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Introduction

A theorem due to Manin and Drinfeld states that any degree 0 divisor
on a modular curve which is supported on the cusps is a torsion element in
the Jacobian. This is equivalent to the statement that a certainmixedHodge
structure in the cohomology of the modular curve splits. In this short note,
we give a minimalist introduction to mixedHodge structures and a proof of
the Manin-Drinfeld theorem, loosely following [Elk90]. Finally, we briefly
summarize some extensions and recent developments.
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1 Hodge structures

1.1 Pure and mixed Hodge structures

We begin by recalling some Hodge theory:

Definition 1.1. Let 𝑘 be an integer. A (pure) Hodge structure of weight 𝑘 on
a ℤ-module 𝐻 is a decomposition 𝐻⊗ℤ ℂ =⨁𝑝+𝑞=𝑘𝐻

𝑝,𝑞 such that 𝐻𝑝,𝑞 = 𝐻𝑞,𝑝.
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Example 1.2. A basic example is the Hodge Tate structure on ℤ(𝑘) ..= (2𝜋𝑖)𝑘ℤ,
with ℤ(𝑘)⊗ℂ = [ℤ(𝑘)⊗ℂ]−𝑘,−𝑘 of weight −2𝑘. More generally, if𝐻 is any Hodge
structure, then 𝐻(𝑘) ..= 𝐻⊗ℤ(𝑘) is a Hodge structure called the 𝑘-th Tate twist of
𝐻.

Example 1.3. The motivating example of a Hodge structure arises from Hodge
theory; if 𝑀 is a 𝑑-dimensional compact Kähler manifold, then for each 1 ≤ 𝑘 ≤
2𝑑 the singular cohomology group 𝐻𝑘(𝑀;ℤ) has a decomposition 𝐻𝑘(𝑀;ℤ) ≅
⨁𝑝+𝑞=𝑘ℋ

𝑝,𝑞 whereℋ𝑝,𝑞 is the ℂ-vector space of harmonic (𝑝,𝑞)-forms.

In particular, if𝑋 is a smooth complex projective variety, then by the GAGA
principle we have natural Hodge structure on the algebraic de Rham cohomology
of 𝑋.

It is natural to ask whether there is a weaker notion of a Hodge structure
which holds for the cohomology of a possibly singular or non-projective variety.
This naturally leads to the notion of a mixed Hodge structure:

Definition 1.4. A mixed Hodge structure on a ℤ-module 𝐻 consists of:

(i) a decreasing filtration1 𝐹• on 𝐻⊗ℂ, called the Hodge filtration,
( ii) an increasing filtration𝑊• on 𝐻⊗ℚ, called the weight filtration,

such that gr𝑚𝑊•
..=𝑊𝑚/𝑊𝑚−1 is a Hodge structure of weight 𝑚, and

𝐹𝑝(gr𝑚𝑊•) = (𝑊𝑚 ∩𝐹
𝑝)/(𝑊𝑚−1 ∩𝐹

𝑝). (1.1)

Example 1.5. Fix an integer 𝑘, and suppose𝐻 has a mixed Hodge structure with

𝑊𝑚 = {
𝐻ℚ if 𝑚 ≥ 𝑘,
0 otherwise.

(1.2)

Then this naturally defines a pure Hodge structure of weight 𝑘 on𝐻. Conversely,
if 𝐻 is a pure Hodge structure, then we can define the weight filtration on 𝐻 by
eq. (1.2) and theHodge filtration by𝐹𝑝𝐻⊗ℂ =⨁𝑛≥𝑝𝐻

𝑛,𝑘−𝑛. In the case of singular
cohomology on a complex Kähler manifold, 𝐹𝑝 has the natural interpretation of
“at least 𝑝 𝑑𝑧’s”. In summary, pure Hodge structures are special cases of mixed
Hodge structures.

Definition 1.6. Amorphism of mixed Hodge structures 𝐻→𝐻′ is a ℤ-linear
map 𝜙∶ 𝐻→𝐻′ which preserves the filtrations; in other words, we have

𝜙ℚ(𝑊𝑚𝐻) ⊂𝑊𝑚𝐻
′ and 𝜙ℂ(𝐹

𝑝𝐻) ⊂ 𝐹𝑝𝐻′, (1.3)

where 𝜙ℚ and 𝜙ℂ are the induced maps on the filtrations.

