀vn(ψ↔
χ) � ϕ[ψ/Φτ1 · · · τm]↔ ϕ[χ/Φτ1 · · · τm].

6. (a) Which of the following are equivalence relations on the specified
sets? Explain your answers.
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i. The relation of studying the same subjects as on the set of Oxford
undergraduates.

ii. The relation {〈d, e〉 : d is logically equivalent to e} on the set of
L1-sentences.

iii. The relation {〈d, e〉 : d is logically equivalent to e} on the set of
L2-formulae.

iv. The relation {〈d, e〉 : if {d} is consistent, then {d}∪{e} is consistent}
on the set of L1-sentences.

(b) P is an apartness relation on DA iff, for some equivalence relation
R on DA, ∀x∀y(P2xy ↔ ¬R2xy) is true in some structure A, where
IA(P2) = P and IA(R2) = R. Which minimal set of sentences from
the following list characterises P as an apartness relation on DA in
structuresA such that IA(P2) = P? Justify your answer.

(A1) ∀x∀y(P2xy→ ¬P2yx)
(A2) ∀x∀y(P2xy ∨ P2yx)
(A3) ∀x∀y(P2xy→ P2yx)
(A4) ∀x∀y∀z(P2xy→ (P2zx ∨ P2zy))
(A5) ∀x∀y∀z((P2yx ∧ P2zx)→ P2yz)
(A6) ∀x¬P2xx.

5.3 Optional exercises

1. We define a finite universeA to be any ordered sequenceA = 〈F,C,P0,P1, . . . ,Pn〉,
where n ∈N and:

• F is a finite set, with cardinality N;

• C is a finite set of constants of L2, with cardinality c;

• P0 is a finite set of 0-place predicate letters ofL2, with cardinality p0;

• P1 is a finite set of 1-place predicate letters ofL2, with cardinality p1;
...

• Pn is a finite set of n-place predicate letters of L2, with cardinality
pn.

Any L2-structureA = 〈DA, IA〉will be called A-compatible iff:

• F ⊆ DA;

• for all τ ∈ C, IA(τ) ∈ F;

• for all Φ1
∈ P1, IA(Φ1) ⊆ F;

...

• for all Φn
∈ Pn, IA(Φn) ⊆ Fn;
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Any two A-compatible L2-structures will be called A-equivalent iff they
agree on all their semantic values for the members ofC∪P0∪P1∪ . . .∪Pn.

(a) Give an argument that A-equivalence is an equivalence relation on
the set SA of all A-compatible L2-structures.

(b) Show that the number of A-equivalence classes of SA is

Nc
× 2p0 × 2p1N

× . . . × 2pnNn
.

(c) Let i : C → F be some function from the constants in C into the
finite domain F. Consider the subset S(A,i) ⊆ SA of A-compatible
L2-structuresA = 〈DA, IA〉 such that IA(τ) = i(τ) for all τ ∈ C.
Give an argument that the A-equivalence classes of S(A,i) are in a
one-to-one correspondence with rows of the truth table for some
number M of sentence letters. What is the value of M?

(d) Show that it is decidable whether � ϕ, where ϕ is any quantifier-free
L2-sentence.
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6 Natural deduction for L2

6.1 Important concepts

These are the topics and concepts introduced in this week’s class and readings.
Check that you understand them all. (Topics in parentheses are not crucial to
the course.)

• Natural deduction (ND2) proofs in L2: introduction and elimination
rules for ∀ and ∃, and their conditions for application; uniqueness of ∃;
the cut rule.

• Soundness of ND2 inL2: steps in inductive proof of soundness governing
∀ and ∃.

• Completeness of ND2 inL2: existential and universal completeness; wit-
nesses; compactness via soundness, completeness and finitude of proofs.

• Decidability: prenex normal form (PNF); positive decidability of validity;
negative undecidability of validity; (the halting problem; decidability
of validity of quantifier-free sentences, ∃-sentences, ∀∃-sentences and
monadic sentences).

6.2 Required exercises

1. Show the following:

(a) ∀xPx ` ∃xPx

(b) ∃x∀yRxy ` ∀y∃xRxy

(c) ¬∃xPx ` ∀x¬Px

(d) ∃x¬Px ` ¬∀xPx

(e) ∃xPx→ Q ` ∀x(Px→ Q)

(f) ∀x(Px→ Q) ` ∃xPx→ Q

(g) ∃x(Px→ Q) ` ∀xPx→ Q

(h) ∀xPx→ Q ` ∃x(Px→ Q)

2. (a) Give a natural deduction proof that Pa,∀x(Px→ Qx) � ∃xQx.

