
Chapter 8

An overview of the renormalization
“group”

8.1 Relating small to large

In physics, we’re quite accustomed to understanding macroscopic phenomena by first
analysing the underlying microscopic behavior. Many, both inside and outside the field,
sometimes forget how remarkable this is. Interactions between electrons and ions in a
material are governed by electromagnetism, which has been well understood for many
decades. It looks completely impossible to extract anything useful from the Hamltonian
for the Coulomb interactions between 1023 charged particles. Nonetheless, in many cases
we compute, often to stunning accuracy, properties of many-body systems. One reason is
that people have been clever enough to write down effective theories, governing collective
properties of the system. A key part of this is to choose very carefully which quantities
are to be computed.

Despite many triumphs, condensed-matter physics in the present day exhibits many
different kinds of behavior that cannot be understood by 19th and early-20th century
methods. One example of such exotic phenomena is the appearance of fractional charge.
There are experimentally realized systems comprised entirely of electrons which the effec-
tive “quasiparticle” excitations carry a charge a fraction of e. Quite obviously, doing the
statistical mechanics of weakly interacting electrons will never explain such phenomena
– it requires understanding strong interactions.

And this is not an issue only condensed-matter and many-body physicists need to
worry about. In the energy ranges of interest to particle physicists, E = mc2 means that
particle production occurs regularly, so effectively can make a system many-body (e.g.,
“jet” processes at accelerators). Even more worrying is that when one analyzes particle
physics via field theory, one encounters large quantities at higher orders in perturbation
theory even when the expansion parameter is small. Frequently there appear divergent
integrals apparently due to the creation of “virtual” particles. It is still heard today that
these theories have “infinities” which must be “swept under the rug”.

It is understandable why physicists thought this at the time, but it’s now fairly em-
barrassing for an otherwise-respectable theorist to say such things. Nearly a half-century
ago, the framework for understanding how to approach such problems was developed.
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The key is to understand how physics on different length scales affects each other, how
to continuously connect the micro with the macro.

This framework is called the renormalization group. One prominent feature is shows
how to find effective theories that describe exactly long-distance behavior of a theory
defined microscopically. For example, in many cases, it allows one to find a field theory,
where the degrees of freedom are present at every point in space, that describes effectively
a lattice statistical-mechanical model. Of course, the effective theory does not describe
every detail of the microscopic theory. However, one of the many remarkable features of
the renormalisation-group framework is that not only does it yield the effective theory,
but it shows precisely which quantities the effective theory gives exactly, and which it
does not. Such quantities are called universal, and they play a central role in what
follows.

The renormalization group is much more “meta” than most subjects in theoreti-
cal physics. It does not merely give a method of computing experimentally relevant
quantities, by starting with some Hamiltonian or Lagrangian exactly or approximately
describing the physical system of interest. As has been noted by many, it is a “theory
about theories” – it explains how different theories exhibit not just qualitatively simi-
lar phenomena, but quantitatively exact correspondences. It gives a precise method for
relating such theories and for determining the universal quantities. It gives a precise
notion of the “simplest” theories exhibiting the appropriate universal behavior.

Indeed, in the field-theory approach to particle physics, the renormalization group is
necessary just to define the theory itself. An improperly defined theory indeed will result
in nonsensical calculations, the infinities that plague a naive approach to quantum field
theory. Appropriately taking into account the microscopic theory (what is typically called
in the field theory literature “regulating” the theory), enables the theory to be defined so
that physically measurable quantities are indeed sensible and finite. So-defined theories
are typically called “renormalizable”. However, it is worth noting that effective theories
dubbed “non-renormalizable” are often quite useful, because the renormalization-group
framework explains on which length scales such effective theories still describe the physics
quantitatively.