1Recall that a decreasing filtration 𝐹• is a nested sequence of subobjects (for example subspaces
of a vector space) … ⊂ 𝐹𝑝+1𝛢 ⊂ 𝐹𝑝𝛢 ⊂ …, while an increasing filtration𝑊• on an object 𝛢 is a nested
sequence of subobjects … ⊂𝑊𝑚𝛢 ⊂𝑊𝑚+1𝛢 ⊂ …. The associated graded of a filtration 𝐹• (resp. 𝑊• )
is the object gr𝐹• = ⨁𝑝∈ℤ gr𝑝𝐹

• (resp. gr𝑊• = ⨁𝑚∈ℤ gr𝑚𝑊• ) where gr𝑝𝐹
• = 𝐹𝑝𝛢/𝐹𝑝+1𝛢 (resp.

gr𝑚𝑊• =𝑊𝑚𝛢/𝑊𝑚−1𝛢)
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The category of mixed Hodge structures, denoted by MHS, is very well-
behaved; for example, the kernel and cokernel of any morphism of mixed Hodge
structures inherit canonical mixed Hodge structures. More generally, we have
the following:

Theorem 1.7 ( [PS08, §I.3.1]).

(i) The category MHS is abelian.
(ii) The category MHS is closed under extensions: if 𝐻′ and 𝐻″ are mixed Hodge

structures and𝐻 any ℤ-module such that

0→𝐻′ →𝐻→𝐻″ →0 (1.4)

is an exact sequence of ℤ-modules, then there is a canonical mixed Hodge struc-
ture on𝐻 such that eq. (1.9) is an exact sequence in MHS.

(iii) The category MHS admits tensor products and internal Homs.

1.2 The mixed Hodge structure on a curve

To preserve generality, we pass for a moment to the language of schemes. The
heart of Deligne’s work [Del71], “Hodge II”, is the following theorem:

Theorem 1.8 ( [Del71, Thm. 3.2.5(iii)]). Let 𝑌 be a smooth, separated and quasi-
projective scheme over ℂ. For each 𝑛 ∈ ℕ, 𝐻𝑛(𝑌(ℂ);ℤ) admits a mixed Hodge struc-
ture which is functorial in 𝑌.

The proverbial margin is too small for a full proof, but we will describe the
situation when 𝑌 is a smooth, affine, quasi-projective curve over ℂ with a fixed
smooth projective completion 𝑋, and 𝑆 ..= 𝑋⧵𝑌.

For any variety 𝑉 we can define the algebraic de Rham cohomology as follows:
ifℱ• is any complex of sheaves on 𝑉, then since the category of sheaves on 𝑉 has
enough injectives we can find a quasi-isomorphism ℱ• → 𝐼• where 𝐼• is a com-
plex of injective sheaves. The hypercohomology groups of the complex ℱ• are the
cohomology groups of the complex 𝛤(𝑉,𝐼•), where 𝛤(𝑉,−) is the global sections
functor.

Now let 𝛺1
𝑉 be the sheaf of differentials on 𝑉, and consider the complex of

sheaves 𝛺•
𝑉 where 𝛺𝑛

𝑉
..=⋀𝑛𝛺1

𝑉.

Definition 1.9. The algebraic de Rham cohomology groups of 𝑉,𝐻𝑛
dR(𝛺

•
𝑉) is

the hypercohomology of 𝛺•
𝑉.

In particular, if 𝑉 is affine, then by Serre’s criterion for affineness any quasi-
coherent sheaf on 𝑉 is acyclic, so 𝐻𝑛

dR(𝛺
•
𝑉) = 𝐻

𝑛(𝛤(𝑉,𝛺•
𝑉)), that is, algebraic de

Rham cohomology coincides with sheaf cohomology of the sheaf of algebraic
differentials on 𝑉.
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There is a natural filtration on these groups; let 𝜎≥𝑖 be the truncation functor
which sends a complex 𝐴• to the corresponding complex 𝜎≥𝑖𝐴

• whose 𝑛-th term
is 𝐴𝑛 if 𝑛 ≥ 𝑖, and 0 otherwise. This is easily checked to be exact, and we get a
filtration on 𝐻•

dR by

𝐹𝑖𝐻𝑛
dR = Im(ℍ𝑛(𝜎≥𝑖𝛺

•
𝑉) →ℍ𝑛(𝛺•

𝑉)). (1.5)

We now narrow our focus to the curves 𝑋 and 𝑌 defined above. We have an
exact sequence of filtered complexes, the “residue exact sequence”,

0→𝛺•
𝛸 →𝛺•

𝛸(log𝑆) Res−−−→ 𝑖∗𝛺
•−1
𝑆 →0. (1.6)

Here𝛺•
𝛸(log𝑆) is the complex of algebraic differentials on𝑋with at most simple

poles at 𝑆, and the map Res sends a differential to the locally constant function
specfified by its residues at points of 𝑆. Since we are dealing with curves, 𝛺𝑝

