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Outline

1. What is special about GR?

- General Covariance? (20 min)

- Diffeomorphism Invariance?

- Background Independence?

2. Review of Nyquist Shannon Sampling Theory (10 min)

- Bandlimited Functions

- Uniform Sampling

- Non-uniform Sampling

3. Discrete General Covariance (20 min)

I will take questions after each part. Please save major questions for then.
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Part 1: Some Philosophy of GR

What is special about GR? (as opposed to merely SR theories)

A) Is it GR’s general covariance?
That is, the fact that its laws take the same form in all coordinates.

B) Is it GR’s diffeomorphism invariance?
That is, the fact that its symmetry group is Diff(M).

C) Is it GR’s background independence?
That is, roughly, that GR has no fixed background structure.

How do these three concepts differ and how are they related to each other?
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Spoiler Part 1: Its background independence.

What is special about GR?

A) General covariance is not a special property of GR.

- Any theory can be made generally covariant (Kretschmann, 1917).

- However, general covariance is important because it exposes
background structure, and clarifies many questions about symmetry.

B) Diffeomorphism invariance is not a special property of GR.

- SR can be rewritten to be diffeomorphism invariant.

- However, diff. inv. is important because it is necessary for
background independence. Anything which breaks the Diff(M)
symmetry will count as background structure.

C) Background independence is what makes GR special.
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(Continuous) General Covariance

Example 1) 2D Klein Gordon Equation:

∂2t φ(t, x , y) = (∂2x + ∂2y −M2)φ(t, x , y) (1)

This formulation is not generally covariant. For instance, written in terms
of the coordinates (t ′ = t, x ′ = x + 1

2a t
2, y ′ = y) we have,

∂2t′φ(t ′, x ′, y ′) = (∂2x ′ + ∂2y ′ −M2)φ(t ′, x ′, y ′) (2)

−a ∂x ′ φ(t ′, x ′, y ′).

In arbitrary coordinates we find “extra” terms due the non-inertial frame
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(Continuous) General Covariance: Klein Gordon

In arbitrary coordinates we find “extra” terms due the non-inertial frame:

From Cartesian coordinates xµ

(ηµν∂µ∂ν −M2)φ = 0 signature (-1,1,1) (3)

To arbitrary coordinates x ′µ

(ησρ
∂x ′µ

∂xσ
∂x ′ν

∂xρ
∂µ∂ν −M2)φ+ ησρ

∂2x ′µ

∂xσ ∂xρ
∂µφ = 0. (4)
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(Continuous) General Covariance: Klein Gordon

To get away from coordinates all together we can write our theory in the
coordinate-independent language of differential geometry.

Consider the space of kinematically possible models (KPMs) given by:

KPMs: 〈M, ηab, φ〉 (5)

where M is a differentiable (2+1)-manifold, ηab is a fixed metric field with
signature (−1, 1, 1) and φ :M→ R is a scalar field.

Consider the dynamically possible models (DPMs) picked out by

DPMs: (ηab∇a∇b −M2)φ = 0 (6)

where ∇a is the unique derivative compatible with the metric,
i.e. with ∇c η

ab = 0.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 7 / 70



(Continuous) General Covariance: Klein Gordon

To get away from coordinates all together we can write our theory in the
coordinate-independent language of differential geometry.

Consider the space of kinematically possible models (KPMs) given by:

KPMs: 〈M, ηab, φ〉 (5)

where M is a differentiable (2+1)-manifold, ηab is a fixed metric field with
signature (−1, 1, 1) and φ :M→ R is a scalar field.

Consider the dynamically possible models (DPMs) picked out by

DPMs: (ηab∇a∇b −M2)φ = 0 (6)

where ∇a is the unique derivative compatible with the metric,
i.e. with ∇c η

ab = 0.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 7 / 70



(Continuous) General Covariance: Klein Gordon

To get away from coordinates all together we can write our theory in the
coordinate-independent language of differential geometry.

Consider the space of kinematically possible models (KPMs) given by:

KPMs: 〈M, ηab, φ〉 (5)

where M is a differentiable (2+1)-manifold, ηab is a fixed metric field with
signature (−1, 1, 1) and φ :M→ R is a scalar field.