I’m not sure who coined the name “renormalization group”, but it’s half-good, half-
terrible. The word renormalization does accurately capture a key part of the analysis,
that certain carefully defined quantities behave nicely under scaling. For example, in an
effective theory, the couplings are related at different length scales by simply multiplying
by an appropriate function of the scale, and hence are “re-normalized”. So whereas that’s
only a part of the story, it’s a central one, and it gives a good flavor of what’s going on.
The “group” part is simply wrong. The name presumably arose because as part of the
procedure relating different theories, one does transformations e.g. of the couplings of the
different theories. This does seem quite analogous to a symmetry transformation, where
seemingly different theories are show to be equivalent by an appropriate redefinition of
the couplings. Such symmetry transformations are given by elements of a group (e.g.
in quantum mechanics implemented by a unitary operator acting on the Hilbert space).
However, a key property of a group is that it is invertible – any transformation can
be undone. However, when we do a “renormalization-group transformation” to relate a
microscopic theory to a macroscopic one, the microscopic details are are forgotten – the
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procedure is not invertible. Only the universal quantities are the same in the micro and
macro theories.

The renormalization group is thus not a group! I thus will for the most part avoid
using the word group; if it would really be awkward to not use it, I will just say RG and
let you decided what the G stands for. I note that many of the original key insights were
made by Kenneth G. Wilson, and so I nominate his middle name (Geddes).

8.2 Analyticity Analyticity Analyticity

Underlying not only dimensional analysis but most of theoretical physics is analyticity.
The idea is simple: physical quantities typically analytically on the parameters and vari-
ables. This is the only reason calculations work! We can then do perturbation theory
around a simple limit, i.e. Taylor-expand some complicated expression and compute the
corrections term by term. Or even simpler, infer physical laws by taking the first correc-
tions. Many physical laws such as Ohm’s law are simply keeping the linear expansion in
a Taylor expansion.

One major consequence of the analyticity of most expressions in theoretical physics
is the fact that dimensional analysis works. There are only a few “fundamental” dimen-
sionful constants describing much of physics, such as ~, c, and G. In a given problem, of
course there are the parameters describing the degrees of freedom: the charge e of the
electron, the electroweak symmetry-breaking scale, the band gap of a semiconductor. If
you want to call some of the latter fundamental, and not others, that’s a question of
taste. I won’t.

Thus when doing dimensional analysis, it is customary for theorists to start out by
listing all the ones believed to be relevant to this problem (here I use the word “relevant”
loosely – later we will see that there is a very precise physical definition). For example,
gravity is a negligible effect in the how current is conducted in most materials, so it is
reasonable to not include G in the list of such constants in this problem

A simple example of the power of dimensional analysis is the ideal gas law. Here you
assume the pressure P of a gas depends only on the number density N/V (the number
of molecules per volume), the temperature T of the gas, and Boltzmann’s constant
kB that relates a temperature scale to an energy scale (i.e. has units energy/(absolute
temperature). The pressure has units Force/area = Energy/(length)3, so then

P ∝ N

V
kBT .

The proportionality constant of course turns out to be 1 in this example, but showing
this requires more assumptions about what is going on (i.e. a proper definition of what
temperature is).

Of course, if there are more “fundamental couplings”, dimensional analysis does not
give such a simple answer. It does still give a useful simplification – a functional form
involving less variables than unknowns. For example, say in the ideal gas example, we
wish also to take into account the fact that the molecules occupy a non-zero volume Nb
of space. Since this also has dimensions of length, dimensional analysis constrains the
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form only:

P ∝ N

V
f(b/V )kBT ,

where f(b/V ) is a dimensionless function of the dimensionless quantity b/V . In the Van
der Waals approximation, we take this function to be 1+bN/V . This is an approximation
born of analyticity: it is assumed that as long as b is small enough, we can just expand
f(b/V ) in a Taylor series around the ideal gas case b = 0.

It is important to understand that analyticity applies to regions of couplings. An
illustration of this comes from Kepler’s third law, which relates the radius R of a planet’s
orbit to its orbital period T . It follows directly by assuming that the only “fundamental”
constants relevant to the problem are Newton’s gravitational constant G and the mass of
the sun Ms. The only constant other than R to have a length scale involved is G, which
has dimensions of (length)3/(mass× time). Thus R ∝ G1/3. Since the dimensions of R
is a pure length, it must therefore be proportional to the combination

R ∝ G1/3M1/3
s T 2/3 .

This is indeed Kepler’s third law, which applies to all objects orbiting the sun. The
fractional powers make it looks like the physics is not analytic. However, the only non-
analyticity is at the origin R = 0, inside the sun. Obviously, Kepler’s laws apply only
outside the sun, and there they are perfectly analytic.

