Discrete General Covariance

Daniel Grimmer
Philosophy Faculty, University of Oxford
January 13, 2021

Outline

1. What is special about GR?

- General Covariance? (20 min)
- Diffeomorphism Invariance?
- Background Independence?

2. Review of Nyquist Shannon Sampling Theory (10 min)

- Bandlimited Functions
- Uniform Sampling
- Non-uniform Sampling

3. Discrete General Covariance (20 min)

Outline

1. What is special about GR?

- General Covariance? (20 min)
- Diffeomorphism Invariance?
- Background Independence?

2. Review of Nyquist Shannon Sampling Theory (10 min)

- Bandlimited Functions
- Uniform Sampling
- Non-uniform Sampling

3. Discrete General Covariance (20 min)

I will take questions after each part. Please save major questions for then.

Part 1: Some Philosophy of GR

What is special about GR? (as opposed to merely SR theories)

Part 1: Some Philosophy of GR

What is special about GR? (as opposed to merely SR theories)
A) Is it GR's general covariance?

That is, the fact that its laws take the same form in all coordinates.

Part 1: Some Philosophy of GR

What is special about GR? (as opposed to merely SR theories)
A) Is it GR's general covariance?

That is, the fact that its laws take the same form in all coordinates.
B) Is it GR's diffeomorphism invariance?

That is, the fact that its symmetry group is $\operatorname{Diff}(\mathcal{M})$.

Part 1: Some Philosophy of GR

What is special about GR? (as opposed to merely SR theories)
A) Is it GR's general covariance?

That is, the fact that its laws take the same form in all coordinates.
B) Is it GR's diffeomorphism invariance?

That is, the fact that its symmetry group is $\operatorname{Diff}(\mathcal{M})$.
C) Is it GR's background independence?

That is, roughly, that GR has no fixed background structure.

Part 1: Some Philosophy of GR

What is special about GR? (as opposed to merely SR theories)
A) Is it GR's general covariance?

That is, the fact that its laws take the same form in all coordinates.
B) Is it GR's diffeomorphism invariance?

That is, the fact that its symmetry group is $\operatorname{Diff}(\mathcal{M})$.
C) Is it GR's background independence?

That is, roughly, that GR has no fixed background structure.

How do these three concepts differ and how are they related to each other?

Spoiler Part 1: Its background independence.

What is special about GR?
A) General covariance is not a special property of GR.

- Any theory can be made generally covariant (Kretschmann, 1917).
- However, general covariance is important because it exposes background structure, and clarifies many questions about symmetry.

Spoiler Part 1: Its background independence.

What is special about GR?
A) General covariance is not a special property of GR.

- Any theory can be made generally covariant (Kretschmann, 1917).
- However, general covariance is important because it exposes background structure, and clarifies many questions about symmetry.
B) Diffeomorphism invariance is not a special property of GR.
- SR can be rewritten to be diffeomorphism invariant.
- However, diff. inv. is important because it is necessary for background independence. Anything which breaks the $\operatorname{Diff}(\mathcal{M})$ symmetry will count as background structure.

Spoiler Part 1: Its background independence.

What is special about GR?
A) General covariance is not a special property of GR.

- Any theory can be made generally covariant (Kretschmann, 1917).
- However, general covariance is important because it exposes background structure, and clarifies many questions about symmetry.
B) Diffeomorphism invariance is not a special property of GR.
- SR can be rewritten to be diffeomorphism invariant.
- However, diff. inv. is important because it is necessary for background independence. Anything which breaks the $\operatorname{Diff}(\mathcal{M})$ symmetry will count as background structure.
C) Background independence is what makes GR special.

(Continuous) General Covariance

Example 1) 2D Klein Gordon Equation:

$$
\begin{equation*}
\partial_{t}^{2} \phi(t, x, y)=\left(\partial_{x}^{2}+\partial_{y}^{2}-M^{2}\right) \phi(t, x, y) \tag{1}
\end{equation*}
$$

(Continuous) General Covariance

Example 1) 2D Klein Gordon Equation:

$$
\begin{equation*}
\partial_{t}^{2} \phi(t, x, y)=\left(\partial_{x}^{2}+\partial_{y}^{2}-M^{2}\right) \phi(t, x, y) \tag{1}
\end{equation*}
$$

This formulation is not generally covariant. For instance, written in terms of the coordinates $\left(t^{\prime}=t, x^{\prime}=x+\frac{1}{2} a t^{2}, y^{\prime}=y\right)$ we have,

$$
\begin{align*}
\partial_{t^{\prime}}^{2} \phi\left(t^{\prime}, x^{\prime}, y^{\prime}\right)=\left(\partial_{x^{\prime}}^{2}+\partial_{y^{\prime}}^{2}\right. & \left.-M^{2}\right) \phi\left(t^{\prime}, x^{\prime}, y^{\prime}\right) \tag{2}\\
& -a \partial_{x^{\prime}} \phi\left(t^{\prime}, x^{\prime}, y^{\prime}\right)
\end{align*}
$$

(Continuous) General Covariance

Example 1) 2D Klein Gordon Equation:

$$
\begin{equation*}
\partial_{t}^{2} \phi(t, x, y)=\left(\partial_{x}^{2}+\partial_{y}^{2}-M^{2}\right) \phi(t, x, y) \tag{1}
\end{equation*}
$$

This formulation is not generally covariant. For instance, written in terms of the coordinates $\left(t^{\prime}=t, x^{\prime}=x+\frac{1}{2} a t^{2}, y^{\prime}=y\right)$ we have,

$$
\begin{align*}
\partial_{t^{\prime}}^{2} \phi\left(t^{\prime}, x^{\prime}, y^{\prime}\right)=\left(\partial_{x^{\prime}}^{2}+\partial_{y^{\prime}}^{2}\right. & \left.-M^{2}\right) \phi\left(t^{\prime}, x^{\prime}, y^{\prime}\right) \tag{2}\\
& -a \partial_{x^{\prime}} \phi\left(t^{\prime}, x^{\prime}, y^{\prime}\right)
\end{align*}
$$

In arbitrary coordinates we find "extra" terms due the non-inertial frame

(Continuous) General Covariance: Klein Gordon

In arbitrary coordinates we find "extra" terms due the non-inertial frame:

(Continuous) General Covariance: Klein Gordon

In arbitrary coordinates we find "extra" terms due the non-inertial frame:

From Cartesian coordinates x^{μ}

$$
\begin{equation*}
\left(\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}-M^{2}\right) \phi=0 \quad \text { signature }(-1,1,1) \tag{3}
\end{equation*}
$$

(Continuous) General Covariance: Klein Gordon

In arbitrary coordinates we find "extra" terms due the non-inertial frame:

From Cartesian coordinates x^{μ}

$$
\begin{equation*}
\left(\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}-M^{2}\right) \phi=0 \quad \text { signature }(-1,1,1) \tag{3}
\end{equation*}
$$

To arbitrary coordinates $x^{\prime \mu}$

$$
\begin{equation*}
\left(\eta^{\sigma \rho} \frac{\partial x^{\prime \mu}}{\partial x^{\sigma}} \frac{\partial x^{\prime \nu}}{\partial x^{\rho}} \partial_{\mu} \partial_{\nu}-M^{2}\right) \phi+\eta^{\sigma \rho} \frac{\partial^{2} x^{\prime \mu}}{\partial x^{\sigma} \partial x^{\rho}} \partial_{\mu} \phi=0 . \tag{4}
\end{equation*}
$$

(Continuous) General Covariance: Klein Gordon

To get away from coordinates all together we can write our theory in the coordinate-independent language of differential geometry.

