Problem sheet - MT vacation

Main questions

Q1. Probability current density and a 1D barrier

Derive the continuity equation relating the rate of change of probability density $\psi^*\psi$ to the gradient of a probability current density j, and find the expression for j. Find j for the plane wave solution $\psi(x,t) = A e^{ikx-i\omega t}$ and express your answer in terms of the particle velocity p/m. [Note: A is in general complex].

Particles of mass m and energy E are incident from the region x < 0 on the "finite step" potential V(x) = 0 for $x \le 0$, $V(x) = V_0$ for x > 0, with $V_0 > E$.

(i) Explain why the solution of the time independent Schrodinger equation in the region $x \leq 0$ may be taken to have the form $\phi_1(x) = e^{ikx} + re^{-ikx}$ where $k = (2mE/\hbar^2)^{\frac{1}{2}}$, and why the solution in the region x > 0 has the form $\phi_2(x) = ae^{-Kx}$ where $K = [2m(V_0 - E)/\hbar^2]^{\frac{1}{2}}$.

(ii) By imposing suitable boundary conditions at x = 0 show that

$$r = \frac{k - iK}{k + iK}, \quad a = \frac{2k}{k + iK}.$$

(iii) Is your solution for the wavefunction an energy eigenstate? Is it a momentum eigenstate?

(iv) Compute the probability current density in the two regions. Discuss your result.

(v) Show that r can be written as $e^{-2i\alpha}$ where $\alpha = \tan^{-1}(K/k)$, and hence show that

$$|\phi_1(x)|^2 = 4\cos^2(kx + \alpha).$$

Make two separate sketches, for the special cases $E = V_0/2$ and $E = V_0$, of $|\phi_1|^2$, and of $|\phi_2|^2$, showing how they match at x = 0.

(vi) Estimate the penetration distance into the region x > 0 for an electron with $V_0 - E = 1eV$.

[JMR QM Q4.3]

Q2. Momentum distributions

Consider the following two normalised wavefunctions

$$\phi_1(x) = \frac{1}{\sqrt{a}} \exp(-|x|/a), \quad \phi_2(x) = e^{ikx} \frac{1}{\sqrt{a}} \exp(-|x|/a).$$

Calculate $\langle x \rangle$ and $\langle p \rangle$ for both of these wavefunctions.

Sketch $|\phi_1|^2$ and $|\phi_2|^2$ versus x for fixed a.

The momentum probability amplitude corresponding to a position probability amplitude $\phi(x)$ is

$$\tilde{\phi}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \phi(x) dx$$

Evaluate $\tilde{\phi}_1(p)$ and $\tilde{\phi}_2(p)$ and sketch both as a function of p, for fixed a. Give an informal (qualitative) definition of the "spreads" of $|\phi_1(x)|^2$ in x and of $|\tilde{\phi}_1(p)|^2$ in p. Show that their product is of order h.

[JMR QM Q7.1]

Q3. Bound states of a 1D finite well

A particle of mass m is in a "finite well" potential

$$V(x) = V_0 \text{ for } |x| > a$$

= 0 for $|x| \le a$

where V_0 is positive. It may be shown that for such a potential, which satisfies the condition V(-x) = V(x), each energy eigenfunction has a definite parity, which can be either $even\ (\psi(-x) = \psi(x))$ or $odd\ (\psi(-x) = -\psi(x))$. (We'll meet parity again next term.)

- (i) Assuming that the well parameters V_0 and a are such that these bound states are possible, sketch the form of the wavefunctions for the first two bound states ($E < V_0$) of even parity, and for the first two bound states of odd parity (not exact wavefunctions; just the right number of wiggles, the right parity, and the right behaviour at the edge of the well and as $x \to \pm \infty$).
- (ii) The bound state wavefunction for even parity states has the form

$$\psi(x) = A \cos kx \text{ for } 0 \le x \le a$$
$$= Be^{-Kx} \text{ for } x > a,$$

where $k = \left(\frac{2mE}{\hbar^2}\right)^{\frac{1}{2}}$ and $K = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$. Write down $\psi(x)$ for $-a \le x \le 0$ and for $x \le -a$. By applying the boundary condition at x = a, show that the allowed k (i.e. E) values are determined by the roots of the equation

$$(v^2 - s^2)^{\frac{1}{2}} = s \tan s \tag{61}$$

where $v = [2mV_0a^2/\hbar^2]^{\frac{1}{2}}$ and s = ka. Check that v and s are dimensionless. Why is it not necessary to consider the boundary condition at x = -a as well? This equation (61) can be solved for s, given v, by a graphical method. For positive s, sketch the function $s \tan s$ versus s, and the function $(v^2 - s^2)^{\frac{1}{2}}$ versus s. Where these curves meet, you have a solution for s. Show (a) that there is always *one* solution, whatever the value of v; (b) that a second "even" bound state is possible as soon as v becomes greater than π .

(iii) Write down a similar form of the wavefunction for odd-parity states, and show that the energy eigenvalue condition is

$$(v^2 - s^2)^{\frac{1}{2}} = -s \cot s \tag{62}$$

Sketch both sides of (62) as a function of s, and show that there is no odd-parity bound state if $v < \pi/2$.