However, this example does bring up an interesting question: are there any examples
where the physics is genuinely non-analytic as a function of the parameters and/or vari-
ables? Can the analyticity be even stronger, where exponents are irrational? The answer
to both turns out to be yes, and understanding how and when turns out to provide the
key to understanding renormalization.

8.3 Phase transitions and critical phenomena

I described in earlier parts of this book different phases that arise in classical lattice mod-
els and quantum spin chains. A general taxonomy is given in chapter 1. The RG gives
valuable information about systems of all types. However, it turns out understanding
critical phenomena is absolutely central to the story.

A key concept is that of the correlation length, as defined in chapter 1 (see also section
7.5). Qualitatively, it gives a notion of how far any local perturbation of the system will
propagate. This is pretty obviously quite important if one is trying to construct an
effective theory. For example, in the block spin approach pioneered by Kadanoff, one
replaces a group of spins with a single effective spin. Clearly one this must effect the
correlation length in some non-trivial way, since replacing spins changes the fundamental
length scale. (I will someday write my own version of the block spin procedure, but there
is a very nice explanation of this procedure in chapter 13 of Pathria’s stat mech book.)

The phase diagram of magnet includes two kinds of transitions, which in the old
but still useful language are described as first-order and second-order. The name tells
you how analyticity is violated: at a first-order transition, the free energy is continuous,
but the first derivative (with respect to the parameter whose variation is driving the
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transition) is not. For example, in the Ising model in two dimensions and more, at any
T < Tc there is a first-order transition caused at h = 0 by varying h, i.e. ∂F/∂h is
discontinuous at h = 0. Physically, this means that energy is required to flip the spins
from ordered up to ordered down, or vice versa. At a first-order phase transition, the
correlation length may be discontinuous, but it remains finite.

Phase transitions of higher than first order are called critical. At a critical point, the
correlation length diverges. Most examples we’ll encounter are second-order, where the
correlation length diverges algebraically, e.g. ξ ∼ |T −Tc|−ν for some critical exponent ν.
However, there is a very important infinite-order transition in 2d classical/1d quantum
systems: the Kosterlitz-Thouless transition. This transition is not a conventional order-
disorder transition, because there is no non-vanishing local order parameter on the two
sides. The free energy is still singular, but it is only an essential singularity, i.e. the
correlation length diverges not as a power law, but as e−1/|T−Tc|. For now, I will stick
with the more common second-order critical points.

A critical theory is scale invariant. As long as one is studying physics at length
scales much longer than the fundamental length of the system (e.g. lattice spacing or
average distance between particles), and much smaller than the total size of the system,
the physics will look the same on different length scales. For example, in water at the
critical point, there are dense and not-dense (i.e. liquid and gas) regions of all sizes.
There appear to be no inherent length scales in a critical theory.

We will soon make this notion precise. What we will see is that the reason for the
breakdown of analyticity at a critical point is that there are “hidden” physical parameters
that must be taking into account at and near a critical point. In short, the short-distance
physics does still qualitatively and quantitatively affect the long distance behavior. Di-
mensional analysis still of course is valid, but with an additional parameter, all bets are
off. The key insight of Wilson was to showed precisely how to take this into account.

8.4 Universality

The remarkable fact that very carefully chosen quantities in different theories are exactly
the same. Such quantities are called universal. The use of the word is in the same
spirit as Newton’s, but is much broader. Obviously, if seemingly different theories share
exactly the same quantities, there must be some way of forgetting “irrelevant” details of
the systems. The renormalization group provides such a method.

A simple example of why this isn’t crazy: the mapping of fluid onto magnet.

8.5 The RG idea

Mean field theory clearly fails quantitatively in dimensions below the critical one. Nev-
ertheless, it not only often gives the correct qualitative picture in many examples, but
provides a way of thinking that guides all that follows. Moreover, the idea of Landau’s
to replace the microscopic theory with an effective one valid for the long-distance physics
is central to the RG analysis that follows. Indeed, Wilson and Kogut say
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The renormalization group approach is best seen as a more sophisticated
realization of Landau’s ideas.