(Continuous) General Covariance: Klein Gordon

To get away from coordinates all together we can write our theory in the coordinate-independent language of differential geometry.

Consider the space of kinematically possible models (KPMs) given by:

$$
\begin{equation*}
\mathrm{KPMs}: \quad\left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi\right\rangle \tag{5}
\end{equation*}
$$

where \mathcal{M} is a differentiable $(2+1)$-manifold, η^{ab} is a fixed metric field with signature $(-1,1,1)$ and $\phi: \mathcal{M} \rightarrow \mathbb{R}$ is a scalar field.

(Continuous) General Covariance: Klein Gordon

To get away from coordinates all together we can write our theory in the coordinate-independent language of differential geometry.

Consider the space of kinematically possible models (KPMs) given by:

$$
\begin{equation*}
\mathrm{KPMs}: \quad\left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi\right\rangle \tag{5}
\end{equation*}
$$

where \mathcal{M} is a differentiable $(2+1)$-manifold, η^{ab} is a fixed metric field with signature $(-1,1,1)$ and $\phi: \mathcal{M} \rightarrow \mathbb{R}$ is a scalar field.

Consider the dynamically possible models (DPMs) picked out by

$$
\begin{equation*}
\text { DPMs: } \quad\left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi=0 \tag{6}
\end{equation*}
$$

where ∇_{a} is the unique derivative compatible with the metric, i.e. with $\nabla_{\mathrm{c}} \eta^{\mathrm{ab}}=0$.

(Continuous) General Covariance: Klein Gordon

We now have the Klein Gordon equation in a generally covariant form:
SR1 KPMs: $\left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi\right\rangle$ with η^{ab} fixed,
DPMs: $\quad\left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}+M^{2}\right) \phi=0$.

(Continuous) General Covariance: Klein Gordon

We now have the Klein Gordon equation in a generally covariant form:

$$
\begin{array}{ll}
\text { SR1 } \quad \text { KPMs: } & \left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi\right\rangle \quad \text { with } \eta^{\mathrm{ab}} \text { fixed, } \tag{7}\\
\text { DPMs: } & \left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}+M^{2}\right) \phi=0 .
\end{array}
$$

The fact that η^{ab} is fixed across all solutions qualifies it as background structure. This breaks the diffeomorphism invariance of the manifold \mathcal{M}.

(Continuous) General Covariance: Klein Gordon

We now have the Klein Gordon equation in a generally covariant form:

$$
\begin{array}{ll}
\text { SR1 } \quad \text { KPMs: } & \left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi\right\rangle \quad \text { with } \eta^{\mathrm{ab}} \text { fixed, } \tag{7}\\
\text { DPMs: } & \left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}+M^{2}\right) \phi=0
\end{array}
$$

The fact that η^{ab} is fixed across all solutions qualifies it as background structure. This breaks the diffeomorphism invariance of the manifold \mathcal{M}.

Given a generic diffeomorphism $d \in \operatorname{Diff}(\mathcal{M})$ and a solution $\left\langle\mathcal{M}, \eta^{\text {ab }}, \phi\right\rangle$,
$\left\langle\mathcal{M}, d^{*} \eta^{\mathrm{ab}}, d^{*} \phi\right\rangle$ is not a solution in general
$\left\langle\mathcal{M}, \eta^{\mathrm{ab}}, d^{*} \phi\right\rangle$ is not a solution in general.

(Continuous) General Covariance: Heat Equation

Repeating this process for the heat equation $\partial_{t} \psi=\alpha\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi$

(Continuous) General Covariance: Heat Equation

Repeating this process for the heat equation $\partial_{t} \psi=\alpha\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi$ we find

$$
\begin{equation*}
\text { Continuum Heat } \quad \mathrm{KPMs}: \quad\left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi\right\rangle \tag{8}
\end{equation*}
$$

h^{ab} and t_{ab} are space and time metrics with signatures $(0,1,1)$ and $(1,0,0)$ respectively. ∇_{a} is a derivative operator which is compatible with these metrics and flat (i.e., with $R^{\mathrm{a}}{ }_{\mathrm{bcd}}=0$). T^{a} is a constant unit time-like vector field which picks out a standardized way of moving forward in time (i.e, translation generated by $T^{\mathrm{a}} \nabla_{\mathrm{a}}$).

(Continuous) General Covariance: Heat Equation

Repeating this process for the heat equation $\partial_{t} \psi=\alpha\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi$ we find

$$
\begin{equation*}
\text { Continuum Heat } \quad \mathrm{KPMs}: \quad\left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi\right\rangle \tag{8}
\end{equation*}
$$

h^{ab} and t_{ab} are space and time metrics with signatures $(0,1,1)$ and $(1,0,0)$ respectively. ∇_{a} is a derivative operator which is compatible with these metrics and flat (i.e., with $R^{\mathrm{a}}{ }_{\mathrm{bcd}}=0$). T^{a} is a constant unit time-like vector field which picks out a standardized way of moving forward in time (i.e, translation generated by $T^{\mathrm{a}} \nabla_{\mathrm{a}}$).

The DPMs are picked out by:
Continuum Heat \quad DPMs: $\quad T^{\mathrm{a}} \nabla_{\mathrm{a}} \psi=\alpha h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \psi$

(Continuous) General Covariance: Newtonian Gravity

Repeating this process for Newtonian Gravity we have
Newtonian Gravity KPMs: $\left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, \varphi, \Phi\right\rangle$

$$
\begin{array}{ll}
\text { DPMs: } & h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \varphi=4 \pi G \rho \tag{10}\\
& u^{\mathrm{a}} \nabla_{\mathrm{a}} u^{\mathrm{b}}=-h^{\mathrm{bc}} \nabla_{\mathrm{c}} \varphi
\end{array}
$$

where φ is the gravitational potential and Φ is a stand in for the matter content of the theory (ρ is calculated from Φ somehow). $u^{\text {a }}$ is the 4 -velocity of a test particle (normalized and time-like).