- (iv) Explain why the number of bound states (even + odd) is given by the next integer greater than the value of $2v/\pi$ (which is called the "well parameter").
- (v) The roots of (61) and (62) can be found by (for example) using the Find Root command on Mathematica or by trial and error. Take m= electron mass, a=0.5 nm and $V_0=20$ eV. How many bound states are there?

Verify that the two lowest roots for s are s=1.44438 and s=2.88685 and find the corresponding eigenvalues in eV.

[JMR QM Q7.3]

Q4. Transmission through a 1D finite barrier

Obtain the probability of passing through the square barrier

$$V = \begin{cases} V_0 & \text{for } |x| < a \\ 0 & \text{otherwise,} \end{cases}$$

in the case $E > V_0 > 0$. Verify that the probability you obtain joins at $E = V_0$ to the transition probability for $E < V_0$, which is

$$P(E) = \frac{1}{\cosh^2 2Ka + \frac{1}{4}(k/K - K/k)^2 \sinh 2Ka} \quad \text{with} \quad K^2 \equiv \frac{2m(V_0 - E)}{\hbar^2}.$$

[JB QM Q3.7]

Q5. Barrier penetration and transmission

A particle of mass m is incident with energy $E < V_0$ from the region x < 0 on the finite potential barrier

$$\begin{array}{lcl} V(x) & = & 0 & \text{ for } & x < 0, x > a \\ & = & V_0 & \text{ for } & 0 \le x \le a. \end{array}$$

Take the wavefunction in x < 0 to be

$$\psi_1 = e^{ikx} + Re^{-ikx},$$

in $0 \le x \le a$ to be

$$\psi_2 = Ae^{Kx} + Be^{-Kx}$$

and in x > a to be

$$\psi_3 = Ce^{ikx}$$

- where $K^2 = \frac{2m}{\hbar^2}(V_0 E), k^2 = 2mE/\hbar^2$. i) Is the wavefunction an energy eigenstate?
- ii) Is the wavefunction a momentum eigenstate?
- iii) From the boundary conditions at x = 0 deduce that

$$2 = A(1 - \frac{iK}{k}) + B(1 + \frac{iK}{k})$$

and from the boundary conditions at x = a deduce that

$$A = \frac{1}{2}e^{-Ka}(1 + \frac{ik}{K})e^{ika}C$$

and

$$B = \frac{1}{2}e^{Ka}(1 - \frac{ik}{K})e^{ika}C.$$

Substitute these expressions for A and B into the previous equation to show that

$$C = \frac{2e^{-ika}}{\left[2\cosh Ka - i\left(\frac{k}{K} - \frac{K}{k}\right)\sinh Ka\right]}$$

Hence show that the transmission coefficient (defined as the transmitted flux divided by the incident flux) is

$$|C|^2 = \left(1 + \frac{(K^2 + k^2)^2}{4K^2k^2}\sinh^2 Ka\right)^{-1},$$

which can also be written as

$$|C|^2 = \left(1 + \frac{\sinh^2[v^2(1 - E/V_0)]^{\frac{1}{2}}}{4(E/V_0)(1 - E/V_0)}\right)^{-1}$$

where v is as defined in Q 1, $v = (2mV_0a^2/\hbar^2)^{\frac{1}{2}}$.

- iv) Compute the probability flux *inside* the barrier, ie from ψ_2 . [Hint: caution A and B are complex!] Compare your result with part iii).
- v) Show that if $E/V_0 \ll 1$ and $v \gg 1, |C|^2$ is given approximately by

$$|C|^2 \approx \frac{16E}{V_0}e^{-2v}.$$

This shows the characteristic exponential tunnelling probability: the amplitude for waves with $E < V_0$ is exponentially attenuated by the barrier (though of course classical particles wouldn't get through at all); it is analogous to the evanescent waves in optics (e.g. in total internal reflection).

Suppose $E=1eV, V_0=6eV$ and a=1nm. By what factor will $|C|^2$ change if a increases to 1.1 nm?

The "Scanning Tunnelling Microscope" is just one application of quantum tunnelling - see G. Binnig and H. Rohrer Reviews of Modern Physics **59** (1987) 615 (their Nobel lecture).

[JMR QM Q7.4]

Q6. Transmission resonances [JMR QM Q7.5]

In Question—above, imagine the energy gradually increasing until it becomes equal to V_0 . What is $|C|^2$ when $E=V_0$? Now suppose E becomes greater than V_0 . Then K^2 becomes negative, $K \to i|K|$ (or maybe -i|K|?) and $\sinh^2 Ka \to (i\sin |K|a)^2$, so

$$|C|^2 \to \left(1 + \frac{\sin^2[v^2(E/V_0 - 1)]^{\frac{1}{2}}}{4(E/V_0)(E/V_0 - 1)}\right)^{-1}$$

(if you don't like this, you can of course repeat the whole calculation from scratch \dots).

Show that this new $|C|^2$ is equal to unity when $\left[\frac{2m}{\hbar^2}(E-V_0)\right]^{\frac{1}{2}}=n\pi/a$. What does the wave in the region $0 \le x \le a$ look like at these values of E?