
A conformal field theory primer

Paul Fendley

1 Some general comments

A central tenet of physics is that one should exploit symmetry as much as possible. A
major innovation in theoretical physics in the last 30 years has come from the recognition
that the presence of conformal symmetry is a powerful constraint in many theories.
Conformal invariance is a generalization of the invariance under scale transformations,
the fundamental propery of critical points. A conformal transformation allows space
to not just be rescaled, but to be twisted such that angles are preserved. What one
typically needs to have conformal invariance is scale invariance (the hallmark of critical
points) plus rotational invariance in a classical theory, or Lorentz invariance in a quantum
theory 1 Conformal invariance is particularly powerful in classical theories in two spatial
dimensions, or quantum theories in one spatial dimensions. Henceforth, this is what I
will focus on: whenever I say CFT, I mean those in two or 1+1 dimension. However,
it is worth noting that it is useful in any dimension, and also quite powerful in higher
dimensions when combined with supersymmetry.

1.1 Introducing the free boson

The canonical example of a field theory with conformal invariance is that of a free
massless boson, a field theory often called the Gaussian model in condensed-matter
physics. It is very familiar there, because it describes the scaling limit of a many systems
of fundamental interest. A free massless scalar boson φ(x, y) in two dimensions has
partition function

Z =

∫
[Dφ]e−S

with action S given by

S =
g

4π

∫
dxdy∇φ · ∇φ (1)

with the coupling g generally called the “stiffness”. Thus in terms of classical statistical
mechanics, e−S is the Boltzmann weight. The Boltzmann weight is thus maximized by
“flat” configurations, where the field is constant in space. However, there are many more
configurations that are not flat, so entropy is maximized by not having flat configurations,
so the physics of this model is far from trivial.

The “path” or ”functional” integral amounts to summing over all configurations of the
bosonic field. This sum is often difficult or impossible to define precisely and rigorously

1There is a perturbative proof that scale invariance plus certain other reasonable conditions implies
conformal invariance in d = 4; see arXiv:1302.0884. There are currently no known counterexamples.
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in the continuum in an interacting theory. In condensed matter physics we typically
appeal to some underlying lattice model, which of course is well defined, but rarely
useful when trying to do a calculation outside free theories – continuum calculations are
almost always easier. Usually field theorists define interacting theories via perturbation
theory, which is a perfectly reasonable thing to do if i) perturbation theory is valid and
ii) you’re not interested in non-perturbative effects. Modern condensed matter physics
is very concerned in low-dimensional physics, and the most interesting physics there is
inherently non-perturbative. One of the glories of conformal field theory is that it gives
a completely alternative way of defining the theory and in doing computations.

To give an idea of why conformal invariance is so powerful in 2d, let’s understand
how it appears in the free-boson theory. The action (with space the infinite plane) is
obviously invariant under the scale transformation x → λx and y → λy; the rescaling
of the derivatives is canceled by the rescaling of the measure dxdy. The easiest way to
see the full set of conformal transformations is to rewrite space in complex coordinates
z = (x+ iy), z = (x− iy). One thing that pops out easily is that the equation of motion
for the field φ (

∂2x + ∂2y
)
φ = 0

becomes
∂z∂zφ = 0 .

The general solution to this is obvious:

φ(z, z) = ϕ(z) + ϕ(z) (2)

for any functions ϕ(z) and ϕ(z) satisfying

∂zϕ(z) = ∂zϕ(z) = 0 ,

i.e. they are analytic and anti-analytic functions respectively. If this were instead a boson
in 1+1 dimensional Minkowski space-time instead of two-dimensional real space, the two
functions would be the familiar left- and right-moving solutions of the wave equation. In
general conformal field theories, the decoupling between analytic and anti-analytic parts
is not so simple, but studying analytic and anti-analytic sectors separately is one of the
key parts of conformal field theory. In fact, in the edge theory of the simplest fractional
quantum Hall effect edge states, only one of the sectors appears.

Rewriting the action in complex coordinates gives

S =
g

2π

∫
dzdz ∂zφ∂zφ . (3)

The conformal symmetry is now apparent: this action is under the transformation

z → f(z) , z → f(z) (4)
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for any analytic function f(z) and anti-analytic function f(z); the transformation of the
derivatives is cancelled by the change in the measure. This is an infinite-dimensional
symmetry! Namely, the infinitesimal transformations are by z → z − zn+1 and z →
z − zn+1, for any integer n. The case n = −1 is ordinary translation, while n = 0 is a
scale transformation, but the rest are new.

To understand what these new “conformal” transformations are in general, consider
the metric of space gµν , defined so that the square of the “distance” between two nearby
points is ds2 = gµνdx

µdxν . The conformal group (in any dimension) by definition is
comprised of coordinate transformations that just rescale the metric of space: ds2 →
Ω(xµ)ds2. Less formally, what this means is that while conformal transformations deform
space, they preserve the angle between any two vectors starting at a given point. In
complex coordinates, the metric gµν = δµν becomes

gzz = gzz = 0 ; gzz = gzz = 2 .

The transformations simply rescale the metric by the factor |f(z)|2.

