
Chapter 2

Quantum statistical mechanics from
classical

2.1 A lightning review of quantum mechanics

A quantum-mechanical system, many-body or single-body, is defined by two basic ob-
jects: a Hilbert space, and a Hamiltonian acting on it. A Hilbert space is a vector space
that has an inner product: a way of taking two vectors and producing a scalar in C. The
inner product is a natural generalization of a dot product. Each vector in the Hilbert
space describes a possible physical state of the system. It is customary in physics to
label each state as |v〉, and the inner product of two vectors |v〉 and |w〉 as 〈v|w〉. This
notation emphasizes the fact that the state in a quantum mechanical system is indeed
an element of a vector spaces, so that it makes sense to add different states together.
This phenomenon, called superposition, is what is fundamentally weird about quantum
behavior. One consequence, described in depth in this chapter, is that a quantum many-
body system has physical behavior precisely related to a classical many body system in
one higher dimension.

In a Hilbert space, the inner product has the properties that

• Complex conjugation under exchange:

〈v|w〉 = 〈w|v〉∗

• Positive definite:
〈v|v〉 ≥ 0

with the equality holding only when |v〉 = 0.

• Behavior under superposition:

〈w|av1 + bv2〉 = a〈w|v1〉+ b〈w|v2〉 .
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Note that these properties imply

〈aw1 + bw2|v〉 = a∗〈w1|v〉+ b∗〈w2|v〉 .

It is important to note that given a vector space, the inner product is not unique –it
must be specified.

Once a Hilbert space V specified, than a basis is a set of states {|j〉} and any element
of V can be written as a unique sum over basis states |v〉 =

∑
j αj|j〉. The number of

basis states is called the dimension of V . An orthonormal basis is one where basis states
obey 〈i|j〉 = δij. In an orthonormal basis, αj = 〈j|v〉. Another orthonormal basis {|̃j〉}
can be obtained by multiplying the basis elements by any unitary matrix U of size V ×V :
|j̃〉 =

∑
j Uij|j〉. It is easy to check that this preserves all the appropriate properties of

the Hilbert space.
A Hamiltonian is a linear self-adjoint operator H which takes V to itself, i.e. maps

each element of V to some other element of v. The usual physicist notation for this
is that H takes |v〉 to H|v〉 = |Hv〉. Linearity is an essential property of quantum
mechanics, and it means that H(|v1〉+ |v2〉) = H|v1〉+H|v2〉. The linearity means that
in a particular basis, the Hamiltonian is represented as a matrix whose elements are
given by

Hji = 〈i|H|j〉
so that the action of H on a state in this basis is a matrix whose entries are Hij. Namely,
the ith component of the vector |Hv〉 in this basis is given by

〈i〉|Hv〉 = 〈i|H|v〉 =
∑
j

Hij〈j|v〉 .

Such relations are often easy to find by “inserting a complete set of states”, or a ”partition
of unity”, i.e. exploiting the fact that in an orthonormal basis

1 =
∑
j

|j〉〈j| . (2.1)

Both sides in this relation should be interpreted as operators taking V to V , so the left-
hand side is the identity operator, while each term on the right hand side means taking
the inner product with the basis state 〈j| and mapping it to |j〉.

The Hamiltonian gives the time evolution of a state. If the system is in a state |v0〉
at some time t0, then at a later time t1, the system is therefore in the state

e−iH(t1−t0)/~|v0〉 .

The exponential of any operator is always understood as a power series. Put another
way, the time dependence of any state is given by the first-order differential equation

i~
∂

∂t
|v(t)〉 = H|v(t)〉 .
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The eigenstates and eigenvalues of the Hamiltonian therefore play a very special role. For
each eigenvalue E the corresponding eigenstate |E〉 evolves in time only with a phase:

|E(t1)〉 = e−iH(t1−t0)/~|E0〉 .

These eigenvalues are the energy levels of the system, and the eigenstates of H are called
stationary states).

The partition function in a quantum system is therefore defined in a quite analogous
manner to the classical system:

Z =
∑
j

e−βEj .