(Continuous) General Covariance: Newtonian Gravity

Repeating this process for Newtonian Gravity we have

$$
\begin{array}{lll}
\text { Newtonian Gravity } & \text { KPMs: } & \left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, \varphi, \Phi\right\rangle \tag{10}\\
\text { DPMs: } & h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \varphi=4 \pi G \rho \\
& u^{\mathrm{a}} \nabla_{\mathrm{a}} u^{\mathrm{b}}=-h^{\mathrm{bc}} \nabla_{\mathrm{c}} \varphi
\end{array}
$$

where φ is the gravitational potential and Φ is a stand in for the matter content of the theory (ρ is calculated from Φ somehow). u^{a} is the 4 -velocity of a test particle (normalized and time-like).

Note there is no time-like vector field T^{a} assumed here. This theory is has the Galilean symmetry group.

Benefits of Generally Covariant Formulations

Writing a theory in a coordinate-independent way separates the theory's substantive content from its superficial coordinate-dependent properties.

Benefits of Generally Covariant Formulations

Writing a theory in a coordinate-independent way separates the theory's substantive content from its superficial coordinate-dependent properties.

Since any theory can be represented in terms of any coordinates (or in terms of no coordinates at all) it is now obvious that coordinates play no role in symmetry.

Benefits of Generally Covariant Formulations

Writing a theory in a coordinate-independent way separates the theory's substantive content from its superficial coordinate-dependent properties.

Since any theory can be represented in terms of any coordinates (or in terms of no coordinates at all) it is now obvious that coordinates play no role in symmetry.

In a coordinate-independent framing, there are no passive symmetry transformations. The symmetry of a theory is just the subset of the diffeomorphisms which map solutions to solutions.

Diffeomorphism invariance

If not general covariance, maybe it is GR's diffeomorphism invariance which sets it apart from SR.

Diffeomorphism invariance

If not general covariance, maybe it is GR's diffeomorphism invariance which sets it apart from SR.

This is not right. We can reformulate special relativity to be diffeomorphism invariant as

$$
\begin{array}{ll}
\text { SR2 } \quad \text { KPMs: } & \left\langle\mathcal{M}, g^{\mathrm{ab}}, \phi\right\rangle, \tag{11}\\
\text { DPMs: } & \left(g^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi=0 \\
& R^{\mathrm{a}}{ }_{\mathrm{bcd}}=0 .
\end{array}
$$

Note g^{ab} is not a fixed field, it is dynamical.

Diffeomorphism invariance

If not general covariance, maybe it is GR's diffeomorphism invariance which sets it apart from SR.

This is not right. We can reformulate special relativity to be diffeomorphism invariant as

$$
\begin{array}{ll}
\text { SR2 } \quad \text { KPMs: } & \left\langle\mathcal{M}, g^{\mathrm{ab}}, \phi\right\rangle, \tag{11}\\
\text { DPMs: } & \left(g^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi=0 \\
& R_{\mathrm{bcd}}^{\mathrm{a}}=0 .
\end{array}
$$

Note $g^{a b}$ is not a fixed field, it is dynamical.
Given a generic diffeomorphism $d \in \operatorname{Diff}(\mathcal{M})$ and a solution $\left\langle\mathcal{M}, g^{\text {ab }}, \phi\right\rangle$ we do in fact have that $\left\langle\mathcal{M}, d^{*} g^{\text {ab }}, d^{*} \phi\right\rangle$ is a solution.

Compare SR2 with GR

Compare SR2,
SR2 KPMs: $\left\langle\mathcal{M}, g^{\mathrm{ab}}, \phi\right\rangle$,
DPMs: $\quad\left(g^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi=0$

$$
R_{\mathrm{bcd}}^{\mathrm{a}}=0 .
$$

with GR,
GR KPMs: $\left\langle\mathcal{M}, g^{\mathrm{ab}}, \phi\right\rangle$,
DPMs: $\quad\left(g^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi=0$

$$
\begin{equation*}
G_{\mathrm{ab}}=8 \pi T_{\mathrm{ab}} \tag{14}
\end{equation*}
$$

SR2 has background structure whereas GR does not.

Background Independence

What makes GR special is not general covariance or diff. invariance.

It must be some third thing, let's call it background independence.

Background Independence

What makes GR special is not general covariance or diff. invariance.

It must be some third thing, let's call it background independence.

There is much ongoing discussion in the philosophy literature how exactly background independence should be formulated. It is too much to get into all that here.

Background Independence

What makes GR special is not general covariance or diff. invariance.

It must be some third thing, let's call it background independence.

There is much ongoing discussion in the philosophy literature how exactly background independence should be formulated. It is too much to get into all that here.

Let's move on to Part 2 of the presentation. Questions before we do?

Discrete Background Independence?

Can we extend these notions to discrete-space (e.g., lattice) theories?

Discrete Background Independence?

Can we extend these notions to discrete-space (e.g., lattice) theories?
Quantum gravity is likely to discretize space-time somehow. Moreover, one might expect GR's successor to be background independent in some sense.

Discrete Background Independence?

Can we extend these notions to discrete-space (e.g., lattice) theories?
Quantum gravity is likely to discretize space-time somehow. Moreover, one might expect GR's successor to be background independent in some sense.

What background structure do lattices introduce?

Discrete Background Independence?

Can we extend these notions to discrete-space (e.g., lattice) theories?
Quantum gravity is likely to discretize space-time somehow. Moreover, one might expect GR's successor to be background independent in some sense.

What background structure do lattices introduce?

Do lattices always break continuous symmetries?
Translations, rotations, Galilean boosts, Lorentzian boosts, etc.

Discrete Background Independence?

Can we extend these notions to discrete-space (e.g., lattice) theories?
Quantum gravity is likely to discretize space-time somehow. Moreover, one might expect GR's successor to be background independent in some sense.

What background structure do lattices introduce?

Do lattices always break continuous symmetries?
Translations, rotations, Galilean boosts, Lorentzian boosts, etc.
To answer this question it would be very helpful to have a notion of discrete general covariance.

Discrete General Covariance

Inspired by the work of Achim Kempf, ${ }^{12}$ I suggest the following analogy:

Coordinate Systems
Changing Coordinates
\leftrightarrow
\leftrightarrow
Gen. Covariant Formulation \leftrightarrow
Lattice Structure Nyquist-Shannon Resampling Bandlimited Formulation

[^0]
Discrete General Covariance

Inspired by the work of Achim Kempf, ${ }^{12}$ I suggest the following analogy:

Coordinate Systems \leftrightarrow
Changing Coordinates \leftrightarrow
Gen. Covariant Formulation \leftrightarrow

Lattice Structure
Nyquist-Shannon Resampling
Bandlimited Formulation

Before jumping into this, we need to review Sampling Theory.