The RG is a way of obtaining the long-distance physics from the short. It typically
involves “forgetting” microscopic details when understanding the long-distance physics,
and so gives a framework for explaining how different models can give the same universal
behaviour. It is not a group, as the transformation is not invertible. Presumably the
naming came from the similarity (in some ways) of an RG transformation with that
of a symmetry group. A symmetry group typically describes transformations of the
degrees of freedom in some fashion that leaves the action or Hamiltonian invariant. It is
a group because not only can one repeat the transformation, it can be inverted. The RG
transforms both the degrees of freedom and the couplings themselves to give a model
with the same (or approximately the same) partition function. It is a relation between
different theories. This RG transformation typically yields a system with less degrees of
freedom. Thus although it can be repeated as with a group transformation, it cannot be
inverted.

Namely, the partition function for an N -site system is labeled as ZN({K}), where
the dimensionless couplings of the theory are {K} = K1, K2 . . . . For Ising, for example,
K1 = J/T and K2 = h/T . The RG transformation on the couplings is then labeled as

{K} → {K ′} ≡ R({K}) , (8.1)

such that

ZN({K}) ≈ ZN ′({K ′}) . (8.2)

The use of ≈ here needs some commentary. Ideally, there would be a RG transforma-
tion where instead of being approximately equal, the two partition functions would be
identical. In many 1d (classical) examples, making (8.2) an equality is possible, and this
is illustrated in section 8.6 in the Ising case. In general, however, it is impossible to
make the RG transformation exact, so one can only hope for an approximate equality.
However, the idea is find a RG transformation so that as it is repeated again and again,
the ≈ gets closer and closer to equality. A key issue then to address is which couplings
need to be kept in {K}, and which can be forgotten. The RG framework gives a precise
way of finding which couplings are relevant and which are irrelevant.

In an RG transformation it is convenient to define the dimensionless scale factor b,
which in a lattice model relates the numbers of sites of N and N ′. It is defined by

N ′ = b−dN (8.3)

for a system in d dimensions. The scale factor is defined so that b > 1, so that N ′ < N .
In order to define the scale factor to make applicable to any system near criticality, not
only lattice models, let a be some fundamental length scale in the system. For example,
in a lattice model it might be taken to be the distance between nearest neighbors, or
the length of the unit cell. A common choice in field theory is to take a = 1/Λ, where
the momenta of any degrees of freedom are constrained to be 1/Λ. Thus when evaluting
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a Feynman diagram with a loop, the integral over any internal momenta is cutoff at Λ.
Whatever your choice is, under a RG transformation

a→ ba (8.4)

Since b > 1, one can think of an RG transformation as increasing the fundamental
length scale in the system. In momentum space, this then amounts to decreasing Λ,
or effectively integrating out high-momentum (and so high-energy) degrees of freedom.1

Physical quantities such as the correlation length are defined to be invariant under RG
transformations.

8.6 The RG equations for the 1d Ising model

8.7 The block-spin RG equations for the 2d Ising

model

8.8 Fixed points and relevance/irrelevance

The RG transformations give a way of varying the couplings that leaves invariant the
partition function and the ensuing physical quantities derived from it. This varying
of couplings is called a flow. A fixed point of the flow is one where all the couplings
remain the same under RG. Since an RG transformation amounts to a change of the
fundamental length scale of the system, at a fixed point the system must behave the
same at all length scales. The system thus has no inherent length scale like a correlation
length at an RG fixed point. Therefore as the couplings are tuned to their fixed-point
values, the correlation length must increase either to zero or infinity.

Typically, ξ = 0 fixed points are easy to understand. Because the degrees of freedom
are effectively not interacting, the model often can be solved exactly in this limit. For
example, the partition function of the Ising magnet is easily computed at either T = 0
or at T = ∞, where it has ξ = 0. Thus completely ordered models and completely
disordered models typically have ξ = 0. However, some ξ = 0 models have much
subtler (although still computable) behavior. One famous example in a quantum model
is the Levin-Wen “string-net” lattice Hamiltonian for a 2+1-dimensional topological
phase. There the Hamiltonian can be written as a sum over mutually commuting local
operators, and so each can be diagonalised independently. One finds, however, that there
are different ground states not related by any symmetry. Moreover, the number of such
ground states depends on the genus of the two-dimensional surface the model is defined
on. Such behavior is characteristic of topological order, and so the ξ = 0 fixed point
provides an exceptionally valuable way of studying this physics.