In fact, for a system in finite volume, this is a better-defined object than the classical
partition function, since the quantum energies take on a set of countable values. Put
more technically, it puts a natural measure on phase space. The partition function of a
quantum system can be rewritten in a very provocative fashion. Letting the |Ej〉 be the
orthonormalized stationary states gives

Z =
∑
j

〈Ej|e−βEj |Ej〉 =
∑
j

〈Ej|e−βH |Ej〉

= tr e−βH (2.2)

The latter form has the distinct advantage of being independent of basis, so one does not
need to compute the energy eigenvalues explicitly in order to compute or approximate
Z.

2.2 The quantum/classical correspondence

At zero temperature, β → ∞, so the partition function ((2.2) of a quantum system is
therefore dominated by the ground state, the state (or states) with the lowest energy E0:

Z ≈ e−βE0

Thus the ground state energy of the quantum system is akin to the minimum of the
free energy in the classical case. More importantly, the partition function function of
the quantum system is dominated by the ground state |Ψ0〉 of the quantum system, just
like the classical partition function is dominated by the equilibrium state, the set of
configurations at the energy where the free energy is a minimum.

The correspondence thus extends to expectation values as well. Namely, when O
is some operator in the quantum system, its expectation value in a given state |Psi〉
is by definition 〈Ψ|O|Ψ〉. Thus at zero temperature, the expectation value is simply
〈Ψ0|O|Ψ0〉. Writing the ground state in an orthonormal basis as |Ψ0〉 = αj|j〉 means that
when O is diagonal in this basis, its zero-temperature expectation value is

∑
j |αj|2Oj.
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Likewise, when the partition sum in a classical model is dominated by the equilibrium
configurations, expectation values become of the form

∑
j Oj, where j labels the config-

urations at the free energy minimum.
One way of gaining intuition into the correspondence between classical many-body

systems at non-zero temperature and quantum systems at zero temperature is think
about the role of fluctuations in both case. Both kinds of systems are necessarily de-
scribed by probabilities. In the classical case, this is because thermal equilibrium is
treated by imagining the system as being coupled to a large bath at constant tempera-
ture, so that the coupling causes fluctuations in the original system. The temperature
plays an essential role in weighting the different configurations appropriately. In the
quantum case, uncertainty is fundamental to the whole enterprise. Thus the behavior of
a zero-temperature many-body quantum is as rich as as a classical system at non-zero
temperature.

This correspondence between classical and quantum is even deeper, and can be made
more precise. The similarity of e−βH with the quantum-mechanical time-evolution op-
erator e−iHt/~ is entirely not coincidental. As noted in the chapter 1, the best way to
think intuitively of a transfer matrix is as a discrete “evolution” operator across one
dimension of space, acting on one slice at a time. The transfer matrix acts on a vector
space of states in one dimension smaller, the space of possible boundary conditions. For
L slices the partition function is then found by taking TL−1 to act the particular choice
of boundary conditions, or Z = tr TL if the boundary conditions are periodic. Thus if
one takes ∆τ = β/L, a sort of Hamiltonian can be defined via

H ≡ 1

∆τ
ln(T ) ,

so that e.g.

Z = tr (e−H∆τ )β/∆τ = tr e−βH

for periodic boundary conditions. This is thus formally equivalent to the partition func-
tion of a quantum system in one dimension less. The Hilbert space is the vector space
of boundary conditions; for example in a spin model the basis elements are the different
configurations of spins at the boundary.

Conversely, given a quantum Hamiltonian, one can think of the quantum partition
function Z = tr e−βH as being time evolution over a continuous imaginary time. A sort of
transfer matrix then evolves the system for an infinitesimal time, i.e. T = e−Hδτ . To get
the partition function, this transfer matrix evolves a distance β in this imaginary time,
with the trace corresponding to periodic boundary conditions. Thus this corresponds to
a classical system in one higher dimension, with this extra dimension having size β~ and
periodic boundary conditions.

Unfortunately, the quantum/classical correspondence is not as simple as this. The
catch is that H is typically impossible to compute. Even if it were, it is a highly non-
local object even for T is local, since taking lnT results in a power series. This would-be
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Hamiltonian H would thus describe strong interactions at long distances and does not
therefore does not correspond to the Hamiltonian of a physical system.

However, in many situations of interest, a miracle occurs. A quantum many-body
system in d spatial dimensions has the same physical properties as a classical many-body
system in d + 1 dimensions. In the limit of an infinite number of degrees of freedom,
the correspondence is exact: appropriately-defined physical quantities are the same in
the classical and quantum theories. The reasons for the miracle take a while to explain,
and so will emerge in the following chapters. The one-sentence explanation is that at
and near a critical point the physics at long-distance becomes independent of much of
the short-distance behavior, and so the same field theory describes both classical and
quantum models.