𝛸 = 0
for 𝑝 ≥ 2, so eq. (1.6) simply the following commutative diagramwith exact rows,

0 𝒪𝛸 𝒪𝛸 0 0

0 𝛺1
𝛸 𝛺1

𝛸(log𝑆) 𝑖∗𝒪𝑆 0

Res

Res

(1.7)

Taking the long exact sequence in hypercohomology corresponding to eq. (1.6)
gives

0 ℍ0(𝛺•
𝛸) ℍ0(𝛺•

𝛸(log𝑆)) ℍ−1(𝛺•
𝑆)

ℍ1(𝛺•
𝛸) ℍ1(𝛺•

𝛸(log𝑆)) ℍ0(𝛺•
𝑆)

ℍ2(𝛺•
𝛸) …

(1.8)

Note thatℍ−1(𝛺•
𝑆) = 0, so the interesting part of the sequence starts at the second

line. To relate this to 𝑌, we use the following theorem, which in rough terms
states that only simple poles are required to compute cohomology:

Theorem 1.10 ( [Del71, 3.2.2]). For all 𝑛 ≥ 0, we have canonical isomorphisms
ℍ𝑛(𝛺•

𝛸(log𝑆)) ≅ ℍ𝑛(𝛺•
𝑌).

On the other hand, since 𝑌 is affine by assumption,ℍ𝑛(𝛺•
𝑌) ≅ 𝐻

𝑛(𝑌(ℂ),𝛺1
𝑌).

In particular, the filtration onℍ𝑛(𝛺•
𝛸(log𝑆)) gives rise to a filtration𝐹•𝐻𝑛(𝑌(ℂ),𝛺1

𝑌).

Next we turn our attention to Betti (or singular) cohomology; the inclusion
𝑌(ℂ) ↪ 𝑋(ℂ) determines the following exact sequence in relative homology, as

4



described in [Hat02, §2.1]:

0 0 = 𝐻2(𝑌(ℂ);ℤ) 𝐻2(𝑋(ℂ);ℤ) 𝐻2(𝑋(ℂ),𝑌(ℂ);ℤ)

𝐻1(𝑌(ℂ);ℤ) 𝐻1(𝑋(ℂ);ℤ) 𝐻1(𝑋(ℂ),𝑌(ℂ);ℤ) = 0
(1.9)

Next, we dualise; by Poincaré duality, we can fix an isomorphism of ℤ-modules
𝐻2(𝑋(ℂ),𝑌(ℂ);ℤ)

∨ ∼−→ 1
2𝜋𝑖𝐻

0(𝑆(ℂ);ℤ), where the seemingly arbitrary choice of
normalisation 1

2𝜋𝑖 will be justified soon. Viewing 𝐻0(𝑆(ℂ);ℤ) as functions on
the finite set of points 𝑆, we can natural identify it with Div𝑆(𝑋), the set of
divisors of 𝑋 which take the value 0 on points not in 𝑆. Similarly, if we fix an
isomorphism 𝐻2(𝑋(ℂ);ℤ)

∨ ≅ 1
2𝜋𝑖ℤ the map 𝐻2(𝑋(ℂ),𝑌(ℂ);ℤ)

∨ →𝐻2(𝑋(ℂ);ℤ)
∨

is precisely the degree map, 1
2𝜋𝑖∑𝑠∈𝑆 𝑛𝑠 ⋅ 𝑠 ↦

1
2𝜋𝑖∑𝑠∈𝑆 𝑛𝑠. In summary, the exact

cohomology sequence dual to eq. (1.9) is isomorphic to

0→𝐻1(𝑋(ℂ);ℤ) →𝐻1(𝑌(ℂ);ℤ) → 1
2𝜋𝑖 Div𝑆(𝑋)

deg
−−−→ 1

2𝜋𝑖ℤ→ 0. (1.10)

There is a natural morphism from de Rham cohomology to Betti cohomology;
any 𝜔 ∈ 𝛺𝑛

𝛸 gives rise to a singular 𝑛-cochain 𝛾 ↦ ∫𝛾𝜔. This allows us to compare
the exact sequences (1.9) and (1.10) (tensored with ℂ): we have a commutative
diagram