[^1]
Part 2: Review of Nyquist Shannon Sampling Theory

A bandlimited function is one whose Fourier transform has compact support. That is, a function $f_{\mathrm{B}}(x)$ is bandlimited with bandwidth K iff $\mathcal{F}_{k}\left[f_{\mathrm{B}}(x)\right]$ has support only for wavenumbers $|k| \leq K$.

Part 2: Review of Nyquist Shannon Sampling Theory

A bandlimited function is one whose Fourier transform has compact support. That is, a function $f_{\mathrm{B}}(x)$ is bandlimited with bandwidth K iff $\mathcal{F}_{k}\left[f_{\mathrm{B}}(x)\right]$ has support only for wavenumbers $|k| \leq K$.

The Nyquist Shannon Sampling Theorem tells us that we can exactly reconstruct any bandlimited function knowing only its values at a sufficiently dense set of sample points.

How does that work?

Suppose we know $f_{n}=f_{\mathrm{B}}\left(x_{n}\right)$ at the regularly spaced sample points $x_{n}=n a$ and that f_{B} is bandlimited with bandwidth K.

How does that work?

Suppose we know $f_{n}=f_{\mathrm{B}}\left(x_{n}\right)$ at the regularly spaced sample points $x_{n}=n a$ and that f_{B} is bandlimited with bandwidth K.

The following reconstruction,

$$
\begin{equation*}
f_{\mathrm{B}}(z)=? \sum_{n=-\infty}^{\infty} S_{n}(z / a) f_{n} ; \quad S(y)=\frac{\sin (\pi y)}{\pi y}, \quad S_{n}(y)=S(y-n) \tag{15}
\end{equation*}
$$

is exact when our sample points are sufficiently dense (here meaning $a \leq a^{*}=\pi / K$).

Exact Example

Consider that $f_{\mathrm{B}}(x)=1+S(x-1 / 2)+x S(x / 2)^{2}$ has a bandwidth of $K=\pi$ and so a critical sample spacing of $a^{*}=1$

Exact Example

We can recover $f_{\mathrm{B}}(x)$ exactly knowing only its values at $x_{n}=n$ a with $a=1 / 2<a^{*}=1$

Exact Example

To recover $f_{\mathrm{B}}(x)$ we associate each x_{n} with a shifted and rescaled sinc function as

Exact Example

To recover $f_{\mathrm{B}}(x)$ we associate each x_{n} with a shifted and rescaled sinc function as

Exact Example

Adding together all of these sinc functions gives back $f_{\mathrm{B}}(x)$ with no approximation

Exact Example

We oversampled in the previous example. We can recover $f_{\mathrm{B}}(x)$ exactly knowing only its values at $x_{n}=n a+1 / 3$ with $a=a^{*}=1$

Exact Example

Just as before we recover $f_{\mathrm{B}}(x)$ by associating each x_{n} with a shifted and rescaled sinc function as

Exact Example

Adding together all of these sinc functions gives back $f_{\mathrm{B}}(x)$ with no approximation

Non-uniform Sampling

We are able to reconstruct f_{B} from any sufficiently dense uniform sampling.

Non-uniform Sampling

We are able to reconstruct f_{B} from any sufficiently dense uniform sampling.

The magic of Sampling Theory is that we can also recover $f_{\mathrm{B}}(x)$ from any sufficiently dense non-uniform sampling.

Non-uniform Sampling

We are able to reconstruct f_{B} from any sufficiently dense uniform sampling.

The magic of Sampling Theory is that we can also recover $f_{\mathrm{B}}(x)$ from any sufficiently dense non-uniform sampling.

Let's see how this works.

Exact Example

Consider the following oversampling of $f_{\mathrm{B}}(x)$ with $a=1 / 4<a^{*}=1$. We do not need all of these sample points to reconstruct (we need approximately one quarter of them).

Exact Example

The samples which we drop do not need to be selected uniformly. The following non-uniform sampling works,

Exact Example

The reconstruction function for each sample point is now more complicated. But ultimately,

$$
\begin{equation*}
f_{\mathrm{B}}(z)=\sum_{m=-\infty}^{\infty} G_{m}\left(z ;\left\{x_{n}\right\}\right) f_{\mathrm{B}}\left(x_{m}\right) \tag{16}
\end{equation*}
$$

Exact Example

The reconstruction function for each sample point is now more complicated. But ultimately,

$$
\begin{equation*}
f_{\mathrm{B}}(z)=\sum_{m=-\infty}^{\infty} G_{m}\left(z ;\left\{x_{n}\right\}\right) f_{\mathrm{B}}\left(x_{m}\right) \tag{17}
\end{equation*}
$$

Exact Example

The reconstruction function for each sample point is now more complicated. But ultimately,

$$
\begin{equation*}
f_{\mathrm{B}}(z)=\sum_{m=-\infty}^{\infty} G_{m}\left(z ;\left\{x_{n}\right\}\right) f_{\mathrm{B}}\left(x_{m}\right) \tag{18}
\end{equation*}
$$

Higher Dimensions

Remarkably the same story is true in higher dimensions.

Higher Dimensions

Remarkably the same story is true in higher dimensions.
Consider $f_{\mathrm{B}}(x, y)=J_{1}(\pi r) /(\pi r)$ where J_{1} is the first Bessel function and $r=\sqrt{x^{2}+y^{2}}$. This function is bandlimited with $\sqrt{k_{x}^{2}+k_{y}^{2}} \leq K=\pi$.

Higher Dimensions

Remarkably the same story is true in higher dimensions.
Consider $f_{\mathrm{B}}(x, y)=J_{1}(\pi r) /(\pi r)$ where J_{1} is the first Bessel function and $r=\sqrt{x^{2}+y^{2}}$. This function is bandlimited with $\sqrt{k_{x}^{2}+k_{y}^{2}} \leq K=\pi$.

The following figures are all equivalent representations of $f_{\mathrm{B}}(x, y)$

Higher Dimensions

Let's Review

What is remarkable about bandlimited functions is that they have a finite density of degrees of freedom, but these degrees of freedom have no fixed definite location ${ }^{3}$.

[^2]
Let's Review

What is remarkable about bandlimited functions is that they have a finite density of degrees of freedom, but these degrees of freedom have no fixed definite location ${ }^{3}$.

Moreover, we have near total freedom in how to pick our sample points.

[^3]
Let's Review

What is remarkable about bandlimited functions is that they have a finite density of degrees of freedom, but these degrees of freedom have no fixed definite location ${ }^{3}$.

Moreover, we have near total freedom in how to pick our sample points.
Questions before we move on to Part 3?

[^4]
Part 3: Discrete General Covariance

So far we have started with a bandlimited function and induced discrete lattice representations from it.

Part 3: Discrete General Covariance

So far we have started with a bandlimited function and induced discrete lattice representations from it.

Next, we will do some physics by adding dynamics. We will start from a lattice-formulation and from it find a bandlimited formulation.