A difference in language is worth noting. Particle physicists and others who study
quantum field theory typically refer to the space-time dimensions of a system; e.g. the
universe we know is four-dimensional, or ten-dimensional in superstring theory, or 11-
dimensional in M theory. Condensed matter physicists, whether they are studying quan-
tum or classical physics, typically describe a system by the number of spatial dimensions,
so that the universe we know is three-dimensional. Often to avoid confusion in these sit-
uations, systems are referred to as being in d+ 1 dimensions. This is a nice convention,
although be warned that there is also some ambiguity here, since often this is meant to
imply also that the theory is Lorentz invariant, a situation that usually (but not always)
occurs in particle physics, and that frequently (but far from always) occurs in condensed-
matter physics. Moreover, quantum effects are negligible in many interesting condensed
matter systems, so the spatial dimension of the system is precisely the dimension of the
field theory describing the system.

The first step in understanding this correspondence is to find the quantum Hamilto-
nian associated with a given classical system. A quantum Hamiltonian can be used to
evolve a system for an infinitesimal imaginary time, so the system after this infinitesimal
evolution is very close to the original:

e−Hδτ ∼ 1−Hδτ .

Thus a quantum Hamiltonian corresponding to a given classical system can be found if
the couplings of the classical system can be tuned so that the transfer matrix is very
close to the identity, i.e. H is defined via

T ∼ 1−Hδτ .

Heuristically, this can be thought of as tuning the couplings of the classical model to make
the slices “close” together. The precise definition of δτ here is not important because
the overall scale of a quantum Hamiltonian simply amounts to the overall energy scale;
all that is important is that δτ is small.

The simplest example is the one-dimensional classical Ising model discussed in depth

5



in the previous chapter. For a classical energy including a magnetic field

E = −J
∑
i

σiσi+1 − h
∑
i

σi ,

the transfer matrix is

T =

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
= eβJ cosh(βh)

(
1 + tanh(βh) e−2βJ

e−2βJ 1− tanh(βh)

)
(2.3)

This transfer matrix acts on a two-dimensional vector space with basis elements corre-
sponding to the spin up and spin down states at the boundary. Taking βh→ 0, βJ →∞
while keeping the combination

α = e2βJ tanh(βh) (2.4)

finite gives
T ≈ const.×

(
I + e−2βJ(σx + ασz)

)
,

where I is the identity matrix and σx and σz the Pauli matrices

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
.

The overall constant in front can be ignored since it multiplies the partition function by
an overall constant, and so merely shifts the energy uniformly.

The associated quantum Hamiltonian is now easy to extract by identifying δτ =
e−2βJ , yielding

H = −σx − ασz (2.5)

These matrices are two-dimensional, so the Hilbert space for the associated quantum
system is two dimensional. Thus this is the simplest non-trivial quantum system, often
called a fixed quantum spin-1/2 particle, or more simply, a “two-state” quantum system.
The two terms are typically known respectively as a “transverse magnetic field” and
just plain “magnetic field”. The off-diagonal transverse field arises in the quantum
Hamiltonian because in the classical model the spins of course can vary as one moves
from slice to slice.

In this simple case, it is easy to check that [T,H] = 0, and so the transfer matrix
and the Hamiltonian have the same eigenvectors. In this special case, the physics of
the quantum classical models is obviously the same. Although having a transfer matrix
commute with the Hamiltonian is not typical behavior, such behavior occurs frequently
in certain models in 1+1 dimensions. Such models are called integrable, and as a conse-
quence some quantities can be computed exactly by using techniques such as the Bethe
ansatz.

Local quantum Hamiltonians associated with a given classical model are typically
not difficult to find, as long as the couplings in the classical model can be tuned to make
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the transfer matrix close to the identity. This usually can be done, although some tricks
often need to be applied. For example, in the 0 + 1-dimensional antiferromagnetic Ising
model with J < 0, one can no longer take e−2βJ → 0, since β is by definition positive.
For h = 0, a Hamiltonian can be found by redefining states by flipping every other spin.
For h 6= 0, that trick results in a system no longer translation invariant (the field is
staggered), so the Hamiltonian can only be found by taking the limit of T 2.

