Keble College A3: Quantum Mechanics and Mathematical Methods Problem sheet

Problem sheet - MT vacation
Main questions

Q1. Probability current density and a 1D barrier

Derive the continuity equation relating the rate of change of probability density
Y™ to the gradient of a probability current density 7, and find the expression
for j. Find j for the plane wave solution % (z,t) = A e**~%! and express your
answer in terms of the particle velocity p/m. [Note: A is in general complex].

Particles of mass m and energy E are incident from the region z < 0 on the
“finite step” potential V(z) =0 for z <0, V(z) = V; for z > 0, with V, > E.
(i) Explain why the solution of the time independent Schrodinger equation
in the region z < 0 may be taken to have the form ¢,(z) = e** 4 re=i=
where k = (2mE/h?)3, and why the solution in the region ¢ > 0 has the form
¢2(z) = ae~X® where K = [2m(V, — E)/h?)z.

(ii) By imposing suitable boundary conditions at z = 0 show that
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(iii) Is your solution for the wavefunction an energy eigenstate? Is it a mo-
mentum eigenstate?

(iv) Compute the probability current density in the two regions. Discuss your
result.

(v) Show that r can be written as e~%* where o = tan™!(K/k), and hence
show that

[p1(z)]? = 4 cos’(kz + a).
Make two separate sketches, for the special cases E = W/2 and E = Vp, of
|#1|%, and of |¢,|%, showing how they match at z = 0.

(vi) Estimate the penetration distance into the region z > 0 for an electron
with Vo — E = 1eV.

[JMR QM Q4.3]

Q2. Momentum distributions

Consider the following two normalised wavefunctions
1 e 1
41(0) = T expl-lelfa). dnle) = ¥ expl—lelfa).
Calculate (z) and (p) for both of these wavefunctions.
Sketch |¢,|? and |¢o|* versus z for fixed a.
The momentum probability amplitude corresponding to a position probability
amplitude ¢(z) is
Hp) = ——
Pr= 2mh
Evaluate ¢,(p) and ég(p) and sketch both as a function of p, for fixed a. Give

an informal (qualitative) definition of the “spreads” of |¢1(x)[* in 2 and of
|$1(p)|? in p. Show that their product is of order A.

/_o:o e_ipx/h¢(w)dr

[JMR QM Q7.1]
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Q3. Bound states of a 1D finite well

A particle of mass m is in a “finite well” potential

Vi) = Vo for |z|>a
=0 for [z|]<a

where V; is positive. It may be shown that for such a potential, which satisfies
the condition V(—x) = V(z), each energy eigenfunction has a definite parity,
which can be either even ((—z) = ¢(z)) or odd (Y(—z) = —(z)). (We'll
meet parity again next term.)

(i) Assuming that the well parameters V; and a are such that these bound
states are possible, sketch the form of the wavefunctions for the first two
bound states (E < V) of even parity, and for the first two bound states of odd
parity (not exact wavefunctions; just the right number of wiggles, the right
parity, and the right behaviour at the edge of the well and as £ — +o0).

(ii) The bound state wavefunction for even parity states has the form

b(z)

Acoskr for 0<z<a
Be ™% for z >aq,

1

where k& = (2;“2‘2)2 and K = ,/ﬂ‘;—g‘—EZ. Write down 9(z) for —a <z <0
and for £ < —a. By applying the boundary condition at z = a, show that the
allowed k (i.e. E) values are determined by the roots of the equation

O

(v2—32) = stans (61)
where v = [2mVpa?/h?]? and s = ka. Check that v and s are dimensionless.
Why is it not necessary to consider the boundary condition at £ = —a as well?
This equation (61) can be solved for s, given v, by a graphical method. For
positive s, sketch the function stans versus s, and the function (v? — s?)2
versus s. Where these curves meet, you have a solution for s. Show (a) that
there is always one solution, whatever the value of v; (b) that a second “even”
bound state is possible as soon as v becomes greater than .

(iii) Write down a similar form of the wavefunction for odd-parity states, and
show that the energy eigenvalue condition is

(v* — 52)% = —scots (62)
Sketch both sides of (62) as a function of s, and show that there is no odd-

parity bound state if v < 7/2.