(b) Give a natural deduction proof that ∃xQx,∀x(Qx→ Rx) � ∃xRx.

(c) Give a natural deduction proof that Pa,∀x(Px→ Qx),∀x(Qx→ Rx) �
∃xRx.

(d) Modify your proofs for Parts (b) and (c) so that your proof for Part
(a) and your modified proof for Part (b) are both subproofs of your
modified proof for Part (c).

19



(e) The Cut Theorem for any proof theory is: If Γ ` ϕ and ∆, ϕ ` ψ, then
Γ,∆ ` ψ.
The proof of the Cut Theorem for ND (natural deduction for propo-
sitional logic L1) is straightforward: one can simply append any
proof Γ ` ϕ to any proof ∆, ϕ ` ψ to yield a proof Γ,∆ ` ψ. However,
the proof of the Cut Theorem for ND2 is more delicate. Under what
precise conditions would a simple appending of proofs not suffice?
What, if anything, is the remedy?

(f) Prove the Cut Theorem for ND2.

3. Prove the soundness of ND2 for L2.

4. Explain why the inference rule

∃vϕ
∃E?

ϕ[τ/v]

is unsound with respect to the semantics of L2.

5. Prove, using natural deduction, the following claims.

(a) Any asymmetric relation is irreflexive.

(b) Any transitive, irreflexive relation is asymmetric.

6. Say that the binary formula ϕ, with variables x and y free, expresses the
relation R in the structureA iff:

|ϕ|α
A

= 1 for all v.a.s α overA such that α(x) = a and α(y) = b iff 〈a, b〉 ∈ R.

LetGbe anL2-structure in which the atomic binary formula Pxy expresses
the relation P := {〈a, b〉 | a is a parent of b} on the set of people.

(a) Write down a binary formula, containing the binary predicate letter
P, which expresses the relation P2 := {〈a, b〉 | a is a grandparent of b}
in G.

(b) Write down a binary formula, containing the binary predicate letter
P, which expresses the relationP3 := {〈a, b〉 | a is a great-grandparent of b}
in G.
Given any relationRon some set S, the transitive closure ofR, a.k.a. the
ancestral of R, which we will denote R∗, is the smallest relation Q on
S such that: (i) R ⊆ Q; and (ii) Q is transitive. (“Smallest” can
be understood here as follows: Q is the relation satisfying the two
conditions which is a subset of any other such relation.)

(c) Give a succinct description of the relationP∗, whereP := {〈a, b〉 | a is a parent of b}.
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(d) LetP be the relation {〈a, b〉 | b = a+1} on the setN of natural numbers.
Give a succinct description of the relation P∗.

(e) Is there a systematic way inL2 to define a binary formula, containing
the binary predicate letter P, which expresses in G the ancestral of
the relation that Pxy expresses in G?

6.3 Optional exercises

1. A relation R on the set S is called Euclidean iff, for all a, b, c ∈ S: if 〈a, b〉 ∈ R
and 〈a, c〉 ∈ R, then 〈b, c〉 ∈ R.

R is called serial iff, for every a ∈ S, there is some b ∈ S such that 〈a, b〉 ∈ R.

R is called inverse serial iff, for every a ∈ S, there is some b ∈ S such that
〈b, a〉 ∈ R.

(a) Prove that a relation that is Euclidean and serial on S need not be an
equivalence relation on S.

(b) Prove, using natural deduction, that a relation is inverse serial and
Euclidean on S iff it is an equivalence relation on S.

2. Prove the completeness of ND2 for L2. [Warning: hard! Have a look at
the references in Eagle if you get stuck.]
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7 Meta-theory and natural deduction for L=

7.1 Important concepts

These are the topics and concepts introduced in this week’s class and readings.
Check that you understand them all. (Topics in parentheses are not crucial to
the course.)

• Syntax of L=: the equality sign; (well-formed) formulae of L=.

• Semantics of L=: the identity relation; Theoremhood of Identity; Substi-
tution of Co-Designating Constants; Identity is an Equivalence Relation;
Leibniz’ Law (the “indiscernibility of identicals”).

• Natural deduction (ND=) proofs in L=: introduction and elimination
rules for =; dispensability of =-Elim-l/=-Elim-r; steps in inductive proof
of soundness governing =.

• Numerical quantification and definite descriptions: expressing ‘at least
n’, ‘at most n’ and ‘exactly n’ for all n ∈N; Russell’s account of expressing
‘the ϕ such that ψ’; (the notation ιv : ϕ and ψ( ιv : ϕ); the notation

v(ϕ,ψ); Strawson’s account of definite descriptions and presupposition
failure); scope ambiguities in sentences containing definite descriptions
(e.g. v(ϕ,¬ψ) vs. ¬ v(ϕ,ψ)).