1.2 Some important questions to ask, and a moral

I will discuss the 2d free boson in the most depth, because it is the simplest case, and
because it is so useful in condensed matter. This may seem to belie my point that
conformal symmetry is useful and powerful, since in a free field theory one can seemingly
compute everything without having to use fancy theoretical techniques such as CFT.
But I said “seemingly”, because even though in principle one can compute all correlation
functions with sufficient effort, the more difficult and much more interesting question is:
what good are these correlators? More precisely,

• Do any describe the continuum limit of some interesting quantity in a lattice model?

• Which are universal, i.e. which are independent of microscopic details of some
underlying model?

• Is there a systematic way of approaching the theory?

• Do any quantities characterize the theory in some fundamental fashion?

I’m going to try to repeatedly address these questions as we proceed.
I will explain how conformal invariance provides great insight into these questions

even in the case of a free boson. For example, one result of central importance is that
strongly interacting fermions in 1+1 dimensions (the Luttinger liquid) can be described
in terms of 2d free bosons. The procedure in showing this is often called bosonization,
and while this can be done without recourse to more general ideas, it is more precise and
systematic to use conformal field theory. Even more importantly, I believe that in the end
it is simpler. Of course there’s an initial hump to get over, but just as an experimentalist
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would be foolish to ignore a new piece of technology because the instruction manual
looked unfamiliar, we shouldn’t be afraid to learn new things. To climb onto the pulpit
for a moment, here’s an important moral principle for theoretical physicists:

If it’s worth doing, it’s worth doing right.

To climb back down, it is important though to recognize that conformal field theory
is very much its own beast. What I mean by this is that although in some of the models
such as the free boson, more traditional methods can be used profitably to analyze the
system, such approaches are either CFT in disguise (as with bosonization), or just plain
different. This is a good thing, but the fact that is that most of what you learned in
solid-state theory is mainly useful as a complementary approach that works occasionally.
This I think is the main reason why CFT has a (mostly but not completely unwarranted)
reputation as being difficult. As in any field, it gets complicated after a while, but the
basics are no more difficult than in any other theoretical field. They are, however,
somewhat different.

For example, most of the time in field theory the starting point is the action or
Hamiltonian. In CFT, the action is typically not used directly, except in very special
cases like free bosons and fermions. (I promise never to say ”gauged Wess-Zumino-
Witten action” again.) And whereas one may in a sense know what the Hamiltonian
of a CFT is, what is most important is how the Hamiltonian fits into the conformal
symmetry algebra (i.e. the algebra of conformal transformations). One reason one can
do such marvelous things in CFT is that the Hamiltonian is just one part of an infinite-
dimensional symmetry algebra.

1.3 An overview, via the math involved

One of the great things about being a theoretical physicist is that we get to dip into
whatever mathematical field seems to be useful at the moment. Moreover, when we do
something new, typically it will have an impact in very different mathematical fields. So
a cute way of outlining some of what we do in CFT is to chart out how it fits into the
math world.

CFT starts in geometry, since it exploits the fact that the model is invariant under
certain kinds of geometric transformations of two-dimensional space, those that preserve
angles. This then quickly moves onto complex analysis, since the natural way of express-
ing these transformations is in terms of complex coordinates z = x+ iy. Then the math
starts getting serious, because this leads naturally to finding the (infinite series of) gen-
erators of conformal transformations. In a 1+1-dimensional (“quantum”) picture these
satisfy an algebra with some very nice properties. These are so nice that much can be
understood about the representations of this algebra, and so for example all the states in
the Hilbert space and their energies can be found exactly. Moreover, the representation
theory of the algebra allows differential equations to be derived for the correlators, which
allows all of them (at least in principle) to be computed exactly.
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What I just described was the state of the art of CFT in 1988, as reviewed in the
superb lectures by Ginsparg and Cardy in the Les Houches 1988 summer school volume.
These notes will borrow heavily from these much more thorough introductions. An
equally excellent set of lectures in the same volume that we won’t have time to get
to are those by Affleck, where some important applications of CFT to spin systems are
described. But starting that same year, a whole new set of interesting results emerged. In
understudying the operators and their correlators, an essential part is in understanding
their behavior when locations of different operators are rotated around each other (their
monodromy). The monodromy is easiest to express as braiding in 2+1 dimensional space-
time; the new time coordinate just being thought of labeling the position of the operators
as we move them around each another. This in turn can be expressed very elegantly
in terms of properties of a three-dimensional topological field theory, with remarkable
consequences in knot theory. In understanding how all this works, a whole new algebraic
structure of the operators, the fusion algebra, emerges, with major consequences for
topology and physics.

This path from geometry to algebra to topology in fact takes us back to condensed-
matter physics again, because this physics and mathematics turns out to be essential in
understanding how anyonic systems behave. Finding the statistics of a particle in a two-
dimensional quantum system is formally the same problem as computing the monodromy
of an operator in conformal field theory. The fact that there are lots of interesting CFTs
means that there are much more intricate kinds of statistics possible for particles in two
dimensions than bosonic or fermionic. Two-dimensional quantum condensed matter thus
can have a variety of exotic behaviors unseen in higher dimensions, the fractional charge
and statistics present in the fractional quantum Hall effect being the first prominent
experimental example. More recent excitement has come from the prospect of using
anyons to do quantum computation where protection against errors may be strong due
to the robustness of topology. This too is proving experimentally interesting; in three
words: Majorana, Majorana, Majorana. To understand the physics of these systems, it
is absolutely essential to understand some things about CFT.