0 𝛺1
𝛸(𝑋) 𝛺1

𝛸(log𝑆)(𝑋) 𝐻0(𝑆,𝛺1
𝛸) 𝐻1(𝑋,𝛺1

𝛸) 0

0 𝐻1(𝑋(ℂ);ℂ) 𝐻1(𝑌(ℂ);ℂ) 1
2𝜋𝑖 Div𝑆(𝑋)⊗ℂ ℂ 0

𝜙

Res

deg

(1.11)
where we have used that 𝐻1(𝑋,𝛺1

𝛸(log𝑆)) = 0: indeed, 𝛺1
𝛸(log𝑆) ≅ 𝛺1

𝛸 ⊗𝒪𝑆, so
by Serre duality

𝐻1(𝑋,𝛺1
𝛸(log𝑆)) = 𝐻1(𝑋,𝛺1

𝛸 ⊗𝒪𝑆) = 𝐻
0(𝑋,𝒪(−𝑆))∨ = 0. (1.12)

The dashed arrow in eq. (1.11) sends ameromorphic differential𝜔 to 1
2𝜋𝑖∑𝑠∈𝑆 (∫𝛾𝑠 𝜔)⋅

𝑠, where 𝛾𝑠 is the class in 𝐻1(𝑌(ℂ);ℂ) of a sufficiently small loop around 𝑠.

Next we define the filtrations on𝐻1(𝑌): starting from eq. (1.10), we interpret
1
2𝜋𝑖 Div𝑆(𝑋) as the Hodge Tate twist of 𝐻0(𝑆;ℤ). Then we have a diagram of ℤ-
modules,

0→𝐻1(𝑋(ℂ);ℤ) →𝐻1(𝑌(ℂ);ℤ) →𝐻0(𝑆;ℤ)[−1] →𝐻2(𝑋;ℤ) → 0. (1.13)

Now let 𝑈 ..= kerdeg. Since 𝐻0(𝑆;ℤ)[−1] → 𝐻2(𝑋;ℤ) is a morphism of mixed
Hodge structures, theorem 1.7 implies that 𝑈 has a mixed Hodge structure of
type (1,1). Explicitly, 𝑈ℤ = 1

2𝜋𝑖 Div0𝑆(𝑋), the set of integral divisors ∑𝑠∈𝑆 𝑛𝑠 ⋅ 𝑠
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with∑𝑠∈𝑆 𝑛𝑠 = 0, where𝑊2𝑈 = 1
2𝜋𝑖 Div0𝑆(𝑋)⊗ℚ and 𝐹1𝑈 1

2𝜋𝑖 Div0𝑆(𝑋)⊗ℂ. There
is a corresponding diagram of ℤ-modules

0→𝐻1(𝑋(ℂ);ℤ) →𝐻1(𝑌(ℂ);ℤ) →𝑈→ 0, (1.14)

and this allows us to define a natural weight filtration on 𝐻1(𝑌(ℂ);ℤ):

𝑊0𝐻
1(𝑌) = 0 𝐹0𝐻1(𝑌) = 𝐻1(𝑌;ℂ)

𝑊1𝐻
1(𝑌) = 𝐻1(𝑋;ℚ) 𝐹1𝐻1(𝑌) = Im𝜙

𝑊2𝐻
1(𝑌) = 𝐻1(𝑌;ℚ) 𝐹2𝐻1(𝑌) = 0

Here 𝜙 is as in eq. (1.11), 𝜔 ↦ ([𝛾] ↦ ∫[𝛾]𝜔), and 𝐹• is precisely the weight
filtration on 𝐻1

dR(𝛺
•(log𝑆)) under the isomorphism in theorem 1.10.

2 The Manin-Drinfeld theorem

If 𝑁 ∈ ℕ, we denote by 𝛤(𝑁) the subgroup of Sl2(ℤ) which are entry-wise con-
gruent modulo 𝑁 to the identity matrix. A subgroup 𝛤 of Sl2(ℤ) is said to be a
congruence subgroup if 𝛤 ⊃ 𝛤(𝑁). Any such 𝛤 inherits a left action on the upper-
half plane 𝔥, and we set 𝑌(𝛤) ..= 𝛤 ⧵ 𝔥 and denote by 𝑋(𝛤) its smooth projective
completion. By the GAGA principle, the analytification of 𝑋(𝛤) is precisely the
compact Riemann surface arising from 𝛤⧵ 𝔥.

The set 𝑆 ..= 𝑋(𝛤) ⧵ 𝑌(𝛤) is precisely the set of cusps of 𝛤, that is, the im-
age under the quotient map of the 𝛤-orbits of ℙ1(ℚ). Note that ∞ is always a
cusp; therefore we have a canonical embedding of 𝑋(𝛤) into its Jacobian 𝐽(𝛤)
by 𝑥 ↦ [𝑥] − [∞]. Here we identify 𝐽(𝛤) with Pic0(𝑋(𝛤)), the group of degree 0
divisors modulo principal divisors, that is, any divisor 𝐷 of the form 𝐷 = (𝑓) =
∑𝛲∈𝛸 ord𝛲𝑓 ⋅ 𝑃 where 𝑓 is a meromorphic function on 𝑋(𝛤).