Part 3: Discrete General Covariance

So far we have started with a bandlimited function and induced discrete lattice representations from it.

Next, we will do some physics by adding dynamics. We will start from a lattice-formulation and from it find a bandlimited formulation.

Recall the proposed analogy:

Coordinate Systems
Changing Coordinates $\quad \leftrightarrow$
Gen. Covariant Formulation
\leftrightarrow
Lattice Structure
Nyquist-Shannon Resampling
Bandlimited Formulation

Example: 1D Nearest-Neighbor Heat Equation

Consider the 1D nearest-neighbor heat equation,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{n}(t)=\alpha \frac{\psi_{n+1}(t)-2 \psi_{n}(t)+\psi_{n-1}(t)}{a^{2}} \tag{19}
\end{equation*}
$$

Example: 1D Nearest-Neighbor Heat Equation

Consider the 1D nearest-neighbor heat equation,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{n}(t)=\alpha \frac{\psi_{n+1}(t)-2 \psi_{n}(t)+\psi_{n-1}(t)}{a^{2}} \tag{19}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\psi}(t)=\frac{\alpha}{a^{2}} \Delta_{(1)}^{2} \boldsymbol{\psi}(t) \tag{20}
\end{equation*}
$$

where $\Delta_{(1)}^{2}$ is the nearest neighbor approximation to the second derivative and $\psi(t)=\left(\ldots, \psi_{-1}(t), \psi_{0}(t), \psi_{1}(t), \ldots\right)$.

Example: 1D Nearest-Neighbor Heat Equation

At each time we can take these discrete values $\psi_{n}(t)$ and imagine them as samples which are drawn from a bandlimited function ψ_{B} as,

$$
\begin{equation*}
\psi_{n}(t)=\psi_{\mathrm{B}}\left(t, x_{n}\right), \quad x_{n}=n a . \tag{21}
\end{equation*}
$$

Example: 1D Nearest-Neighbor Heat Equation

At each time we can take these discrete values $\psi_{n}(t)$ and imagine them as samples which are drawn from a bandlimited function ψ_{B} as,

$$
\begin{equation*}
\psi_{n}(t)=\psi_{\mathrm{B}}\left(t, x_{n}\right), \quad x_{n}=n a . \tag{21}
\end{equation*}
$$

We can then use these samples to reconstruct $\psi_{\mathrm{B}}(t, x)$ as

$$
\begin{equation*}
\psi_{\mathrm{B}}(t, x)=\sum_{n=-\infty}^{\infty} S_{n}(x / a) \psi_{n}(t) \tag{22}
\end{equation*}
$$

Adding Dynamics

In addition to moving the state-of-the-world at each time into the bandlimited setting we can also move the dynamics,

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi_{\mathrm{B}}(t, x) & =\sum_{n} S_{n}(x) \frac{\mathrm{d}}{\mathrm{~d} t} \psi_{n}(t) \\
& =\ldots \\
& =\frac{\alpha}{a^{2}} \frac{\cosh \left(a \partial_{x}\right)-1}{1 / 2} \psi_{\mathrm{B}}(t, x)
\end{aligned}
$$

The complicated cosh term is the continuum analog of $\Delta_{(1)}^{2}$. Note $\exp \left(a \partial_{x}\right) f(x)=f(x+a)$.

Adding Dynamics

In addition to moving the state-of-the-world at each time into the bandlimited setting we can also move the dynamics,

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi_{\mathrm{B}}(t, x) & =\sum_{n} S_{n}(x) \frac{\mathrm{d}}{\mathrm{~d} t} \psi_{n}(t) \\
& =\ldots \\
& =\frac{\alpha}{a^{2}} \frac{\cosh \left(a \partial_{x}\right)-1}{1 / 2} \psi_{\mathrm{B}}(t, x)
\end{aligned}
$$

The complicated cosh term is the continuum analog of $\Delta_{(1)}^{2}$. Note $\exp \left(a \partial_{x}\right) f(x)=f(x+a)$.

$$
\begin{equation*}
\frac{\cosh \left(a \partial_{x}\right)-1}{a^{2} / 2}=\partial_{x}^{2}+\frac{a^{2}}{12} \partial_{x}^{4}+O\left(a^{4}\right) \tag{24}
\end{equation*}
$$

Three Different Dynamics

$\mathrm{H} 1: \quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\psi}(t)=\frac{\alpha}{\mathrm{a}^{2}} \Delta_{(1)}^{2} \boldsymbol{\psi}(t)$

$$
\begin{equation*}
\partial_{t} \psi_{\mathrm{B}}(t, x)=\frac{\alpha}{a^{2}} \frac{\cosh \left(a \partial_{x}\right)-1}{1 / 2} \psi_{\mathrm{B}}(t, x) \tag{25}
\end{equation*}
$$

Three Different Dynamics

$\mathrm{H} 1: \quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\psi}(t)=\frac{\alpha}{a^{2}} \Delta_{(1)}^{2} \boldsymbol{\psi}(t)$

$$
\begin{equation*}
\partial_{t} \psi_{\mathbf{B}}(t, x)=\frac{\alpha}{a^{2}} \frac{\cosh \left(a \partial_{x}\right)-1}{1 / 2} \psi_{\mathrm{B}}(t, x) \tag{25}
\end{equation*}
$$

$\mathrm{H} 2: \quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\psi}(t)=\frac{\alpha}{\mathrm{a}^{2}} \Delta_{(2)}^{2} \boldsymbol{\psi}(t)$

$$
\begin{equation*}
\partial_{t} \psi_{\mathrm{B}}(t, x)=\frac{\alpha}{a^{2}} \frac{-\cosh \left(2 a \partial_{x}\right)+16 \cosh \left(a \partial_{x}\right)-15}{6} \psi_{\mathrm{B}}(t, x) \tag{26}
\end{equation*}
$$

where $\Delta_{(2)}^{2}$ is the next-to-nearest-neighbor approximation.

Three Different Dynamics

$\mathrm{H} 1: \quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\psi}(t)=\frac{\alpha}{\mathrm{a}^{2}} \Delta_{(1)}^{2} \boldsymbol{\psi}(t)$

$$
\begin{equation*}
\partial_{t} \psi_{\mathrm{B}}(t, x)=\frac{\alpha}{a^{2}} \frac{\cosh \left(a \partial_{x}\right)-1}{1 / 2} \psi_{\mathrm{B}}(t, x) \tag{25}
\end{equation*}
$$

$\mathrm{H} 2: \quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\psi}(t)=\frac{\alpha}{a^{2}} \Delta_{(2)}^{2} \boldsymbol{\psi}(t)$

$$
\begin{equation*}
\partial_{t} \psi_{\mathrm{B}}(t, x)=\frac{\alpha}{a^{2}} \frac{-\cosh \left(2 a \partial_{x}\right)+16 \cosh \left(a \partial_{x}\right)-15}{6} \psi_{\mathrm{B}}(t, x) \tag{26}
\end{equation*}
$$

where $\Delta_{(2)}^{2}$ is the next-to-nearest-neighbor approximation.
H3: $\quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\psi}(t)=\frac{\alpha}{a^{2}} D_{\mathrm{B}}^{2} \psi(t)$

$$
\begin{equation*}
\partial_{t} \psi_{\mathrm{B}}(t, x)=\alpha \partial_{x}^{2} \psi_{\mathrm{B}}(t, x) \tag{27}
\end{equation*}
$$

where $D_{\mathrm{B}}^{2}=\lim _{n \rightarrow \infty} \Delta_{(n)}^{2}$ is the infinite-range derivative approximation.