Consider the dynamically possible models (DPMs) picked out by

DPMs: (ηab∇a∇b −M2)φ = 0 (6)

where ∇a is the unique derivative compatible with the metric,
i.e. with ∇c η

ab = 0.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 7 / 70



(Continuous) General Covariance: Klein Gordon

We now have the Klein Gordon equation in a generally covariant form:

SR1 KPMs: 〈M, ηab, φ〉 with ηab fixed, (7)

DPMs: (ηab∇a∇b + M2)φ = 0.

The fact that ηab is fixed across all solutions qualifies it as background
structure. This breaks the diffeomorphism invariance of the manifold M.

Given a generic diffeomorphism d ∈ Diff(M) and a solution 〈M, ηab, φ〉,
〈M, d∗ηab, d∗φ〉 is not a solution in general

〈M, ηab, d∗φ〉 is not a solution in general.
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(Continuous) General Covariance: Heat Equation

Repeating this process for the heat equation ∂tψ = α (∂2x + ∂2y )ψ

we find

Continuum Heat KPMs: 〈M, tab, h
ab,∇a,T

a, ψ〉 (8)

hab and tab are space and time metrics with signatures (0, 1, 1) and
(1, 0, 0) respectively. ∇a is a derivative operator which is compatible with
these metrics and flat (i.e., with Ra

bcd = 0). T a is a constant unit
time-like vector field which picks out a standardized way of moving
forward in time (i.e, translation generated by T a∇a).

The DPMs are picked out by:

Continuum Heat DPMs: T a∇aψ = α hbc∇b∇cψ (9)
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(Continuous) General Covariance: Newtonian Gravity

Repeating this process for Newtonian Gravity we have

Newtonian Gravity KPMs: 〈M, tab, h
ab,∇a, ϕ,Φ〉 (10)

DPMs: hbc∇b∇cϕ = 4πG ρ

ua∇au
b = −hbc∇cϕ

where ϕ is the gravitational potential and Φ is a stand in for the matter
content of the theory (ρ is calculated from Φ somehow). ua is the
4-velocity of a test particle (normalized and time-like).

Note there is no time-like vector field T a assumed here.
This theory is has the Galilean symmetry group.
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Benefits of Generally Covariant Formulations

Writing a theory in a coordinate-independent way separates the theory’s
substantive content from its superficial coordinate-dependent properties.

Since any theory can be represented in terms of any coordinates (or in
terms of no coordinates at all) it is now obvious that coordinates play no
role in symmetry.

In a coordinate-independent framing, there are no passive symmetry
transformations. The symmetry of a theory is just the subset of the
diffeomorphisms which map solutions to solutions.
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Diffeomorphism invariance

If not general covariance, maybe it is GR’s diffeomorphism invariance
which sets it apart from SR.

This is not right. We can reformulate special relativity to be
diffeomorphism invariant as

SR2 KPMs: 〈M, gab, φ〉, (11)

DPMs: (gab∇a∇b −M2)φ = 0

Ra
bcd = 0.

Note gab is not a fixed field, it is dynamical.

Given a generic diffeomorphism d ∈ Diff(M) and a solution 〈M, gab, φ〉
we do in fact have that 〈M, d∗gab, d∗φ〉 is a solution.
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Compare SR2 with GR

Compare SR2,

SR2 KPMs: 〈M, gab, φ〉, (12)

DPMs: (gab∇a∇b −M2)φ = 0

Ra
bcd = 0.

with GR,

GR KPMs: 〈M, gab, φ〉, (13)

DPMs: (gab∇a∇b −M2)φ = 0 (14)

Gab = 8πTab.

SR2 has background structure whereas GR does not.
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Background Independence

What makes GR special is not general covariance or diff. invariance.

It must be some third thing, let’s call it background independence.

There is much ongoing discussion in the philosophy literature how exactly
background independence should be formulated. It is too much to get into
all that here.

Let’s move on to Part 2 of the presentation. Questions before we do?
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Discrete Background Independence?

Can we extend these notions to discrete-space (e.g., lattice) theories?

Quantum gravity is likely to discretize space-time somehow. Moreover, one
might expect GR’s successor to be background independent in some sense.

What background structure do lattices introduce?

Do lattices always break continuous symmetries?
Translations, rotations, Galilean boosts, Lorentzian boosts, etc.