Theorem 2.1 (Manin-Drinfeld). If𝐷 is a divisor of degree 0with support in 𝑆, then
𝐷 has finite order in 𝐽(𝛤).

Equivalently, the image of 𝑆 in 𝐽(𝛤) generates a finite subgroup.

Example 2.2. Fix 𝑝 prime and set 𝛤 = 𝛤0(𝑝). The cusps of 𝑋0(𝑝) ..= 𝑋(𝛤0(𝑝)) are
the two points 𝑃0 and 𝑃∞, corresponding to the cusps 0 and ∞. Setting

𝛥(𝜏) = 𝑞
∞
∏
𝑛=1

(1 + 𝑞𝑛)24, 𝑞 = 𝑒2𝜋𝑖𝜏, (2.1)

the meromorphic function 𝛥(𝜏)/𝛥(𝑝𝜏) has divisor (𝑝 − 1)(𝑃0 −𝑃∞); see [Apo90,
Chap. 4.7] for a proof. Thus the class of 𝑃0 −𝑃∞ in 𝐽(𝛤0(𝑝)) is torsion.
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Remark. The Manin-Mumford conjecture (now Raynaud’s theorem) states that
there are only finitely many torsion points in the image of a curve 𝑋 in its Jaco-
bian. The Manin-Drinfeld theorem then implies that we cannot expect the set to
be empty in general.

2.1 Hodge-theoretic interpretation

We want to show the following criterion:

Proposition 2.3. Let 𝑋, 𝑌 and 𝑆 ..= 𝑋 ⧵ 𝑌 be as in section 1.2. Then the subgroup
generated by the image Div0𝑆(𝑋) in Pic0(𝑋) is finite if and only if the mixed Hodge
structure on𝐻1(𝑌(𝛤);ℤ) splits overℚ.

Let 𝑅 ⊂ ℂ be a subring. The statement that 𝐻1(𝑌(𝛤);ℤ) splits over 𝑅 simply
means that we can find a morphism of Hodge structures 𝜂 which fits into the
exact sequence

0 𝐻1(𝑋;𝑅) 𝐻1(𝑌;𝑅) 𝑈⊗𝑅 0

𝜂

(2.2)

In other words, we want 𝜂 to preserve the Hodge filtration (and the weight filtra-
tion, but this is automatic). We are looking for a map

1
2𝜋𝑖 Div0𝑆⊗𝑅→𝐻1(𝑌;𝑅) ∩ Im𝜙, 1

2𝜋𝑖𝐷↦ 1
2𝜋𝑖𝜈𝐷 (2.3)

such that Res(𝜈𝐷) = 𝐷. The statement that 1
2𝜋𝑖𝜈𝐷 ∈ 𝐻1(𝑌;𝑅) = Hom(𝐻1(𝑌;ℤ),𝑅)

simply means that

1
2𝜋𝑖 ∫[𝛾]

𝜈𝐷 ∈ 𝑅 for all [𝛾] ∈ 𝐻1(𝑌;ℤ). (2.4)

From the natural decomposition 𝐻1(𝑌;ℤ) ≅ 𝐻1(𝑋;ℤ) ⊕⨁𝑠∈𝑆ℤ𝛾𝑠, where 𝛾𝑠 is a
sufficiently small loop around 𝑠, the following lemma is immediate:

Lemma 2.4. 1
2𝜋𝑖𝜈 ∈ 𝛺

1
𝛸(log𝑆)(𝑋) defines a class 𝜙( 1

2𝜋𝑖𝜈) ∈ 𝐻
1(𝑌;𝑅) if and only if

the following hold:

(i) ∫[𝛾] 𝜈 ∈ 2𝜋𝑖𝑅 for all 𝛾 ∈ 𝐻1(𝑋;𝑅),
(ii) Res𝜈 ∈ Div0𝑆(𝑋)⊗𝑅.

A classical result, see for example [Lan82, Prop. IV.5.3], states that the map

𝛺1(𝑋) →𝐻1(𝑋;ℝ), 𝜔 ↦ ([𝛾] ↦ Re∫
𝛾
𝜔) (2.5)

is an ℝ-linear isomorphism. Both spaces both have dimension equal to the genus
of 𝑋, and one can show that the map is injective.
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Lemma 2.5. When 𝑅 = ℝ there exists a unique splitting 𝜂 in eq. (2.2).