(iv) Explain why the number of bound states (even + odd) is given by the next
integer greater than the value of 2v/m (which is called the “well parameter”).

(v) The roots of (61) and (62) can be found by (for example) using the Find
Root command on Mathematica - or by trial and error. Take m = electron
mass, a = 0.5 nm and Vo = 20 eV. How many bound states are there?

Verify that the two lowest roots for s are s = 1.44438 and s = 2.88685 and
find the corresponding eigenvalues in eV.

[JMR QM Q7.3]
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Q4. Transmission through a 1D finite barrier

Obtain the probability of passing through the square barrier

Vz{Vg for |z| < a

0  otherwise,

in the case E > Vy > 0. Verify that the probability you obtain joins at £ = V to the transition probability

for E < Vp, which is

P(E) =

1

. 2m(Vp — E)
2
with K= ——%5—-.

[JB QM Q3.7]

QS. Barrier penetration and transmission

cosh’ 2Ka + L(k/K — K /k)?sinh 2Ka R

A particle of mass m is incident with energy £ < V; from the region £ < 0 on

the finite potential barrier

V(z)

for z<0,z>a

VW for 0<z<a.

Take the wavefunction in z < 0 to be

in0<z<atobe

and in z > a to be

Iljl — eikx + Re—lka:,

11)2 — Aer—{- Be—Ka:

'(Z)B — Celkz

where K? = 23(Vy — E),k* = omE [h*.

i) Is the wavefunction an energy eigenstate?

ii) Is the wavefunction a momentum eigenstate?

iii) From the boundary conditions at = = 0 deduce that

2 = A(

1K oK

1-—)+B(1+ )

k k
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and from the boundary conditions at z = a deduce that

_1 ke LN
A= 3¢ (1+ K)e C

and . 'k
B = —¢fa(p _ ¥ ikag
2¢ ( K)e

Substitute these expressions for A and B into the previous equation to show

that )
2e—zk:a

[2cosh Ka — i (f — %) sinh Ka]

Hence show that the transmission coefficient (defined as the transmitted flux
divided by the incident flux) is

K2 4 k2)2 -1
IC|* = (l + (—Z%sinh2 Ka) ,

which can also be written as

- (1 . sinb’[p*(1 ~ E/Vo)]%)_l

HE/Vo)(1 - EfVo)
where v is as defined in Q 1, v = (2mV0a2/52)%.

iv) Compute the probability flux inside the barrier, ie from ;. [Hint: caution
- Aand B are complex!] Compare your result with part iii).

v) Show that if E/V, < 1 and v > 1,|C|? is given approximately by
16E

|O|2 ~ _e~2u.

Vo

This shows the characteristic ezponential tunnelling probability: the amplitude
for waves with E < V; is exponentially attenuated by the barrier (though of
course classical particles wouldn’t get through at all); it is analogous to the
evanescent waves in optics (e.g. in total internal reflection).

Suppose E = 1€V, V5 = 6V and a = lnm. By what factor will |C|? change if
@ increases to 1.1 nm?

The “Scanning Tunnelling Microscope” is just one application of quantum
tunnelling - see G. Binnig and H. Rohrer Reviews of Modern Physics 59 (1987)
615 (their Nobel lecture).

[JMR QM Q7.4]

Q6. Transmission resonances [JMR QM Q7.5]

In Question above, imagine the energy gradually increasing until it becomes
equal to Vo. What is |C]> when E = V;? Now suppose E becomes greater
than V5. Then K? becomes negative, K — i|K| (or maybe —i|K|?) and
sinh? Ka — (isin |K|a)?, so

-1
in? o2 (E/Vo — 1)}

o L4 Sin [v¥(

o7~ ( T AEVo)(EIVe— 1)

(if you don’t like this, you can of course repeat the whole calculation from

scratch ...).

Show that this new |C|? is equal to unity when [Z{%(E - ‘/())} > = nr/a. What
does the wave in the region 0 < z < a look like at these values of E?