This I hope illustrates the value of my above moral. CFT began by studying 1d
quantum or 2d classical systems at critical points. It has now been applied successfully
to both classic problems of condensed matter physics (e.g. the Kondo problem), classic
problems in statistical mechanics (e.g. percolation), as well as a host of recent experi-
mental systems (see Giamarchi’s book for examples). However, smart people trying to
understand this as well as they could uncovered a host of interesting results of relevance
in arenas (two-dimensional gapped quantum systems) seemingly far from this origin.

Of course what I’ll do here is a tiny fraction of what is known. What I will cover
is the free boson in a little detail, and then apply this to the Kosterlitz-Thouless phase
transition. Then I will describe some of the central characteristics of CFT, including the
meanings of the central charge and the fusion algebra. If I have any time left, I will then
say a little bit about the Ising model, the traditional name of what these days is called
in certain circles the Majorana chain.
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2 A free massless boson

2.1 The XY and XXZ models

When condensed matter theorists calculate something, it’s usually in the context of some
field theory. However, no matter how formally you’re inclined, it’s a good idea to try
to stay grounded in reality by keeping some very concrete examples in mind. Quite
frequently, in condensed matter theory, such examples are lattice models. So before we
start discussing the 2d free bosonic field theory in more detail, I think it’s important to
give several examples of important lattice models whose continuum limit is described by
this field theory.

The most obvious one is the XY model. This is a classical 2d system whose degrees
of freedom are classical fixed-length “spins” or “rotors” at each point on some 2d lattice.
The rotors pointing anywhere in a plane, and so can be represented by an angle 0 ≤ θ <
2π. The interaction is ferromagnetic in spin language, favoring nearest-neighbor rotors
to be pointing in the same direction. The simplest action with the desired properties is

S = −J
T

∑
<ij>

cos(θi − θj) .

The XY model describes for example the transition in superfluids: the value θ is the phase
of the expectation value of the wave function. Even though the existence of superfluids
of course is a quantum-mechanical effect, quantum effects are essentially negligible when
studying the transition between the superfluid and the normal phase. Thus the classical
rotor model provides a way of quantitatively understanding this transition.

For J/T large enough (i.e. large coupling or low temperature) the dominant field
configurations in the partition function of the XY model are those where θ varies slowly
over space. In this limit it is then reasonable to replace θ with a continuous field φ
governed by the action (1). This is the simplest action consistent with the symmetry of
the original model under a global rotation of the rotors θi → θi + a for any constant a.
The fact that φ came from an underlying periodic θ is extremely important; the resulting
vortices cause a phase transition named after its discoverers Kosterlitz and Thouless.

A less obvious example of a model described by the 2d free boson is the antiferro-
magnetic Heisenberg quantum spin-1/2 chain. The Heisenberg spin chain is built from
spin spin operators Sxj , Syj and Szj at each site j satisfying su(2) commutation rules

[Saj , S
b
k] = iδjkεabcS

c
j , (5)

with spin operators on different sites commuting. In the spin-1/2 case, the spins are

represented by Pauli matrices via ~S = ~σ/2. The Hamiltonian of the slightly more
general XXZ model is

HXXZ = −
N∑
i=1

(
(σ+

i σ
−
i+1 + σ−i σ

i
i+1) +

∆

2
σzi σ

z
i+1

)
; (6)

6



the Heisenberg case is ∆ = ±1, with ∆ = −1 corresponding to the antiferromagnet.2

For spin 1/2, this is the most general nearest-neighbor Hamiltonian consistent with the
U(1) symmetry generated by z component of the total spin

Sz =
∑
j

Szj .

The presence of the U(1) symmetry is a hint that a free boson might be a good
description of the XXZ spin-chain. A way to see it much more convincingly is to first
study a two-dimensional classical lattice model called the six-vertex model. This is
discussed in chapter 5 of my “book”. On one hand, this model can be directly mapped
onto a “height”, an integer-valued degree of freedom on the sites of a lattice. In the
continuum, one expects this to turn into a free boson if one can ignore the discrete nature
of the height. This turns out to be the case when the temperature in the lattice model is
large; CFT gives a nice way of understanding why this is so. On the other hand, one can
show that the Heisenberg and XXZ Hamiltonians can be obtained by taking a particular
limit of the six-vertex model transfer matrix. In fact, with an appropriate identification
of parameters, the XXZ chain and the transfer matrix of the six-vertex model have
the same eigenvectors. (This is a consequence of the integrability of the problems, a
fascinating issue that there’s no way I’ll have time to discuss in these lectures!) Thus
the physics of the XXZ chain, at least for a certain parameter range, is that of the free
boson. This parameter range (again coming from integrability) is −1 ≤ ∆ < 1.

An unusual feature of these models is they exhibit a line of critical points with
continuously varying critical exponents. This behavior is almost impossible outside 1+1
or 2 dimensions, and not even that common there. The free boson field theory has
precisely this behavior; this line is parametrized by g.