Eigen Analysis

In each of these cases the eigensolutions are planewaves, with $|k| \leq K$, which decay exponentially at some rate.

Eigen Analysis

In each of these cases the eigensolutions are planewaves, with $|k| \leq K$, which decay exponentially at some rate.

Lesson 1: There is no reason that a lattice theory needs to have different dynamics than the continuum theory (at least not below the bandwidth, K).

Dynamic Resampling

Spacetime Diagram of Heat Equation
\square

Dynamic Resampling

Spacetime Diagram of Heat Equation
\square

We can plot the discrete values $\psi_{n}(t)$ and the bandlimited function $\psi_{\mathrm{B}}(t, x)$ in a spacetime diagram.

We can then pick new sample point at each time.

Resampling and Symmetry

Spacetime Diagram of Heat Equation

We can pick new sample point at each time.

Resampling and Symmetry

Spacetime Diagram of Heat Equation

We can pick new sample point at each time.

These new sample values will not obey the same equation that the old ones did. But they are completely sufficient to represent the dynamics.

Resampling and Symmetry

Spacetime Diagram of Heat Equation

> What about this resampling? Do the shifted red sample values obey the same equations as the original dashed sample points?

Resampling and Symmetry

Spacetime Diagram of Heat Equation

> What about this resampling? Do the shifted red sample values obey the same equations as the original dashed sample points?

Indeed they do. Lesson 2: There is no reason that a lattice theory can't have a continuous symmetry.

Another Example: 2D Heat Equation

a1) Initial Condition

Consider this initial condition for the 2D Heat Equation.

Another Example: 2D Heat Equation

We can sample this initial condition and then evolve it via one of our discrete dynamical equations.

Nearest Neighbor Der.: $\mathrm{H} 4: \quad$ via $\Delta_{(1), x}^{2}+\Delta_{(1), y}^{2}$

Bandlimited Derivative: H5: via $D_{\mathrm{B}, \mathrm{x}}^{2}+D_{\mathrm{B}, \mathrm{y}}^{2}$.

Another Example: 2D Heat Equation

Nearest Neighbor Derivative: H4: via $\Delta_{(1), x}^{2}+\Delta_{(1), y}^{2}$
a3). Evolution by H4

Bandlimited Derivative: H 5 : via $D_{\mathrm{B}, \mathrm{x}}^{2}+D_{\mathrm{B}, \mathrm{y}}^{2}$
c3). Evolution by H5

Another Example: 2D Heat Equation

Nearest Neighbor Derivative: H4: via $\Delta_{(1), x}^{2}+\Delta_{(1), y}^{2}$ a4) Reconstruction

Bandlimited Derivative:
H 5 : via $D_{\mathrm{B}, \mathrm{x}}^{2}+D_{\mathrm{B}, \mathrm{y}}^{2}$
c4) Reconstruction

Another Example: 2D Heat Equation

a2). Initial Sampling

.							
.							-
.	.						.
.	.						.
-	.						.
-	.	.					.
-	-	,					.
-	-	.					-

c4) Reconstruction

Another Example: 2D Heat Equation

Lesson 2: We can have rotation invariant dynamics described in terms of a square lattice.

Another Example: 2D Heat Equation

Lesson 2: We can have rotation invariant dynamics described in terms of any lattice.

Another Example: 2D Heat Equation

a2). Initial Sampling

Initial Sampling

a3). Evolution by H_{4}

Evolution by H4

a4) Reconstruction

Another Example: 2D Heat Equation

Lesson 3: The 4-fold symmetry of the H4 dynamics has nothing to do with the dynamics being represented in terms of a square lattice.

Bandlimited and Generally Covariant Heat Equation

The discrete 2D heat equation on a square lattice,
$\mathrm{H} 5: \quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\psi}(t)=\frac{\alpha}{a^{2}}\left(D_{\mathrm{B}, \mathrm{x}}^{2}+D_{\mathrm{B}, \mathrm{y}}^{2}\right) \boldsymbol{\psi}(t)$,

Bandlimited and Generally Covariant Heat Equation

The discrete 2D heat equation on a square lattice,
$\mathrm{H} 5: \quad \frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=\frac{\alpha}{a^{2}}\left(D_{\mathrm{B}, \mathrm{x}}^{2}+D_{\mathrm{B}, \mathrm{y}}^{2}\right) \psi(t)$,
has a bandlimited representation
$\mathrm{H} 5: \quad \partial_{t} \psi_{\mathrm{B}}(t, x, y)=\alpha\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi_{\mathrm{B}}(t, x, y)$

Bandlimited and Generally Covariant Heat Equation

The discrete 2D heat equation on a square lattice,
$\mathrm{H} 5: \quad \frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=\frac{\alpha}{a^{2}}\left(D_{\mathrm{B}, \mathrm{x}}^{2}+D_{\mathrm{B}, \mathrm{y}}^{2}\right) \boldsymbol{\psi}(t)$,
has a bandlimited representation

$$
\begin{equation*}
\mathrm{H} 5: \quad \partial_{t} \psi_{\mathrm{B}}(t, x, y)=\alpha\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi_{\mathrm{B}}(t, x, y) \tag{29}
\end{equation*}
$$

We can further reformulate this in a generally covariant way as,

$$
\begin{array}{rll}
\mathrm{H} 5 & \mathrm{KPMs}: & \left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi_{\mathrm{B}}\right\rangle \tag{30}\\
& \text { DPMs: } & T^{\mathrm{a}} \nabla_{\mathrm{a}} \psi_{\mathrm{B}}=\alpha h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \psi_{\mathrm{B}}
\end{array}
$$

Bandlimited and Generally Covariant Heat Equation

Compare this with the generally covariant continuum heat equation,

$$
\begin{array}{rll}
\mathrm{H} 5 & \mathrm{KPMs}: & \left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi_{\mathrm{B}}\right\rangle \tag{31}\\
\text { DPMs: } & T^{\mathrm{a}} \nabla_{\mathrm{a}} \psi_{\mathrm{B}}=\alpha h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \psi_{\mathrm{B}}
\end{array}
$$