To answer this question it would be very helpful to have a notion of
discrete general covariance.
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Discrete General Covariance

Inspired by the work of Achim Kempf,12 I suggest the following analogy:

Coordinate Systems
Changing Coordinates

Gen. Covariant Formulation

↔
↔
↔

Lattice Structure
Nyquist-Shannon Resampling

Bandlimited Formulation

Before jumping into this, we need to review Sampling Theory.

1Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354
2Achim Kempf, Phys. Rev. Lett., Vol 92, Issue 22, June 2004. arXiv:gr-qc/0310035
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Part 2: Review of Nyquist Shannon Sampling Theory

A bandlimited function is one whose Fourier transform has compact
support. That is, a function fB(x) is bandlimited with bandwidth K iff
Fk [fB(x)] has support only for wavenumbers |k| ≤ K .

The Nyquist Shannon Sampling Theorem tells us that we can exactly
reconstruct any bandlimited function knowing only its values at a
sufficiently dense set of sample points.
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How does that work?

Suppose we know fn = fB(xn) at the regularly spaced sample points
xn = n a and that fB is bandlimited with bandwidth K .

The following reconstruction,

fB(z) =?
∞∑

n=−∞
Sn(z/a) fn; S(y) =

sin(πy)

πy
, Sn(y) = S(y − n). (15)

is exact when our sample points are sufficiently dense
(here meaning a ≤ a∗ = π/K ).
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Exact Example

Consider that fB(x) = 1 + S(x − 1/2) + x S(x/2)2 has a bandwidth of
K = π and so a critical sample spacing of a∗ = 1

-4 -2 2 4

a)
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Exact Example

We can recover fB(x) exactly knowing only its values at xn = n a with
a = 1/2 < a∗ = 1

-4 -2 2 4

b)
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Exact Example

To recover fB(x) we associate each xn with a shifted and rescaled sinc
function as

-4 -2 2 4

b)

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 21 / 70



Exact Example

To recover fB(x) we associate each xn with a shifted and rescaled sinc
function as

-4 -2 2 4

b)

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 22 / 70



Exact Example

Adding together all of these sinc functions gives back fB(x) with no
approximation

-4 -2 2 4

a)
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Exact Example

We oversampled in the previous example. We can recover fB(x) exactly
knowing only its values at xn = n a + 1/3 with a = a∗ = 1
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d)
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Exact Example

Just as before we recover fB(x) by associating each xn with a shifted and
rescaled sinc function as
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Exact Example
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Non-uniform Sampling

We are able to reconstruct fB from any sufficiently dense uniform sampling.

The magic of Sampling Theory is that we can also recover fB(x) from any
sufficiently dense non-uniform sampling.

Let’s see how this works.
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Exact Example

Consider the following oversampling of fB(x) with a = 1/4 < a∗ = 1. We
do not need all of these sample points to reconstruct (we need
approximately one quarter of them).

-4 -2 2 4

e)
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Exact Example

The samples which we drop do not need to be selected uniformly. The
following non-uniform sampling works,

-4 -2 2 4

e)
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Exact Example

The reconstruction function for each sample point is now more
complicated. But ultimately,

fB(z) =
∞∑

m=−∞
Gm(z ; {xn}) fB(xm) (16)

-4 -2 2 4

e)
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Exact Example

The reconstruction function for each sample point is now more
complicated. But ultimately,

fB(z) =
∞∑

m=−∞
Gm(z ; {xn}) fB(xm) (18)
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a)
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Higher Dimensions

Remarkably the same story is true in higher dimensions.

Consider fB(x , y) = J1(π r)/(π r) where J1 is the first Bessel function and

r =
√
x2 + y2. This function is bandlimited with

√
k2x + k2y ≤ K = π.

The following figures are all equivalent representations of fB(x , y)
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Higher Dimensions
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Higher Dimensions
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Higher Dimensions
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Let’s Review

What is remarkable about bandlimited functions is that they have a finite
density of degrees of freedom, but these degrees of freedom have no fixed
definite location3.

Moreover, we have near total freedom in how to pick our sample points.

Questions before we move on to Part 3?

3Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354
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Part 3: Discrete General Covariance

So far we have started with a bandlimited function and induced discrete
lattice representations from it.