2.2 Operators and correlators

Since the action (3) is quadratic, all correlators can be computed exactly. Doing the
Gaussian integral gives the two-point function on the infinite plane to be

G(z, z) = 〈φ(z, z)φ(0, 0)〉 = − 1

2g
ln

(
zz

a2

)
(7)

where a is a short-distance cutoff (e.g. a lattice spacing) necessary to define the theory.
This cutoff is what will make life interesting, because it is not invariant under conformal
transformations: e.g. a scale transformation takes a → λa. This is the Green function
for the 2d Laplacian:

∇2G(z, z) = ∂z∂zG(z, z) =
2π

g
δ(z)δ(z) .

2The minus sign is to conform with the conventions of Baxter’s book. To recover the usual form of
the antiferromagnet, one can rotate every other spin to flip the sign of the first two terms in (6).
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(This is easiest to verify by going to polar coordinates.)
Since we can split the field itself into two pieces, we can do the same for the correlator:

〈ϕ(z)ϕ(w)〉 = − 1

2g
ln

(
z − w
a

)
; 〈ϕ(z)ϕ(w)〉 = − 1

2g
ln

(
z − w
a

)
.

Note that these correlators increase with distance between operators. If φ itself were
a physically measurable operator, this could lead to trouble. However, it typically is
not; this is related to the fact that there are no Goldstone bosons in two space-time
dimensions, a consequence of the famed Mermin-Wagner theorem, and explained in field
theory language by Coleman. However, since all the operators in the theory can be
expressed in terms of ϕ and ϕ, this correlator forms the foundation of all correlators.
For example, in the XXZ chain the U(1) symmetry under shifts of φ is generated by
J(z) + J(z), where J = ∂ϕ and J = ∂ϕ. The two-point function of the former is simply

〈J(z)J(w)〉 =
1

(z − w)2
; (8)

and likewise for J . In a chiral fractional quantum Hall edge (chiral meaning only say left
movers appear), J is proportional to the electric current operator.

Other physically interesting operators are given by exponentials of ϕ and ϕ. (In string
theory language, exponentials of free bosons are called “vertex operators”.) By using
the fact that fact that S is Gaussian and completing the square, or simply by expanding
out the exponents and using Wick’s theorem, it is easy to show that

〈eiαϕ(z)e−iαϕ(w)〉 = eα
2〈ϕ(z)ϕ(w)〉 =

aα
2/2g

(z − w)α2/2g
.

The cutoff a can be absorbed in a rescaling of the operators eiαϕ, and so typically these
operators are normalized so that the constant of proportionality is 1. (In canonical quan-
tization this corresponds to normal-ordering the annihilation and creation operators, and
is sometimes called “multiplicative renormalization”.) The correlator of this “renormal-
ized” operator is then independent of the cutoff, and so still makes sense when a → 0.
The presence of this cutoff, however has a lasting effect. The field φ must be dimen-
sionless to make the action dimensionless, and so its exponentials are dimensionless as
well. Nevertheless, absorbing the factor a−α

2/4g into each operator effectively gives it a
dimension α2/4g.

In fact, a general consequence of scale invariance is that the two-point function falls
off at large distance as a power law:

〈A(~r1)B(~r2)〉 ∝
1

|r1 − r2|2xA
(9)

where xA = xB is called the scaling dimension of the operator, or usually just “dimension”
for short. In a CFT, one can define left and right conformal dimensions, usually denoted
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(hA, hA), so that xA = hA + hA. Thus in a general CFT

〈A(z, z)B(w,w)〉 ∝ 1

(z − w)hA(z − w)hA
. (10)

Under the scale transformation ~r → ~r′ = λ~r, any operator with dimension must trans-
form as well. For example, because ∂z = ∂z′

∂z
∂z′ = λ∂z′ , the operator J = ∂zφ transforms

as J(z) → λJ(z′). Thus for arbitrary conformal transformations z → z′ = f(z) and
z → f(z), the simplest way for operator A to transform under conformal transforma-
tions is as

A(z, z)→ f ′(z)hAf
′
(z)hAA(z′, z′) . (11)

As a side remark, conformal invariance in any dimension also requires that the three-
point function of any three operators be of the form

〈A(~r1)B(~r2)O(~r3) =
CABO

rxA+xB−xO
12 rxB+xO−xA

23 rxA+xO−xB
13

where rij ≡ |ri − rj|. Thus each three-point function is determined uniquely from the
dimensions of the operators, up to a single number, known for reasons I will explain
below as the operator product coefficient.

Going back the the bosonic case, the operators J and J have conformal dimensions
(1, 0) and (0, 1) respectively, because φ is dimensionless, while the derivative has dimen-
sion 1 (note dimensions are in powers of energy). The operators e±ibφ have conformal
dimensions (b2/4g, b2/4g), so that xb = b2/2g. An arbitrary vertex operator can be
written as

Vαβ(z, z) ≡ a−(α
2+β2)/4g exp (iαϕ(z) + iβϕ(z)) .