Proof. Fix 1
2𝜋𝑖𝐷 ∈ 1

2𝜋𝑖 Div0𝑆(𝑋) ⊗ℝ. By exactness of eq. (1.11), there exists some
𝜈 ∈ 𝛺1(𝑋, log𝑆) such that Res𝜈 = 𝐷; by lemma 2.4 it suffices to modify 𝜈 to
some 𝜈 satisfying ∫𝛾 𝑣 ∈ 2𝜋𝑖ℝ for any [𝛾] ∈ 𝐻1(𝑌;ℤ). By the result just cited, there
is a unique element 𝜔 ∈ 𝛺1(𝑋) such that Re∫𝛾𝜔 = Re∫𝛾 𝜈. Then 𝜈 ..= 𝜔 − 𝜈 ∈
𝛺1(𝑋, log𝑆) satisfies ∫𝛾 𝜈 ∈ 𝑖ℝ = 2𝜋𝑖ℝ and Res𝜈 = 𝐷 since 𝜔 is holomorphic, and
by uniqueness of 𝜔 is independent of choice of 𝜈. Setting 𝜂(𝐷) ..= 𝜈 then gives the
desired map.

By uniqueness, any splitting defined over ℚ necessarily lifts to the splitting
above, and by construction and lemma 2.4 𝜂 descends to ℚ if and only if for all
𝐷, ∫𝛾 𝜂(𝐷) ∈ 2𝜋𝑖ℚ.

Lemma 2.6. Fix 𝜔 ∈ 𝛺1(𝑋, log𝑆). Then ∫𝜔 ∈ ℤ for all [𝛾] ∈ 𝐻1(𝑋;ℤ) if and only if
there exists a meromorphic function 𝑓 on𝑋withDiv𝑓 ∈ Div0𝑆𝑋 such that 𝜔 = 1

2𝜋𝑖
𝑑𝑓
𝑓 .

Proof. Suppose first that there exists a meromorphic function 𝑓∶ 𝑋 → ℂ ⊔ {∞}
as above. Then 𝑓 restricts to a holomorphic function 𝑌 → ℂ which induces a
morphism 𝑓∗ ∶ 𝐻1(ℂ×;ℤ) →𝐻1(𝑌;ℤ). Then 𝜔 = 𝑓∗(𝑑𝑧𝑧 ), and

∫
𝛾
𝜔 =∫

𝛾
𝑓∗( 1

2𝜋𝑖
𝑑𝑧
𝑧 ) =

1
2𝜋𝑖 ∫𝑓∗𝛾

𝑑𝑧
𝑧 , (2.6)

which lies in ℤ by Cauchy’s integral formula.

Conversely, let 𝜌∶ 𝑌 → 𝑌 be the universal covering map and 𝛤 ..= Aut(𝑌).
Then 𝜋1(𝑌) = 0, hence (𝜋1(𝑌)

ab)∨ = 𝐻1(𝑌;ℤ) = 0, so 𝜌∗𝜔 = 𝑑ℎ for some meromor-
phic function ℎ on 𝑌. Because 𝜌∗𝜔 is invariant under 𝛤, this satisfies ℎ ∘ 𝛾 − ℎ ∈ ℤ
for any 𝛾 ∈ 𝛤, and so exp(2𝜋𝑖ℎ) is invariant under 𝛤. Since 𝑌 = 𝛤 ⧵ 𝑌, exp(ℎ)
descends to a meromorphic function 𝑓 on 𝑌. We then compute

𝜌∗𝑑𝑓 = 𝑑(𝜌∗𝑓) = 𝑑(exp(2𝜋𝑖ℎ)) = 2𝜋𝑖exp(2𝜋𝑖ℎ)𝑑ℎ = 𝜌∗(2𝜋𝑖𝑓𝜔), (2.7)

so 𝜔 = 1
2𝜋𝑖

𝑑𝑓
𝑓 as required.

Note that Div𝑓 =∑𝑠∈𝑆Res𝑠𝜔 ⋅ 𝑠 = Res𝜔. In particular, for 𝜔 = 𝜂(𝐷) we have
Div𝑓 = Res𝜂(𝐷) = 𝐷, which precisely means that [𝐷] ∈ Pic0(𝑋) is trivial. In
summary, we get a string of equivalent statements,

∘ the mixed Hodge structure of 𝐻1(𝑌;ℤ) splits overℚ,

∘ 𝜂 is defined overℚ,

∘ ∫𝛾 𝜂(𝐷) ∈ 2𝜋𝑖ℚ for all [𝛾] ∈ 𝐻1(𝑋;ℤ),
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∘ 𝑛 ⋅ ∫𝛾 𝜂(𝐷) = ∫𝛾 𝜂(𝑛𝐷) ∈ 2𝜋𝑖ℤ for some 𝑛 ∈ ℕ and for all [𝛾] ∈ 𝐻1(𝑋;ℤ),

∘ 𝑛[𝐷] = [𝑛𝐷] = [0] ∈ Pic0(𝑋) for some 𝑛 ∈ ℕ.