Next, we will do some physics by adding dynamics. We will start from a
lattice-formulation and from it find a bandlimited formulation.

Recall the proposed analogy:

Coordinate Systems
Changing Coordinates

Gen. Covariant Formulation

↔
↔
↔

Lattice Structure
Nyquist-Shannon Resampling

Bandlimited Formulation
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Example: 1D Nearest-Neighbor Heat Equation

Consider the 1D nearest-neighbor heat equation,

d

dt
ψn(t) = α

ψn+1(t)− 2ψn(t) + ψn−1(t)

a2
(19)

or equivalently,

d

dt
ψ(t) =

α

a2
∆2

(1)ψ(t) (20)

where ∆2
(1) is the nearest neighbor approximation to the second derivative

and ψ(t) = (. . . , ψ−1(t), ψ0(t), ψ1(t), . . . ).
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Example: 1D Nearest-Neighbor Heat Equation

At each time we can take these discrete values ψn(t) and imagine them as
samples which are drawn from a bandlimited function ψB as,

ψn(t) = ψB(t, xn), xn = n a. (21)

We can then use these samples to reconstruct ψB(t, x) as

ψB(t, x) =
∞∑

n=−∞
Sn(x/a) ψn(t). (22)
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Adding Dynamics

In addition to moving the state-of-the-world at each time into the
bandlimited setting we can also move the dynamics,

∂

∂t
ψB(t, x) =

∑
n

Sn(x)
d

dt
ψn(t) (23)

= . . .

=
α

a2
cosh(a ∂x)− 1

1/2
ψB(t, x)

The complicated cosh term is the continuum analog of ∆2
(1). Note

exp(a ∂x)f (x) = f (x + a).

cosh(a ∂x)− 1

a2/2
= ∂2x +

a2

12
∂4x + O(a4) (24)
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Three Different Dynamics

H1:
d

dt
ψ(t) =

α

a2
∆2

(1)ψ(t) (25)

∂tψB(t, x) =
α

a2
cosh(a ∂x)− 1

1/2
ψB(t, x)

H2:
d

dt
ψ(t) =

α

a2
∆2

(2)ψ(t) (26)

∂tψB(t, x) =
α

a2
−cosh(2a ∂x) + 16 cosh(a ∂x)− 15

6
ψB(t, x)

where ∆2
(2) is the next-to-nearest-neighbor approximation.

H3:
d

dt
ψ(t) =

α

a2
D2
Bψ(t) (27)

∂tψB(t, x) = α∂2xψB(t, x)

where D2
B = limn→∞∆2

(n) is the infinite-range derivative approximation.
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Eigen Analysis

In each of these cases the eigensolutions are planewaves, with |k | ≤ K ,
which decay exponentially at some rate.

-π - 3π
4 -π

2
-π
4

π
4

π
2

3π
4 π

Heat Decay Rate vs Wavenumber

H1 H2 H3

Lesson 1: There is
no reason that a
lattice theory needs
to have different
dynamics than the
continuum theory
(at least not below
the bandwidth, K ).
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Dynamic Resampling

We can plot the discrete
values ψn(t) and the
bandlimited function
ψB(t, x) in a spacetime
diagram.

We can then pick new
sample point at each
time.
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Resampling and Symmetry

We can pick new sample
point at each time.

These new sample values
will not obey the same
equation that the old
ones did. But they are
completely sufficient to
represent the dynamics.
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Resampling and Symmetry

What about this
resampling? Do the
shifted red sample values
obey the same equations
as the original dashed
sample points?

Indeed they do. Lesson 2:
There is no reason that a
lattice theory can’t have a
continuous symmetry.
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Another Example: 2D Heat Equation

Consider this initial
condition for the 2D Heat
Equation.
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Another Example: 2D Heat Equation

We can sample this initial
condition and then evolve
it via one of our discrete
dynamical equations.