2.3 The quantum Ising Hamiltonian

The quantum-classical correspondence is nicely illustrated by finding the quantum Hamil-
tonian associated with the Ising model.

It is simplest to start with the 1+1-dimensional case of the Ising model on a square
lattice. The transfer matrix acts on a one-dimensional slice of spins, the vector space
spanned by the set of all spins along the slice. Thus the resulting quantum Hamiltonian
will act on a many-body system of spins in a row, so that this and similar one-dimensional
quantum systems are typically referred to as “chains”.

The building blocks of the transfer matrix each arise from a single link. For a transfer
matrix acting in the x direction, the horizontal and vertical links give rise to very different
building blocks. To find a limit where the transfer matrix is close to the identity, it is
necessary to take different couplings in the x and y direction. For a link in the horizontal
direction, the situation is akin to the one dimensional example, which consists entirely
of horizontal links. For each row, there is a building block

Wi =

(
eβJx e−βJx

e−βJx eβJx

)
= eβJx(I + e−2βJxσxi ) . (2.6)

The fact that For a link in the vertical direction, the transfer matrix is diagonal, mea-
suring whether or not the two spins are the same:

Vi,i+1 = eβJyσ
z
i σ

z
i+1 = cosh(βJy) + σzi σ

z
i+1 sinh(βJy)

= cosh(βJy)(1 + tanh(βJy)σ
z
i σ

z
i+1) (2.7)

With free boundary conditions in the y direction, the transfer matrix for N sites in each
column is

T =

(
N−1∏
i=1

Vi,i+1

)(
N∏
j=1

Wj

)
For periodic boundary conditions in the y direction, the first product goes to N instead,
with the indices interpreted mod N . The different V commute among themselves, as
do the W . However Vi,i+1 does not commute with Wi or Wi+1, making the T a very
non-trivial matrix.
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For M sites and periodic boundary conditions in the x direction, so that there are
NM sites in all, the partition function is

Z = tr (T )M .

The partition function for other boundary conditions in the x direction can be found in
the same fashion as described in chapter 1, by having T act on a particular vector, so
that

Z = vTTM−1w .

In this 1+1 dimensional case, this vector space is 2N dimensional. The vector correspond-
ing to free boundary conditions has a 1 in each of the 2N components, while for fixed
boundary conditions, the vector is zero in all components save one, the basis element
corresponding to the particular fixed configuration (e.g. all spins up).

Finding a limit where T is near the identity is very similar to the 0+1-dimensional
case. The appropriate limit is

e−2βJx → 0, tanh(βJy)→ 0

with
λ ≡ e2βJx tanh(βJy) (2.8)

remaining finite. Notice this means that Jx → ∞, while Jy → 0. Therefore the Hamil-
tonian for the quantum Ising chain with free boundary conditions is

H = −λ
N−1∑
i=1

σzi σ
z
i+1 −

N∑
i=1

σxi . (2.9)

The quantum Hamiltonian of course does not depends on the boundary conditions in the
x direction, but does depend on the choice in y. Thus for periodic boundary conditions
for the latter, the first sum goes to N instead.

Generalizing this to higher-dimensional cubic lattice is now obvious. One direction,
say the x one, is singled out as imaginary time, and then Jx is sent to ∞, so that the
sites in this direction become effectively close to each other. The sites with a fixed value
of x form a single slice. The couplings in the directions along the slice (i.e. the directions
other than x) can be chosen to be the same, and then a finite λ is defined as in (2.8). The
quantum Ising Hamiltonian in then any dimension for N sites on each slice is therefore

H = −λ
∑
<ij>

σzi σ
z
j −

N∑
i=1

σxi . (2.10)

Sometimes this quantum Ising model is referred to as the “Ising model in a transverse
field”, because of the presence of the σx terms. While the nomenclature is fine, it is
important to remember that this model describes the classical model with no field at
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all. As with the 0+1-dimensional case, the transverse field terms arise because the spins
change slice-to-slice.

Analyzing such many-body quantum Hamiltonians is a central part of statistical
mechanics. The remainder of this book will discuss the Ising Hamiltonian and others
in great depth. In particular, in chapter 4, I will explain how to exactly compute the
ground-state energy of the quantum Ising chain.
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