This proves proposition 2.3.

2.2 A special case

Now we specialise to the case where 𝛤 = 𝛤(𝑁). Let 𝑀2(𝑁) denote the space
of modular forms of weight 2 on 𝛤(𝑁), and 𝑆2(𝑁) the cuspidal subspace, that
is, the modular forms which vanish at the cusps of 𝑋(𝛤(𝑁)). We have natural
identifications 𝑀2(𝑁) ≅ 𝐻0(𝑋,𝛺1(log𝑆)) and 𝑆2(𝑁) ≅ 𝐻0(𝑋,𝛺1) by 𝑓 ↦ 𝑓𝑑𝑧.

For 𝛼 = (𝑎 𝑏
𝑐 𝑑) ∈ Gl2(ℝ) with positive determinant, we define the slash operator

by

𝑓|𝛼(𝑧) = det(𝛼) ⋅ (𝑐𝑧 + 𝑑)−2𝑓(𝑎𝑧 + 𝑏𝑐𝑧 + 𝑑). (2.8)

The Petersson inner product on 𝑆2(𝑁) is defined by

⟨𝑓,𝑔⟩ ..=∫
𝛤(𝛮)⧵𝔥

𝑓(𝑧)𝑔(𝑧)
𝑑𝑥𝑑𝑦
𝑦2

, 𝑧 = 𝑥 + 𝑖𝑦. (2.9)

This gives rise to a norm ‖𝑓‖ ..= ⟨𝑓,𝑓⟩1/2 on 𝑆2(𝑁), and one checks that ‖𝑓|𝛼‖ = ‖𝑓‖
for any 𝛼 as above.

We will define Hecke correspondences on the cohomology of modular curves;
for further details, see [DI95, I.3.2] or [Ste82, I.1.2]. Fix a prime 𝑝 ≡ 1 (mod 𝑁),

and let 𝛼𝑝 ..= (𝑝 0
0 1). An easy computation shows that

𝛤′ ..= 𝛤(𝑁) ∩ (𝛼−1𝑝 𝛤(𝑁)𝛼𝑝) = {(
𝑎 𝑏
𝑐 𝑑) ∈ 𝛤(𝑁) ∶ 𝑐 ≡ 0 (mod 𝑝)}. (2.10)

The double coset𝑀 ..= 𝛤(𝑁)𝛼𝑝𝛤(𝑁) is the set of matrices of determinant 𝑝 con-

gruent to the identity matrix modulo 𝑁. Setting 𝛼𝑗 ..= (1 𝑁𝑗
0 𝑝 ) for 𝑗 = 0,…,𝑝 − 1

we get a decomposition 𝑀 = ⋃𝑝
𝑗=0𝛤(𝑁)𝛼𝑗. Then 𝛤(𝑁) = ⋃𝑝

𝑗=0𝛤
′𝛽𝑗 where 𝛽𝑗 ..=

𝛼−1𝑝 𝛼𝑗. We have natural maps

𝔥 𝑋(𝛤′)

𝔥 𝑋(𝛤)

Pr𝛤′

𝜓1 𝜓2
Pr𝛤

(2.11)

with the property that Pr𝛤 = Pr𝛤′ ∘ 𝜓1 and Pr𝛤 ∘ 𝛼𝑝 = Pr𝛤′ ∘ 𝜓2. This induces an
endomorphism 𝑇𝑝 = 𝜓1∗ ∘ 𝜓

∗
2 on 𝐻1(𝑋;ℤ). This is called a Hecke correspondence.
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Lemma 2.7. The Hecke correspondence on𝐻1(𝑋;ℤ) respects the Hodge structure.

Proof. This is a general fact about correspondences on curves, and the proof is
not terribly enlightening. See [Elk90, No II] for the details.