Continuum Heat KPMs: $\left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi\right\rangle$

$$
\begin{equation*}
\text { DPMs: } \quad T^{\mathrm{a}} \nabla_{\mathrm{a}} \psi=\alpha h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \psi \tag{32}
\end{equation*}
$$

Bandlimited and Generally Covariant Heat Equation

Compare this with the generally covariant continuum heat equation,

$$
\begin{array}{lll}
\mathrm{H} 5 & \mathrm{KPMs}: & \left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi_{\mathrm{B}}\right\rangle \tag{31}\\
& \text { DPMs: } & T^{\mathrm{a}} \nabla_{\mathrm{a}} \psi_{\mathrm{B}}=\alpha h^{\mathrm{b}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \psi_{\mathrm{B}}
\end{array}
$$

Continuum Heat KPMs: $\left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi\right\rangle$

$$
\begin{equation*}
\text { DPMs: } \quad T^{\mathrm{a}} \nabla_{\mathrm{a}} \psi=\alpha h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \psi \tag{32}
\end{equation*}
$$

The only difference is that ψ_{B} is bandlimited whereas ψ is unrestricted.

Bandlimited and Generally Covariant Heat Equation

Compare this with the generally covariant continuum heat equation,

$$
\begin{array}{lll}
\mathrm{H} 5 & \mathrm{KPMs}: & \left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi_{\mathrm{B}}\right\rangle \tag{31}\\
& \text { DPMs: } & T^{\mathrm{a}} \nabla_{\mathrm{a}} \psi_{\mathrm{B}}=\alpha h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \psi_{\mathrm{B}}
\end{array}
$$

Continuum Heat KPMs: $\left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, T^{\mathrm{a}}, \psi\right\rangle$

$$
\begin{equation*}
\text { DPMs: } \quad T^{\mathrm{a}} \nabla_{\mathrm{a}} \psi=\alpha h^{\mathrm{bc}} \nabla_{\mathrm{b}} \nabla_{\mathrm{c}} \psi \tag{32}
\end{equation*}
$$

The only difference is that ψ_{B} is bandlimited whereas ψ is unrestricted.
Since these dynamics preserve bandlimits, this ultimately amounts to a restriction of the initial condition.

Bandlimited and Gen. Covariant Klein Gordon Equation

The discrete 2D Klein Gordon equation on a square lattice,
Discrete KG: $\quad \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)=\left(\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{x}}^{2}+\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{y}}^{2}-M^{2}\right) \phi(t)$,

Bandlimited and Gen. Covariant Klein Gordon Equation

The discrete 2D Klein Gordon equation on a square lattice,
Discrete KG: $\quad \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)=\left(\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{x}}^{2}+\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{y}}^{2}-M^{2}\right) \phi(t)$,
has a bandlimited representation
Discrete KG: $\quad \partial_{t}^{2} \phi_{\mathrm{B}}(t, x, y)=\left(\partial_{x}^{2}+\partial_{y}^{2}-M^{2}\right) \phi_{\mathrm{B}}(t, x, y)$

Bandlimited and Gen. Covariant Klein Gordon Equation

The discrete 2D Klein Gordon equation on a square lattice,
Discrete KG: $\quad \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)=\left(\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{x}}^{2}+\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{y}}^{2}-M^{2}\right) \phi(t)$,
has a bandlimited representation

$$
\begin{equation*}
\text { Discrete KG: } \quad \partial_{t}^{2} \phi_{\mathrm{B}}(t, x, y)=\left(\partial_{x}^{2}+\partial_{y}^{2}-M^{2}\right) \phi_{\mathrm{B}}(t, x, y) \tag{34}
\end{equation*}
$$

We can further reformulate this in a generally covariant way as,

$$
\begin{array}{lll}
\text { Discrete KG } & \text { KPMs: } & \left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi_{\mathrm{B}}\right\rangle \tag{35}\\
& \text { DPMs: } & \left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi_{\mathrm{B}}=0
\end{array}
$$

Bandlimited and Gen. Covariant Klein Gordon Equation

Compare this with continuum Klein Gordon dynamics,

Discrete KG	$\mathrm{KPMs:}$	$\left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi_{\mathrm{B}}\right\rangle$
	DPMs:	$\left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi_{\mathrm{B}}=0$

Continuum KG KPMs: $\left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi\right\rangle$
DPMs: $\quad\left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi=0$

Bandlimited and Gen. Covariant Klein Gordon Equation

Compare this with continuum Klein Gordon dynamics,

$$
\begin{array}{lll}
\text { Discrete KG } \quad \text { KPMs: } & \left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi_{\mathrm{B}}\right\rangle \tag{36}\\
& \text { DPMs: } & \left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi_{\mathrm{B}}=0
\end{array}
$$

Continuum KG KPMs: $\left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi\right\rangle$
DPMs: $\quad\left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi=0$
The only difference is that ϕ_{B} is bandlimited whereas ϕ is unrestricted.

Bandlimited and Gen. Covariant Klein Gordon Equation

Compare this with continuum Klein Gordon dynamics,

$$
\begin{array}{lll}
\text { Discrete KG } & \text { KPMs: } & \left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi_{\mathrm{B}}\right\rangle \tag{36}\\
& \text { DPMs: } & \left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi_{\mathrm{B}}=0
\end{array}
$$

Continuum KG KPMs: $\left\langle\mathcal{M}, \eta^{\mathrm{ab}}, \phi\right\rangle$
DPMs: $\quad\left(\eta^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}}-M^{2}\right) \phi=0$
The only difference is that ϕ_{B} is bandlimited whereas ϕ is unrestricted.

Since these dynamics preserve bandlimits, this ultimately amounts to a restriction of the initial condition.

Bandlimited and Gen. Covariant Klein Gordon Equation

The discrete 2D Klein Gordon equation on a square lattice,

$$
\begin{equation*}
\text { Discrete KG: } \quad \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)=\left(\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{x}}^{2}+\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{y}}^{2}-M^{2}\right) \phi(t), \tag{38}
\end{equation*}
$$

has the full* Poincare symmetry group.

Bandlimited and Gen. Covariant Klein Gordon Equation

The discrete 2D Klein Gordon equation on a square lattice,

$$
\begin{equation*}
\text { Discrete KG: } \quad \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)=\left(\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{x}}^{2}+\frac{1}{a^{2}} D_{\mathrm{B}, \mathrm{y}}^{2}-M^{2}\right) \phi(t), \tag{38}
\end{equation*}
$$

has the full* Poincare symmetry group.
*with one slight exception. The value of the bandwidth K depends on which flat space-like hypersurface you compute it on.