In this chapter I focus mainly on the much subtler case ξ → ∞, a critical point.
Thus the RG way provides a framework to investigate physical behavior at and near

1A beautiful explanation of how Wilson’s RG works in the field-theory language used by particle
theorists was given by Polchinski, Nucl. Phys. B231 (1984) 269; see also his TASI lectures at https:

//arxiv.org/abs/hep-th/9210046.
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critical points. In other words, it provides a way to go beyond, both qualitatively and
quantitatively, mean-field theory.

8.9 Ginzburg revisited

Near a fixed point, the RG equations can be linearized, and then couplings defined so that
each scales multiplicatively. In section 8.7 the corresponding variables and how they scale
was found for the 2d Ising model. That calculation, although totally straightforward,
was a bit tedious. So here I head back to both a simpler and more general setting, the
Gaussian field theory that is at the core of mean field theory.

Here one can find a critical point almost by inspection: the Gaussian fixed point, i.e.
the fixed point that comes from mean field theory. Recall that in MFT, all terms beyond
second order in φ are neglected (in the low-T phase, this neglecting is done after the
field is shifted so that φ = 0 at the mininum). At the critical point, the coefficient of
the φ2 term vanishes also, leaving only the (∇φ)2 term. The reason for the name is thus
obvious: the partition function is then simply a set of Gaussian integrals, as detailed in
the previous chapter.

The analysis of this fixed point gives a way of understanding the Ginzburg criterion
simply by power counting. To do this, it is convenient to keep track of explicit factors
of a in the free energy. These arise when going from the sum over lattice sites to the
integral over all space: ∑

j

∼ 1

ad

∫
ddx

where the integral is now over the physical space x, so that it is invariant under the RG
like all physical quantities. Thus the RG transformation a→ ba scales this by a factor of
b−d, which is a fancy way of saying that the transformation reduces the number of points
in the system by a factor of bd. Similarly, a lattice difference turns into a derivative via

φi − φj ∼ a∂φ

for nearest-neighbor sites i and j. The original definition of the stiffness κ absorbed
these factors of ad−2 so that κ had dimension (length)2−d, while φ was dimensionless.
Unabsorbing these factors gives a dimensionless version of the stiffeness defined as κ̃ =
κad−2

βFGFP = κ

∫
ddx(∇φ)2 =

κ̃

ad−2

∫
ddx(∇φ)2 (8.5)

where GFP stands for “Gaussian fixed point”.
As always, the partition function is invariant under RG transformations. Moreover,

at a fixed point the couplings do not change under RG transformations. Thus to make
a scale invariant theory, the field φ must therefore scale under the RG as

φ→ b(d−2)/2φ

at the Gaussian fixed point. Since the two-point correlation function is a physically
measurable quantity, it must be independent of the RG. Therefore it must obey

〈φ(~r)φ(0)〉 = A
(a
r

)d−2
(8.6)
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for some dimensionless quantity A; the powers of b on the right- and left-hand sides
indeed cancel. The scaling dimension xφ of the field φ at the Gaussian fixed point is thus
xφ = (d− 2)/2.

It is now convenient to follow particle-physicist conventions and define a renormalized
field φ̃ = a(2−d)/2φ that absorbs the powers of a at the Gaussian fixed point, so that

βFgaussian = κ̃

∫
ddx(∇φ̃)2 (8.7)

The renormalized field and κ̃ are independent under the RG, and its two-point function
is independent of the lattice scale:

〈φ̃(~r)φ̃(0)〉 = A r2−d . (8.8)

The renormalized field φ̃ is no longer dimensionless. Instead, the physical dimension
(as measured by the powers of energy) of the renormalized field is simply the scaling
dimension of the “bare” field.