Its two-point function is

〈Vαβ(z, z)V−α,−β(w,w)〉 =
1

(z − w)α2/2g (z − w)β2/2g
. (12)

so that it has dimensions (α2/4g, β2/4g). For these operators to be local, they must
return to the same value when they are exchanged, i.e. the position of one is rotated by
π around the other. This means that locality requires that the “conformal spin” h − h
be an integer. It frequently is useful, however, to consider more general operators. For
example, a fermionic operator has conformal spin a half integer, so that one obtains the
familiar fermionic minus sign when the two are exchanged. It is only slightly more work
to use the Green function (7) to compute arbitrary correlators of the vertex operators.
For each pair of operators, there is a singular contribution analogous to (12), giving

〈Vα1β1(z1, z1)Vα2β2(z2, z2) . . . VαNβN (zN , zN)〉 =
∏
i<j

(zi − zj)αα
′/2g(zi − zj)ββ

′/2g (13)

when
∑

i αi =
∑

i βi = 0; if these conditions do not hold, the correlator vanishes. Notice
that this reduces to (12) when setting α2 = −α1 and β2 = −β1.
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2.3 The Coulomb gas and the operator product expansion

Using this free-boson field theory as an effective field theory for statistical-mechanical
problems is often called the “Coulomb-gas approach”. This is because the two-point
function for φ is the Green function for the electrostatic potential, and the exponential
operators create electric and magnetic charges. An electric charge is of the form Vα,α,
whereas a magnetic one is Vα,−α; in both cases the conformal spin is zero.

This bosonic field theory contains in it many theories; a particular theory requires
specifying the allowed values of the exponents. As pioneered by Kadanoff and collabora-
tors, in the Coulomb-gas approach one uses the underlying physical model of interest to
identify which vertex operators are allowed, and to give them a physical interpretation.

This approach is nicely illustrated in the XY model, where it lets us understand the
Kosterlitz-Thouless transition in CFT language. The lattice variable θ turns into the
field φ in the continuum limit. A key piece of physics one gets from the lattice model
is that θ is identical to θ + 2π, so φ is only meaningful mod 2π. This means that the
physically meaningful functions of φ are exponentials of φ with integer coefficients. This
means that the “electric” operators are Ve,e, where e is an integer. At sufficiently large
values of J/T , the fact that these decay algebraically instead of exponentially means
that while ultimately the system is disordered, the correlations are quite long ranged.

To understand what the magnetic operators are, it is useful to introduce a deep
concept essential to the study of conformal field theory (and for that matter, useful for
field theory in general). This is called the operator product expansion (OPE). Like many
brilliant ideas, it is simple to explain, but the consequences are profound. The idea is
that one can treat the product of two operators A(z)B(w) brought close together in
terms of an expansion of operators at a single point. In an equation,

A(z, z)B(w,w) ∼
∑
n

Cn(z − w, z − w)On((z + w)/2, (z + w)/2) , (14)

where the Cn(z − w) are possibly singular coefficients depending only on the difference
z−w, and the On(w) are a complete set of local operators. It is arbitrary whether on the
right-hand-side one expands around the point z or w or any point nearby; this will serve
only to modify the coefficients. The important point is that that as z gets close to w,
most of the terms in this expansion will vanish; one needs only to keep the most singular
terms. Typically, very few of them need to be kept. Moreover, in a CFT, dimensional
analysis determines the form of the singularity: one must have

Cn ∝ (z − w)hn−hA−hB(z − w)hn−hA−hB .

It is easy to work out the leading term in the OPE of electric and magnetic operators
in the free-boson theory. Looking at the field-theory formulation makes it obvious one
simply adds the exponents to get the operator product, and using the correlator (13)
gives the coefficient to be

Vαβ(z, z)Vα′β′(w,w) = (z − w)αα
′/2g(z − w)ββ

′/2g Vα+α′, β+β′ (1 + . . . ) (15)
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The . . . are derivatives of ϕ and ϕ multiplied by positive integer powers of (z − w) and
(z − w), and so can be neglected as z gets near to w. Operators are mutually local
if the OPE is invariant under 2π rotations, i.e. sending (z − w) → e2πi(z − w) and
(z − w) → e−2πi(z − w) . To obtain a mutually local set of vertex operators in the free
boson theory, (15) means that

αα′ − ββ′ = 2gn

for some integer n. For electric charges α = β = e, this means that the magnetic charges
must be α′ = −β′ = gm/2e for some integer m. This is Dirac quantization of monopole
charge in two dimensions!

By using the XY model, we can now understand the meaning of the magnetic oper-
ators. Recall that because of the periodicity of θ, electric operators are Ve,e for integer
e. This means that magnetic operators are Vmg,−mg for some integer m. The physical
meaning of the magnetic operators is now easy to see by considering the OPE of the
simplest electric and magnetic operators. The leading singularity is

V1,1(z, z)Vg,−g(0, 0) ∝
√
z

z
.

Now rotate the location of the electric charge at z around the magnetic charge at the
origin, i.e. send z → eiγz (and z → e−iγz) and rotate γ from 0 to 2π. The phase of the
operator product then rotates in the same way from 0 to 2π. Since V1,1 = eiφ(z,z), what
this means is that the value of φ shifts by 2π around a magnetic charge with m = 1. A
magnetic charge is a vortex! It creates a cut in the field φ. This is allowed, because the
underlying microscopic variable θ is defined only mod 2π.