Conclusion

I have argued for the following analogy:

Coordinate Systems
Changing Coordinates
\leftrightarrow
\leftrightarrow
Gen. Covariant Formulation

Lattice Structure
 Nyquist-Shannon Resampling

 Bandlimited Formulation
Conclusion

I have argued for the following analogy:

Coordinate Systems \leftrightarrow
Changing Coordinates \leftrightarrow
Gen. Covariant Formulation \leftrightarrow

Lattice Structure Nyquist-Shannon Resampling Bandlimited Formulation

Note: Once a "lattice" theory has been given a bandlimited reformulation it can then be given a generally covariant reformulation as well.

Conclusion

We have seen that the lattice structure underlying a "lattice" theory has the same level of physical import as coordinates do, i.e., none at all.

C1) Introducing a lattice to a continuum theory does not need to distort the dynamics much (if at all).

Conclusion

We have seen that the lattice structure underlying a "lattice" theory has the same level of physical import as coordinates do, i.e., none at all.

C1) Introducing a lattice to a continuum theory does not need to distort the dynamics much (if at all).

In the two examples we have seen the lattice can do as little as restrict the allowed initial condition.
(Ask me about how this changes for non-linear theories.)

Conclusion

We have seen that the lattice structure underlying a "lattice" theory has the same level of physical import as coordinates do, i.e., none at all.

C1) Introducing a lattice to a continuum theory does not need to distort the dynamics much (if at all).

In the two examples we have seen the lattice can do as little as restrict the allowed initial condition.
(Ask me about how this changes for non-linear theories.)
In particular, the lattice does not need to cause modified heat decay rates or modified dispersion relations.

Conclusion

We have seen that the lattice structure underlying a "lattice" theory has the same level of physical import as coordinates do, i.e., none at all.

C2) The lattice does not restrict in any way which symmetries our theory can have.

Conclusion

We have seen that the lattice structure underlying a "lattice" theory has the same level of physical import as coordinates do, i.e., none at all.

C2) The lattice does not restrict in any way which symmetries our theory can have.

The symmetry that our dynamics is completely independent of the symmetries of any given lattice structure. We can have:

Conclusion

We have seen that the lattice structure underlying a "lattice" theory has the same level of physical import as coordinates do, i.e., none at all.

C2) The lattice does not restrict in any way which symmetries our theory can have.

The symmetry that our dynamics is completely independent of the symmetries of any given lattice structure. We can have:

4-fold rotation symmetric dynamics on a hexagonal lattice. Continuous rotation symmetric dynamics on a irregular lattice. Poincare-invariant dynamics on a square lattice.

Questions this Raises for Me

Q1) What would it be like if the world really had an certain lattice structure underlying it? Given the above, could this ever be established experimentally?

Questions this Raises for Me

Q1) What would it be like if the world really had an certain lattice structure underlying it? Given the $\overline{\text { above, could this ever be }}$ established experimentally?

Q2) What is local in the lattice formulation (nearest neighbor, $\Delta_{(1)}^{2}$) is non-local in terms of the bandlimited formulation $\left(\cosh \left(a \partial_{x}\right)\right)$.

Likewise, What is local in terms of the bandlimited formulation $\left(\partial_{x}\right)$ is non-local in terms of the lattice formulation (infinite range, D_{B}).

If we care about locality, which of these notions should we prefer?

Questions this Raises for Me

Q2) Partial Answer: If we care about maximizing symmetry in our future theories (necessary to minimize background structure) then the bandlimited locality seems to be preferred.

[^5]
Questions this Raises for Me

Q2) Partial Answer: If we care about maximizing symmetry in our future theories (necessary to minimize background structure) then the bandlimited locality seems to be preferred.

Q3) What possibilities are there for a bandlimited theory of gravity ${ }^{45}$? E.g., Bandlimited Newton Cartan. What about a bandlimited background independent theory? E.g., Bandlimited GR.

[^6]Thanks for your attention

Initial Condition

a2) Initial Sampling

c2). Initial Sampling

a3) Evolution by H 4

c3). Evolution by H5

a4) Reconstruction

c4) Reconstruction

Bandlimited Self-grav Navier Stokes

Both the heat equation and the Klein Gordon equation were linear. This stuff works for non-linear dynamics too (with a bit of work). Here is some bandlimited self-gravitating Navier Stokes dynamics.

Self-gravitating fluid

Consider this model of a self-gravitating fluid,

$$
\begin{equation*}
\mathrm{KPMs}: \quad\left\langle\mathcal{M}, t_{\mathrm{ab}}, h^{\mathrm{ab}}, \nabla_{\mathrm{a}}, \varphi, \rho, u^{\mathrm{a}}\right\rangle \tag{39}
\end{equation*}
$$

where φ is the grav. potential, ρ is the density, $u^{\text {a }}$ is the time-like velocity

$$
\text { DPMs: } \begin{aligned}
h^{\mathrm{ab}} \nabla_{\mathrm{a}} \nabla_{\mathrm{b}} \varphi & =4 \pi G \rho \\
\mathcal{B}_{K}\left[u^{\mathrm{a}} \nabla_{\mathrm{a}} u^{\mathrm{b}}\right] & =\nu h^{\mathrm{cd}} \nabla_{\mathrm{c}} \nabla_{\mathrm{d}} u^{\mathrm{b}}-\beta h^{\mathrm{bd}} \nabla_{\mathrm{d}} \rho-h^{\mathrm{bd}} \nabla_{\mathrm{d}} \varphi \\
\mathcal{B}_{K}\left[\nabla_{\mathrm{a}}\left(\rho u^{\mathrm{a}}\right)\right] & =0
\end{aligned}
$$

ν is the viscosity and pressure is $p=\beta \rho^{2} / 2$.
\mathcal{B}_{K} applies a bandlimit with bandwidth K. Something like this is needed because products of bandlimited function can have up to the sum of their bandwidths.

Bandlimited in Time too

If the initial condition $\phi(0, x)$ of the Klein Gordon equation is bandlimited in space, then the full solution $\phi(t, x)$ is bandlimited in time.

As such we can describe it in both space and time via some sufficiently dense sample points.

Does this have anything to do with causal sets? I don't know.

[^0]: ${ }^{1}$ Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354
 ${ }^{2}$ Achim Kempf, Phys. Rev. Lett., Vol 92, Issue 22, June 2004. arXiv:gr-qc/0310035

[^1]: ${ }^{1}$ Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354
 ${ }^{2}$ Achim Kempf, Phys. Rev. Lett., Vol 92, Issue 22, June 2004. arXiv:gr-qc/0310035

[^2]: ${ }^{3}$ Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354

[^3]: ${ }^{3}$ Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354

[^4]: ${ }^{3}$ Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354

[^5]: ${ }^{4}$ Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354
 ${ }^{5}$ Achim Kempf, Phys. Rev. Lett., Vol 92, Issue 22, June 2004. arXiv:gr-qc/0310035

[^6]: ${ }^{4}$ Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354
 ${ }^{5}$ Achim Kempf, Phys. Rev. Lett., Vol 92, Issue 22, June 2004. arXiv:gr-qc/0310035