The Ginzburg criterion for the Gaussian fixed point is now simple to see. Reinstating
the φ4 term and explicitly including the powers of a, the free energy near the critical
point is of the form

βF =

∫
ddx

ad
[
a2κ̃(∇φ)2 +Btφ2 + Cφ4

]
where the constants B and C are independent of the reduced temperature t = (T−Tc)/Tc.
It is illuminating to rewrite this in terms of the renormalized field:

βF =

∫
ddx

[
κ̃(∇φ̃)2 +Bta−2φ̃2 + Cad−4φ̃4

]
(8.9)

The scaling of the couplings B̃ and C̃ then follows from the fundamental requirement
that the partition function and hence the free energy remain invariant the RG. Since φ̃
is invariant under a→ ba, the couplings must scale as

Bt→ b2Bt , C → b4−dC (8.10)

In other words yφ2 = 2, while yφ4 = 4− d.
The scaling under the RG from (8.10) shows that Bt grows in any dimension. The

only way to have a fixed point is to set t = 0. This indeed is apparent from the
computation of the two-point function in the previous chapter, where any non-zero B
leads to a non-vanishing correlation length (when C = 0). However, the behaviour of
C depends on the dimensionality: under the RG it grows for d < 4, shrinks to zero for
d > 4. This is the same conclusion as that coming from Ginzburg criterion! One cannot
neglect the φ4 term for d < 4. In d > 4 (and it turns out d = 4 as well, this analysis goes
beyond Ginzburg to strongly indicate that not only is mean field theory consistent, but
actually works, at least close enough to the critical point. The catch is that d = 3, our
world, one needs to understand how to deal with a relevant φ4 term.

The remarkable consequence of this analysis is that the Ginzburg criterion follows
from simple dimensional analysis. The powers of a in (8.9) and hence the Ginzburg
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criterion simply follow from rescaling the field so that derivative term has no explicit
powers of a in it. Since a is the only dimensionful quantity at the critical point, the
powers in the other terms follow automatically. The scaling behaviour at and near the
Gaussian fixed point in d > 2 is thus easy to understand. (The reason for the restriction
d > 2 is apparent from (8.8).) Though although the derivation of the Ginzburg criterion
in the last chapter was nice in that it made direct contact with the original lattice
quantities, using the field-theory approach with the RG is much simpler. The moral is
that once you understand the RG, life gets much easier.

8.10 Scaling functions

The critical exponents are directly related to quantities arising in the RG, namely the
eigenvalues of the linearized RG transformations valid near a critical point. The easiest
case to understand is the correlation length. Since it has dimension length, it can be
parametrised as a function of the dimenionless couplings {ui} as

ξ = af(u1, u2, . . . ) . (8.11)

Since ξ is a physical quantity, it does not change under the RG transformations. Thus
for a transformation that changes a→ ba and uj → u′j,

f(u1, u2, . . . ) = bf(u′1, u
′
2, . . . ) (8.12)

When the {ui} are scaling variables, this functional relation simplifies to

f(u1, u2, . . . ) = bf(λ1u1, λau2, . . . ) , (8.13)

where the λi are the corresponding eigenvalues found by linearizing the RG equations
around a critical point. Note that since by definition all ui = 0 at a fixed point, the only
solutions to this equation in this case are indeed f(0, 0, . . . ) = 0 or →∞. Consider now
the latter case of a critical point, and tuning all but one of the ui to be zero, leaving say
only uj 6= 0. Assuming the correlation length diverges by some power law, the critical
exponent yj is then defined by setting

f(0, 0, uj, 0, 0 . . . ) = Cj|uj|−1/yj for uj → 0 (8.14)

for some constant Cj. Using this form in (8.13) gives

1 = bλ
−1/yj
j ⇒ yj =

lnλj
ln b

.

It is possible for different νj to occur for different signs of uj, but this rarely (never?)
happens in practice.

If, as in the two-dimensional Ising model h = 0, there is only a single relevant
coupling, u1 ∝ (T − Tc)/Tc. The scaling form (8.14) then reduces to the usual definition
of ν:

ξ ∝ |T − Tc|ν , ν = 1/y1 . (8.15)
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For models where there are multiple relevant couplings, then a νj = 1/yj can be for each
coupling. The most relevant coupling corresponds to the largest value of λ, and so the
largest (positive) yj present.