• Compactness and cardinality: the indefinability of finitude in L=; (the
Löwenheim-Skolem Theorem; Overspill).

7.2 Required exercises

1. Give proofs in ND= for the following claims:

(a) ∃x(x = a ∧ Px) ≡ Pa

(b) ∀x(x = a→ Px) ≡ Pa

(c) � ∃x(x = a ∧ ∀y(y = a→ y = x))

(d) Identity is an equivalence relation on the domain of any structure.

2. Give an argument that we can do without constants altogether in L=

(although we cannot do without them in the proof theory ND=), so long
as we always adopt a suitable set of assumptions. [Hint: consider 1(a)–(c)
above.]

3. Consider the following natural deduction rules for a new quantifier sym-
bol,

Q

:
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[
ϕ[τ/v]

]
...

κ = τ Q

IQ

vϕ

Provided τ doesn’t occur in
any undischarged assump-
tion other than ϕ[τ/v] in the
proof of κ = τ, neither κ nor
τ appears in ϕ, and κ and τ
are distinct terms.

ϕ[τ/v] ϕ[κ/v]

Q

vϕ

Q

E
τ = κ

(a) Show that, if we add these two rules to ND=, then

Q

xPx is inter-
derivable with ∃x∀y(Py→ y = x).

(b) What, heuristically, does

Q

vϕ mean? Suggest a semantics for

Q

vϕ
such that the rules above are sound.

4. (a) Write down a sentence in L= which expresses, given a suitable dic-
tionary, the following:

If there is exactly one natural satellite of Earth and exactly
one UK Foreign Secretary, and no UK Foreign Secretary is a
natural satellite of Earth, then there are exactly two things
which are either a natural satellite of Earth or a UK Foreign
Secretary.

(b) Give a proof in ND= that this sentence is a tautology.
(c) Let ∃!nvϕ express the claim, ‘There are exactly n things such that

ϕ’. Offer a recursive definition of ∃!nvϕ in terms of formulae of L=.
[Hint: There are exactly n + 1 things with the property P iff there is
something x such that: (i) x has the property P; and (ii) there are
exactly n things distinct from x which have the property P.]

(d) Offer an inductive proof that ∃!nvϕ is satisfied by a variable as-
signment α over an L=-structure A iff there are exactly n variable
assignments β over A, which differ from α at most in what they
assign to v, and which satisfy ϕ.

(e) Using the “numerical quantifiers” ∃!n, suggest an axiom schema that
best expresses the arithmetical proposition, ‘7 + 5 = 12’, such that
every instance is an L=-tautology.

(f) Does the collection of all axiom schemata of this kind (i.e. corre-
sponding to each arithmetical proposition, ‘m + n = m + n’, where
e.g. m denotes the numeral corresponding to the natural number m),
each instance of which is a tautology ofL=, constitute a reduction of
arithmetic to logic? Justify your answer.

5. (a) Specify a set ∆∞ of L=-sentences such that ∆∞ is satisfied by a struc-
tureA iffA has an infinite domain. Show that ∆∞ has this property.
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(b) For each n ∈ N, let Mn be an L=-sentence expressing that there are
at most n objects. Give an informal argument for the truth or falsity
of the following claims:

i. For any finite subset ∆ ⊂ ∆∞, there is some n such that ∆ ∪ {Mn}

is satisfiable.
ii. There is some n such that, for any finite subset ∆ ⊂ ∆∞, ∆∪ {Mn}

is satisfiable.
iii. ∆∞ ∪ {Mn} is unsatisfiable, for any n.

(c) Is there a set ∆ f ofL=-sentences such that ∆ f is satisfied by a structure
A iffA has a finite domain? Justify your answer.

(d) Give an argument that, if the answer to the question above is No,
then: (i) there is no sentence σ f which is satisfied by a structure A
iff A has a finite domain; and (ii) there is no sentence σ∞ which is
satisfied by a structureA iffA has an infinite domain.

7.3 Optional exercises

1. (From the 2016 Prelims paper. Numbers in square brackets indicate the marks
available for the corresponding question.)

(a) Formalize the following as a valid argument inL=. Comment on any
points of interest in your formalization. Provide a natural deduction
proof demonstrating the argument’s validity.