Nearest Neighbor Der.:
H4 : via ∆2

(1),x + ∆2
(1),y

Bandlimited Derivative:
H5 : via D2

B,x + D2
B,y.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 51 / 70



Another Example: 2D Heat Equation

Nearest Neighbor Derivative:
H4 : via ∆2

(1),x + ∆2
(1),y

Bandlimited Derivative:
H5 : via D2

B,x + D2
B,y

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 52 / 70



Another Example: 2D Heat Equation

Nearest Neighbor Derivative:
H4 : via ∆2

(1),x + ∆2
(1),y

Bandlimited Derivative:
H5 : via D2

B,x + D2
B,y

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 53 / 70



Another Example: 2D Heat Equation

Lesson 2: We can have rotation invariant dynamics described in terms of a
square lattice.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 54 / 70



Another Example: 2D Heat Equation

Lesson 2: We can have rotation invariant dynamics described in terms of a
square lattice.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 54 / 70



Another Example: 2D Heat Equation

Lesson 2: We can have rotation invariant dynamics described in terms of
any lattice.
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Another Example: 2D Heat Equation

Lesson 3: The 4-fold symmetry of the H4 dynamics has nothing to do with
the dynamics being represented in terms of a square lattice.
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Bandlimited and Generally Covariant Heat Equation

The discrete 2D heat equation on a square lattice,

H5:
d

dt
ψ(t) =

α

a2
(D2

B,x + D2
B,y)ψ(t), (28)

has a bandlimited representation

H5: ∂tψB(t, x , y) = α (∂2x + ∂2y )ψB(t, x , y) (29)

We can further reformulate this in a generally covariant way as,

H5 KPMs: 〈M, tab, h
ab,∇a,T

a, ψB〉 (30)

DPMs: T a∇aψB = α hbc∇b∇cψB
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Bandlimited and Generally Covariant Heat Equation

Compare this with the generally covariant continuum heat equation,

H5 KPMs: 〈M, tab, h
ab,∇a,T

a, ψB〉 (31)

DPMs: T a∇aψB = α hbc∇b∇cψB

Continuum Heat KPMs: 〈M, tab, h
ab,∇a,T

a, ψ〉 (32)

DPMs: T a∇aψ = α hbc∇b∇cψ

The only difference is that ψB is bandlimited whereas ψ is unrestricted.

Since these dynamics preserve bandlimits, this ultimately amounts to a
restriction of the initial condition.
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Bandlimited and Gen. Covariant Klein Gordon Equation

The discrete 2D Klein Gordon equation on a square lattice,

Discrete KG:
d2

dt2
φ(t) = (

1

a2
D2
B,x +

1

a2
D2
B,y −M2)φ(t), (33)

has a bandlimited representation

Discrete KG: ∂2t φB(t, x , y) = (∂2x + ∂2y −M2)φB(t, x , y) (34)

We can further reformulate this in a generally covariant way as,

Discrete KG KPMs: 〈M, ηab, φB〉 (35)

DPMs: (ηab∇a∇b −M2)φB = 0
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Bandlimited and Gen. Covariant Klein Gordon Equation

Compare this with continuum Klein Gordon dynamics,

Discrete KG KPMs: 〈M, ηab, φB〉 (36)

DPMs: (ηab∇a∇b −M2)φB = 0

Continuum KG KPMs: 〈M, ηab, φ〉 (37)

DPMs: (ηab∇a∇b −M2)φ = 0

The only difference is that φB is bandlimited whereas φ is unrestricted.

Since these dynamics preserve bandlimits, this ultimately amounts to a
restriction of the initial condition.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 60 / 70



Bandlimited and Gen. Covariant Klein Gordon Equation

Compare this with continuum Klein Gordon dynamics,

Discrete KG KPMs: 〈M, ηab, φB〉 (36)

DPMs: (ηab∇a∇b −M2)φB = 0

Continuum KG KPMs: 〈M, ηab, φ〉 (37)

DPMs: (ηab∇a∇b −M2)φ = 0

The only difference is that φB is bandlimited whereas φ is unrestricted.

Since these dynamics preserve bandlimits, this ultimately amounts to a
restriction of the initial condition.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 60 / 70



Bandlimited and Gen. Covariant Klein Gordon Equation

Compare this with continuum Klein Gordon dynamics,

Discrete KG KPMs: 〈M, ηab, φB〉 (36)

DPMs: (ηab∇a∇b −M2)φB = 0

Continuum KG KPMs: 〈M, ηab, φ〉 (37)

DPMs: (ηab∇a∇b −M2)φ = 0

The only difference is that φB is bandlimited whereas φ is unrestricted.