Many other examples can be found of lattice models described by the Coulomb gas in
the continuum limit. These are described beautifully in the review article by Nienhuis.
In most (all?) of these, the field can be taken to be periodic. (In the six-vertex model,
the simplest definition is not periodic, but rather integer instead. A periodic field is then
found by Fourier transformation in field space, the opposite of what we have done with
electric and magnetic charges!) Thus the vertex operators allowed depend on what the
periodicity of the field is. We can always normalize the field (i.e. define the stiffness)
so that the periodicity is 2π, as in the example above. String theorists use a different
convention – they typically set g = 2, and then let φ ∼ φ + 2πR and call R the “com-
pactification radius” (in string theory the bosonic field is a space-time coordinate of the
string, with our 2d space the string worldsheet). In our convention R = 1, and a set
local operators are Ve+mg,e−mg with integer e and m. They have conformal dimensions

(hem, hem) =

(
(e+mg)2

4g
,
(e−mg)2

4g

)
, (16)

so that each has scaling dimension xem = e2

2g
+ gm2

2
and conformal spin em. To compare

these formulas to those in Ginsparg’s lecture notes, set g = 2R2 ; the electric/magnetic
duality g → 1/g corresponds to the R→ 1/(2R) “S-duality” familiar to string theorists.
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This result is spectacular. All the scaling dimensions (up to an integer shift coming
from derivatives of the bosons) are given by this formula. The only unknown in the
XY model is how the stiffness g is related to the bare lattice coupling J/T ; in the XXZ
chain it is related to the anisotropy ∆. If this is fixed by knowing the dimension of
one operator, then the rest are determined uniquely! In fact, in the XXZ model, the
integrability of the six-vertex (derived by Lieb) extended to the eight-vertex model by
Baxter allows one to compute one of the exponents exactly. One finds

∆ = cos(πg) .

with 0 < g ≤ 1 and −1 ≤ ∆ < 1. Note in the ferromagnetic case ∆ = 1 is the nonsensical
limit g = 0, and so is no longer described by this Lorentz-invariant field theory; as is
well known the dispersion relation is E ∝ k2.

Notice that there is no real value of g corresponding to ∆ < −1. The reason is that
there at ∆ = −1 there occurs a transition to a to a Z2 ordered phase with a gap, so the
free massless boson description no longer remains valid (we will see momentarily that
for ∆ just a little bit smaller than −1, the scaling limit is given by the sine-Gordon
field theory). This transition was known in the XXZ chain in the ’60s I think (remind
me to ask Elliott Lieb when he first knew about it!) as well as in the 1d classical Ising
model with long-range interactions, but was first understood in field-theory language by
Kosterlitz and Thouless from their studies of the XY model. The existence of the KT
transition in the XY model easily follows combining the from the central idea of effective
field theory:

Allow in the action any term allowed by the symmetries. For determining
the phase transitions, you can neglect any irrelevant terms.

Operators in field theory in two dimensions are irrelevant if their scaling dimension is
greater than 2. In the free-boson field theory, operators have dimension depending on
the stiffness g, which when describing the continuum limit of the XY model depends on
the coupling J/T such that large J/T correspond to large g. Thus if as J/T is varied,
an operator turns from irrelevant to relevant, there is a phase transition.

In the XY model, there are two types of potentially relevant operators: electric
and magnetic charges. (Operators ∂zϕ and ∂zϕ have dimension 1, independent of g,
and any allowed terms including them allowed by symmetries save the original action
are irrelevant.) Symmetry, however, forbids adding electric charges to the action. The
reason is that this operators cos(eφ) are not invariant under shifts of φ, a symmetry of the
action coming from the original XY symmetry under shifts of θ. Thus these operators
cannot cause a phase transition. However, the magnetic operators are allowed: they
create vortices, and these are allowed in the XY model because the underlying lattice
makes them well defined. These operators have scaling dimension

xm =
gm2

2
.
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When g is large (large J/T ), these are all irrelevant. However, when g = 4, the operator
Vg,−g with m = 1 becomes relevant. This is the source of the KT transition! The precise
relation of J/T to g can only be computed perturbatively (in the vortex fugacity). The
physics is clear, however. At large J/T (low temperatures), vortex/antivortex pairs are
tightly bound, i.e. the partition function is dominated by flat configurations in φ, with
small local fluctuations. As the temperature is increased (or the coupling lowered), these
become looser-bound, i.e. the fluctuations around the flat configuration gets bigger. At
the KT transition, the vortex-antivortex pairs unbind.

There is an analogous transition in the XXZ chain. However, here it is the magnetic
operators that are forbidden due to the U(1) symmetry, while the electrical one causes a
KT transition at ∆ = 1. The model is critical for |∆| ≤ 1 but at the antiferromagnetic
Heisenberg point ∆ = −1, a KT transition to a Z2 ordered phase occurs (although here
by an electric operator instead of a magnetic one).

There is much more that can be done with a free boson. Since one knows the entire
spectrum for any g, one can compute the explicit partition functions on a cylinder or
torus. These are exceptionally beautiful mathematically, because they can be written
in terms of Jacobi theta functions that satisfy many remarkable identities (this is the
branch number theory Ramanujan became famous doing, an area of math I didn’t even
mention in the introduction!). They are exceptionally useful physically as well. To give
a completely biased example, in a paper posted last week by Stephan et al, it was shown
how to rewrite the entanglement entropy of the quantum dimer model in terms of these
partition functions.