Thus the critical exponent ν is simply related to the dimension of the relevant coupling
that drives the system away from critical point. One of many remarkable features of the
RG is that it gives many more relations between among critical exponents. In fact, it
shows man many of the critical exponents depend just the dimensions yi of the relevant
couplings, along with the dimension of space itself (in quantum theories, space-time).

The key to deriving these relations is to find the scaling function for the free energy.
The scaling function arising from the RG a more sophisticated version of dimensional
analysis. Namely, one of the key characteristics of dimensional analysis is that it con-
strains expressions for physical quantities to depend on the couplings in a particular way,
to be consistent dimensionally. While of course dimensional analysis remains valid when
applying the RG, a short-distance dimensionful parameter, the length scale a, must also
be included. Including it seems to make matters worse, effectively increasing the number
of parameters a physical quantity can depend on.

However, while the RG shows why the short-distance behavior can’t be forgotten, it
also shows how to deal with it. The RG transformation leaves all physical quantities
invariant, and so provides a constraint on the scaling functions in the same spirit as
dimensional analysis. Indeed, the fact that the correlation length cannot depend on
b constrains the form of its scaling function (8.11), allowing ν be related to the most
relevant y. An analogous relation is true for all scaling functions, effectively reducing
the number of variables by one.

Consider a situation where there are two relevant perturbations of some fixed point,
labeling the corresponding (dimensionless) scaling couplings ut and uh. In the example
of a magnet ut ∝ (T − Tc)/Tc, uh ∝ h. At the critical point ut = uh = 0, while near it
the couplings scale under the RG as

ut → bytut, uh → byhuh, . (8.16)

For the Gaussian fixed point, (8.10) gives yt = 2, but that fact is unimportant here; the
following scaling functions apply to any fixed point. By construction of the RG,

ZN(ut, uh) ≈ eNK0(ut,uh)ZN/bd(bytut, b
yhuj) ,

where K0 is the constant shift in the energy that arises when doing the RG transforma-
tion. It is typically analytic in the couplings at the transition and so only gives rise to
the non-universal constant terms in the free energy. Thus in the (reduced) free energy
density f ≡ βF/N = − lnZN/N , it is convenient to separate it out:

f(ut, uh) = K0 + fs(ut, uh) . (8.17)

The subscript on the latter term stands for singular. All the non-analyticities in the free
energy are contained in this part.

The RG gives a way of rescaling fs so that it can be written as a scaling function.
Namely, the invariance of the physics under an RG transformation results in a one-
parameter constraint on a two-parameter function. Thus the scaling function here only
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depends on a single variable, a very special combination of ut and uh. The trick (following
Cardy’s book) to understand this scaling function is to do the RG transformation many
times, while still keeping the rescaled couplings small enough so that the scaling behavior
(8.16) still holds. In other words, the couplings still remain close to the critical point.
Doing the RG transformation once on the singular part of the free energy gives

fs(ut, uh) = b−dfs(utb
yt , uhb

yh) . (8.18)

while doing it n times gives

fs(ut, uh) = b−ndfs(utb
nyt , uhb

nyh) . (8.19)

Stopping after n times gives defines a rescaled coupling ut0

ut0 ≡ |utbnyt| ,

which still must be small to keep the linearized form of the RG equations valid. It is
then convenient to get rid of n in the equation by rewriting in terms of ut0 , giving

fs(ut, uh) =
∣∣∣ ut
ut0

∣∣∣−d/ytfs(± ut0 , uh∣∣∣ utut0
∣∣∣−yh/yt)

The left-hand-side of course does not depend on n or ut0 . Thus the right-hand-side
doesn’t either! Moreover, the unknown function on the right-hand-side depends only on
ut and uh through the combination uh|ut|−yh/yt . The free energy thus depends on this
variable via the functional form

fs(ut, uh) = |ut|−d/ytΦ(uh|ut|−yh/yt) . (8.20)

The RG does not tell you what the function Φ is, but it does tell you the extremely
important fact that it only depends on one variable, and moreover, precisely how this
variable depends on ut and uh. This is an experimentally verifiable prediction. In fact,
it is by far the best way to experimentally determine the critical exponents, by taking
data for various ut and uh, and then seeing if it collapses on to a single-variable curve
for an appropriate choice of yt and yh.
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