Since these dynamics preserve bandlimits, this ultimately amounts to a
restriction of the initial condition.

D.G. (Phil Ox) Discrete Gen. Cov. January 13, 2021 60 / 70



Bandlimited and Gen. Covariant Klein Gordon Equation

The discrete 2D Klein Gordon equation on a square lattice,

Discrete KG:
d2

dt2
φ(t) = (

1

a2
D2
B,x +

1

a2
D2
B,y −M2)φ(t), (38)

has the full∗ Poincare symmetry group.

∗with one slight exception. The value of the bandwidth K depends on
which flat space-like hypersurface you compute it on.
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Conclusion

I have argued for the following analogy:

Coordinate Systems
Changing Coordinates

Gen. Covariant Formulation

↔
↔
↔

Lattice Structure
Nyquist-Shannon Resampling

Bandlimited Formulation

Note: Once a “lattice” theory has been given a bandlimited reformulation
it can then be given a generally covariant reformulation as well.
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Conclusion

We have seen that the lattice structure underlying a “lattice” theory has
the same level of physical import as coordinates do, i.e., none at all.

C1) Introducing a lattice to a continuum theory does not need to distort
the dynamics much (if at all).

In the two examples we have seen the lattice can do as little as
restrict the allowed initial condition.
(Ask me about how this changes for non-linear theories.)

In particular, the lattice does not need to cause modified heat decay
rates or modified dispersion relations.
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Conclusion

We have seen that the lattice structure underlying a “lattice” theory has
the same level of physical import as coordinates do, i.e., none at all.

C2) The lattice does not restrict in any way which symmetries our theory
can have.

The symmetry that our dynamics is completely independent of the
symmetries of any given lattice structure. We can have:

4-fold rotation symmetric dynamics on a hexagonal lattice.
Continuous rotation symmetric dynamics on a irregular lattice.
Poincare-invariant dynamics on a square lattice.
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Questions this Raises for Me

Q1) What would it be like if the world really had an certain lattice
structure underlying it? Given the above, could this ever be
established experimentally?

Q2) What is local in the lattice formulation (nearest neighbor, ∆2
(1)) is

non-local in terms of the bandlimited formulation (cosh(a ∂x)).

Likewise, What is local in terms of the bandlimited formulation (∂x)
is non-local in terms of the lattice formulation (infinite range, DB).

If we care about locality, which of these notions should we prefer?
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Questions this Raises for Me

Q2) Partial Answer: If we care about maximizing symmetry in our future
theories (necessary to minimize background structure) then the
bandlimited locality seems to be preferred.

Q3) What possibilities are there for a bandlimited theory of gravity45?
E.g., Bandlimited Newton Cartan. What about a bandlimited
background independent theory? E.g., Bandlimited GR.

4Achim Kempf, New J. of Physics, Volume 12, November 2010. arXiv:1010.4354
5Achim Kempf, Phys. Rev. Lett., Vol 92, Issue 22, June 2004. arXiv:gr-qc/0310035
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Thanks for your attention
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Bandlimited Self-grav Navier Stokes

Both the heat equation and the Klein Gordon equation were linear. This
stuff works for non-linear dynamics too (with a bit of work). Here is some
bandlimited self-gravitating Navier Stokes dynamics.
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Self-gravitating fluid

Consider this model of a self-gravitating fluid,

KPMs: 〈M, tab, h
ab,∇a, ϕ, ρ, u

a〉 (39)

where ϕ is the grav. potential, ρ is the density, ua is the time-like velocity

DPMs: hab∇a∇bϕ = 4πG ρ (40)

BK [ua∇au
b] = ν hcd∇c∇du

b − β hbd∇dρ− hbd∇dϕ

BK [∇a(ρ ua)] = 0

ν is the viscosity and pressure is p = βρ2/2.

BK applies a bandlimit with bandwidth K . Something like this is needed
because products of bandlimited function can have up to the sum of their
bandwidths.
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Bandlimited in Time too

If the initial condition
φ(0, x) of the Klein
Gordon equation is
bandlimited in space, then
the full solution φ(t, x) is
bandlimited in time.

As such we can describe
it in both space and time
via some sufficiently
dense sample points.

Does this have anything
to do with causal sets? I
don’t know.
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