3 The ubiquitous c

I stole the title of this section from a talk given by John Cardy, available at arXiv:1008.2331.
In this talk he explains how the “conformal anomaly” or “central charge” c is not just
universal, but appears in a remarkable number of different physical quantities. I will
explain what it is, and how it is indeed fundamental to conformal field theory.

3.1 The stress tensor

The stress tensor T µν is defined as the response of the action to doing a general coordinate
transformation (or “strain”) rµ → rµ + αµ(r):

dS = − 1

2π

∫
Tµν∂

µαν(r)d2r . (17)

This is the Euclidean version of the energy-momentum tensor of 1+1 dimensional space-
time. If you like metrics, this definition is equivalent to

T µν =
∂S

∂guv
.
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Any time we know the action explicitly, we can of course express T and T in terms of
the fields. However, one does not need an explicit expression in terms of some fields for it
to do CFT. In fact, the logic is essentially the reverse. The stress-energy tensor in a CFT
satisfies a huge array of constraint, and the point of CFT is to understand how all of
these fit together. One can completely characterize all the states and the corresponding
correlators by knowing some of these properties (such as the c). In other words, one does
not need to have an explicit expression for the action to understand what happens when
one varies it!

In any theory, the stress tensor obeys the conservation law ∂µTµν = 0. In any two-
dimensional theory these two equations read in complex coordinates

∂zT + ∂zΘ = 0; ∂zT + ∂zΘ = 0. (18)

where T ≡ Tzz, T = Tzz and Θ = Tzz = Tzz. Doing a scale transformation gives a
variation of the action proportional to Θ, the trace of the stress tensor. Since at a
critical point, the action is invariant under scale transformations, this means that Θ = 0
for a CFT, and that T depends only on z, and T on z.

By construction, in CFT the operator T has conformal dimensions (2, 0) while T has
dimensions (0, 2). This means that the two-point function

〈T (z)T (0)〉 =
c/2

z4
(19)

Note that the normalization of T is fixed by its definition, so for a given theory, c is
a uniquely defined quantity. The coefficient c is called the central charge, or conformal
anomaly.Just knowing this number gives a huge amount of information about the theory,
as I will explain in the following.

Because the stress-energy tensor is the generator of all conformal transformations, it
plays a central role in CFT. For example, one can determine the scaling dimension of
operators just by knowing the OPE of the operator with the energy momentum tensor.
Although the following may seem a little abstract, I will explain later on how this fact
gives a very effective way of determining scaling dimensions numerically. It follows by
considering the coordinate transformation z → z + αz for |r| < ε1, r

µ invariant for
|r| > ε2, while for ε1 ≤ |r| ≤ ε2 α

µ is any smooth function interpolating between the two.
Using this in (17) gives a vanishing contribution for |r| < ε1 because it is a conformal
transformation in this region (recall that ∂z = gzz∂z). Obviously it vanishes for |r| > ε2.
In between, one integrates by parts. The bulk term vanishes because ∂µTµν = 0, and the
surface term at |r| = ε2 to give

δS = − 1

2π

∫
|r|=ε1

Tµνα
νdSµ .

where Sµ is the normal vector to the surface. Rewriting with the specific form of αµ at
ε1 gives

δS =
α

2πi

∫
T (z)zdz − α

2πi

∫
T (z)zdz .
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Now look at some correlation function of an operator O(0, 0) of dimensions (h, h)
at the origin with other operators outside the disc of radius ε1. We’re doing just a
coordinate transformation, so the correlators with the original and transformed actions
are related by

〈O(0, 0) . . . 〉S = (1 + α)h(1 + α)h〈O(0, 0) . . . 〉S+δS .

Using the explicit δS gives for small α∫
dz z T (z)O(0, 0) = hO(0, 0)

because the foregoing applies for all correlators. Thus the OPE of T and O must include
a term

T (z)O(0, 0) = · · ·+ h

z2
O(0, 0) + . . . .

Repeating the above argument for a translation gives a similar term, yielding

T (z)O(0, 0) = · · ·+ h

z2
O(0, 0) +

1

z
∂zO(0, 0) + . . . . (20)

Operators where these are the most singular terms in the OPE are called primary fields.
This is not true for T , because of (19). The OPE of T with itself is

T (z)T (0) =
c/2

z4
+

2

z2
T (0) +

1

z
T ′(0) + . . . (21)

where the remaining terms are not singular.
One can use this OPE show that T does not transform under conformal transforma-

tions as simply as (4). This is why c is called the conformal “anomaly”. There are fancy
ways to understand this; recall that T generates conformal transformations, so the TT
OPE is related to how a conformal transformation acts on a conformal generator. The
answer is that under a conformal transformation,

T (z) = T (f(z))(f ′(z))2 − c

12
{f, z}, (22)

where {f, z} ≡ (f ′′′f ′ − 3
2
f ′′2)/f ′2 is called the Schwartzian derivative.