If neo-Lockean views about personal identity are correct,
then, if I undergo personal fission, no one who exists af-
ter the experiment will be identical to me. The reason is
that, if I undergo personal fission, there will be exactly two
people who exist after the experiment who are psycholog-
ically continuous with me. And, if the neo-Lockeans are
right, someone is identical to me only if they’re psycholog-
ically continuous with me. However, on the neo-Lockean
view, for any two people who are psychologically continu-
ous with me, one of them is identical to me if and only if the
other one is too. [17]

(b) Using the dictionary “P : . . . is a potato”, translate the following
sentences of L= into idiomatic English.

i. ∃x∃y(¬x = y∧ ∀z((Pz∧¬∃x1(Px1 ∧¬z = x1))↔ (x = z∨ y = z)))
ii. ∃x∃y(¬x = y ∧ ∀z((Pz ∧ ∃x1∀y1((Py1 ∧ ¬z = y1) ↔ y1 = x1)) ↔

(x = z ∨ y = z)))

For each sentence, either provide an informal argument to show that
it is inconsistent, or provide a model. [8]

2. (a) Propose sound natural deduction rules for the “exactly one” quan-
tifier ∃!, which is governed by the following satisfaction rules:
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|∃!vϕ|α
A

= 1 iff |ϕ|β
A

= 1 for exactly one variable assignment β over A
differing from α in at most in its assignment to v.

(b) Show that, if we add these rules to ND=, then∃!xPx is inter-derivable
with ∃x∀y(Py↔ y = x).
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8 Logic and natural language

8.1 Important concepts

The following concepts constitute a mild excursion into the philosophy of logic
and language. While, strictly speaking, nothing here is examinable, a cursory
appreciation of the issues are likely to help with the rest of the course.

• Conditionals: indicative vs. subjunctive conditionals; the material con-
ditional as an adequate formalisation of the natural language indicative
conditional; modus ponens and conditional proof.

• Gricean ideas: Gricean maxims; Gricean implicature: conventional (de-
tachable) vs. conversational (cancellable).

• Entailment: the paradoxes of entailment (explosion and LEM); disjunc-
tive syllogism and its discontents (relevance logic, dialethic logic, incon-
sistent belief).

• Designation: direct reference (the meaning of a constant is the object it
denotes); informative identities; empty names; transparent vs. opaque
contexts; indexicals; non-count nouns; descriptions.

• Properties and relations: extension vs. intension; sparse vs. abundant
properties.

8.2 Required exercises

1. (a) Explain the difference between natural language indicative and coun-
terfactual conditionals.

(b) Is → an adequate formalisation of the natural language indicative
conditional? Is it an adequate formalisation of the natural language
counterfactual conditional?

(c) Suppose we introduce a new logical symbol,�, which is intended
to represent the counterfactual conditional. Construct a suitable
semantics for �. [Hard without help! Have a think—then, once
you get stuck, look at Sider’s Logic for Philosophy.]

2. (a) Consider this rule of inference in English: if ϕ is a truth of logic,
then ‘Necessarily, ϕ’ is too. Is this rule intuitively correct? Is the
corresponding sequent ‘ϕ �English Necessarily ϕ’ correct?

(b) Is it possible to formalise claims of necessity and possibility in L=?
If so, how? If not, why not? In the latter case, what would need to
be added to L= such that it would be able to formalise adequately
such claims?

3. Explain why maximal consistent sets are sometimes regarded as being
good stand-ins for possible worlds.
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4. What kinds of natural language phenomena could a three-place connec-
tive formalise? Construct a suitable semantics for your favourite three-
place connective.

5. What is wrong with the following argument that reflexivity is a conse-
quence of symmetry and transitivity?

If 〈x, y〉 ∈ R, then 〈y, x〉 ∈ R since we assume R is symmetric.
If both 〈x, y〉 ∈ R and 〈y, x〉 ∈ R, then since R is transitive,
〈x, x〉 ∈ R—so R is reflexive.

6. We might normally expect ‘is similar to’ to be a symmetric relation: after
all, if there is a respect in which a is similar to b, then b must be similar to a
in that very same respect. But many people seem to judge that similarity
is not symmetric:

When people are asked to make comparisons between a highly
familiar object and a less familiar one, their responses reveal
a systematic asymmetry: The unfamiliar object is judged as
more similar to the familiar one than vice versa. For example,
people who know more about the USA than about Mexico judge
Mexico to be more similar to the USA than the USA is to Mexico.
(Kunda 1999, p. 520)

Can you provide a rationale behind these psychological results? Do they
indicate that people are systematically mistaken about the meaning of the
relational predicate ‘is similar to’, or do they indicate that our theory of
similarity in terms of matching respects of similarity is incorrect?
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