The free boson gives some intuition where this comes from. Like all anomalies, it
has to do with the short distance behavior. Naively applying the definition of T to the
free-boson action gives

T = −g(∂zϕ)2, T = −g(∂zϕ)2 . (23)

This isn’t quite right because when the operators J = ∂zϕ are brought to the same point
to make T , they have a singularity. To define something finite, one can point split, i.e.,
let

T ≡ J(z + δ/2)J(z − δ/2)− 1

2δ2
.
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Basically, this means just ignore the singularity. Doing this gives c = 1:

〈T (z)T (0)〉 = 2

(
1

2g

)2

g2
1

z4
=

1/2

z4
,

where the extra factor in 2 comes from the two contractions in Wick’s theorem. Thus
c = 1 for the free boson! But the point splitting explains where the Schwartzian term
comes from. The subtracted term is not invariant under conformal transformations.
Rather than paraphrase or plagiarize any further, I will just quote Cardy’s ”ubiquitous
c lecture:

This is a classic example of the appearance of an anomaly in quantum field
theory, when a symmetry (in this case, conformal symmetry) is not respected
by the necessary regularization procedure. In fact the form of the last term
on the rhs, although complicated, is completely fixed by the requirement
that it hold under a general iterated sequence of conformal mappings. The
only arbitrariness is in the coefficient c, which is thereby a fixed parameter
characterizing the particular CFT or universality class.

3.2 The central charge and universal energy coefficients

To make this look more like the kinds of systems we deal with in condensed matter, it’s
better to work on cylinder, instead of the plane. One of the many beautiful things about
CFT is that we have the tools to do this. A infinitely-long cylinder of circumference β
is obtained from the punctured plane by the conformal transformation v+ iw = β

2π
ln z ,

where −∞ < v < ∞ and 0 ≤ w < β. One of the nice things about working in the 2d
formulation is that one is free to choose which direction is space and which is (Euclidean)
time. The most natural thing to do here is to think of w as the spatial coordinate around
the cylinder (thus space here has periodic boundary conditions), while the coordinate v
down the cylinder is Euclidean time. If instead you wish to make w time and v space,
then you are faced with understanding what the meaning of periodic time is. This was
answered Feynman: if you wish to equilibrium quantum statistical mechanics at inverse
temperature β, then notice that the partition function is

Z = tr e−βĤ ,

where the hat means you can now think of this as an operator acting on Hilbert space. (If
you want to stay classical, then think of it as acting on the boundary conditions at the end
of the cylinder.) This partition function is exactly the path integral picture in Euclidean
time with period β, i.e. exactly what we compute on the cylinder of circumference β.

The Hamiltonian of course is the generator of time translations, and so is related
to the energy-momentum tensor. The stress tensor we have discussed is simply the
Euclidean version of this tensor. Let τ be the Euclidean time coordinate, which can be
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v or w depending on which way you want. The Hamiltonian is then the response to the
coordinate transformation τ → τ ′ = τ + αΘ(τ − τ2), where Θ is the usual step function
(you can smooth it slightly if you’re worried). This gives

Ĥ =
1

2π

∫
T̂ττdτ (24)

The fact that there is a funny term in the OPE of T with itself has a remarkable
consequence for the energy. As seen in (22), T does not just rescale under conformal
transformations, but shifts as well. Thus even though the expectation value of 〈T 〉
vanishes on the plane (since there is no dimensional part), when we transform to the
cylinder, it can pick up an extra piece. In the v space, w time picture (i.e. where
the partition function describes a 1+1d quantum system in equilibrium at non-zero
temperature), this means that the energy density u at finite temperature is not zero.
The energy density is then

〈u〉 =
1

2π
〈Tττ 〉 =

1

2π
(〈T 〉cylinder + 〈T 〉cylinder); (25)

note that indeed the energy density is of dimension 2 like T and T . Plugging in the
explicit f = (L/2π) ln z gives

u =
πc

6β2
(26)

in units where ~ = 1 and β = 1/(kBT ) (with T in the latter the temperature, not the
energy-momentum tensor). The Stefan-Boltzmann law in 2d has a universal coefficient!

Going to the v time, w space picture gives a different interpretation of this result.
Then it is the universal part of the Casimir energy E0(β) , i.e. the energy of the ground
state in a finite-size system. The point is that for a cylinder of circumference β and some
very long length L, the partition function is dominated by this ground-state energy:

Z ∼ e−LE0(β)

plus corrections exponentially small in L (even though a CFT is gapless, putting it in
finite size still gives a finite difference between the excited-state energies and E0). On
general grounds, for β

E0(β) = e1β + e2 + e3/β + . . . . (27)

The first two pieces are the non-universal “bulk” and the boundary terms respectively
(the latter usually vanishes for periodic boundary conditions). These must be non-
universal, since the coefficients are dimensional. The third coefficient, however, is di-
mensionless, so it can be universal. A rerun of the energy-density calculation adapted
to this picture gives

e3 =

{
−πc

6
periodic boundary conditions

−πc
24

on a strip
(28)
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This relation is exceptionally useful to test which CFT a given Hamiltonian may cor-
respond to (or for that matter, if even is a CFT). Just put your Hamiltonian on the
computer for varying sizes, and compute the ground state energy. Then fit it to (27) and
extract c!

In fact, one can go further numerically than just the central charge. The dimensions
of the operators are also determined by the finite-size spectrum. The dimension xA de-
scribes the behavior of the system under scale transformations. But under the conformal
transformation from the plane to the cylinder, scale transformations around the origin
turn into translations. Thus the Hamiltonian eigenvalues (i.e. the finite-size energies)
are given by the same kind of formula: each level obeys

E = E0 +
2π

β
(hA + hA)

for some operator A.
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