In particular, the Hecke correspondence acts on 𝐻1(𝑋;𝛺(log𝑆)), and under
the isomorphism with𝑀𝑘(𝛤), the action coincides with that of the usual Hecke
operators:

𝑇𝑝(𝑓) =
𝑝

∑
𝑗=0

𝑓|𝛼𝑝𝛽𝑗 =
𝑝

∑
𝑗=0

𝑓|𝛼𝑗 . (2.12)

Recall that for any cusp 𝑠 of 𝑋(𝑁), we can define a 𝑞-expansion of 𝑓 at 𝑠 by 𝑓 =
∑∞

𝑛=0 𝑎(𝑛)𝑞
𝑛/𝛮 where 𝑞 = 𝑒2𝜋𝑖𝑧. Then a straightforward computation shows

𝑇𝑝(𝑓)(𝑧) = 𝑝
−1

∞
∑
𝑛=0

𝑎(𝑛)𝑞𝑛/(𝛮𝑝). (2.13)

We have a crude bound on the eigenvalues of 𝑇𝑝: if 𝑓 is a cusp form with 𝑇𝑝(𝑓) =
𝜆𝑓 for some 𝜆 ∈ ℂ×, then by the triangle inequality,

|𝜆|‖𝑓‖ = ‖𝑇𝑝(𝑓)‖ ≤
𝑝

∑
𝑗=0

‖𝑓|𝛼𝑗‖ = (𝑝 + 1)‖𝑓‖, (2.14)

with equality if and only if 𝑓 is an eigenform of all the slash operators |𝛼𝑗 . But
from the computation

𝑓|𝛼𝑝 = 𝑝
∞
∑
𝑛=0

𝑎(𝑛)𝑞𝑝𝑛/𝛮 (2.15)

one finds that this is equivalent to 𝑓 = 0. On the other hand, the constant term of
𝑓|𝛼𝑗 equals 𝑝𝑎(0) if 𝑗 = 𝑝, and 𝑎(0)/𝑝 otherwise. Therefore, the constant term of
𝑇𝑝(𝑓) is (𝑝+1)𝑎(0). Since theHecke action commutes with conjugation by Sl2(ℤ),
for any cusp 𝑠 we have 𝑇𝑝𝑓(𝑠) = (𝑝 + 1)𝑓(𝑠). This shows that every eigenvalue of
𝑇𝑝 acting on the quotient𝑀𝑘(𝑁)/𝑆𝑘(𝑁) is 𝑝+ 1.

Now let𝑃 ∈ ℤ[𝑇] be the characteristic polynomial of𝑇𝑝 acting on𝐻
1(𝑋(𝑁);ℚ).

Then 𝑃(𝑇𝑝) acting on 𝐻1(𝑌(𝑁);ℚ) is an endomorphism of Hodge structures
whose image is an orthogonal complement to𝐻1(𝑋(𝑁);ℚ) in𝐻1(𝑌(𝑁);ℚ), and
so the Hodge structure of𝐻1(𝑋(𝑁)) splits, and theorem 2.1 holds for 𝛤 = 𝛤(𝑁).

2.3 Conclusion

Finally, if 𝛤 ⊃ 𝛤(𝑁) is an arbitrary congruence subgroup, then we have a natu-
ral covering map 𝜋∶ 𝑋(𝑁) → 𝑋(𝛤) and a corresponding group homomorphism
𝜋∗ ∶ Div0𝑋(𝑁) → Div0𝑋(𝛤), which preserves cusps because 𝜋 does. Therefore,
if 𝐷 ∈ Div0𝑆𝑋(𝛤), then 𝜋∗𝐷 is a divisor supported at the cusps of 𝑋(𝑁), hence
torsion. This proves theorem 2.1 in full generality.
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3 Applications and Extensions

The proof of Manin-Drinfeld given in the preceding section cannot be expected
to hold for non-congruence subgroups of Sl2(ℤ), since they do not admit Hecke
correspondences. In fact, the statement is false for modular curves parameterising
Fermat curves, see [KL81, §8.3].

Example 3.1 ( [Sch86]). Belyi’s theorem states that any smooth compact con-
nected algebraic curve 𝐶 defined over 𝑄 admits a map to ℙ1ℂ branched at 3 points.
Removing the branched points gives an unramified cover𝑌(2), so by the Galois
correspondence for Riemann surfaces there exists a subgroup 𝛤 ⊂ Sl2(ℤ) such that
𝐶 is isomorphic to the compactification of 𝛤 ⧵ 𝔥; the branch points are mapped
to the cusp. If we choose 𝐶→ ℙ1ℂ such that the branch points have infinite order
in the Jacobian – the proof of Belyi’s theorem implies we can choose the branch
points freely – then 𝛤 gives a counterexample to Manin-Drinfeld.2

Recall from section 2 that every meromorphic differential 𝜔 on 𝑋(𝛤) with
poles of order at most 1 determines a cuspidal divisor. Conversely, 𝐷 ∈ Div0𝑆
determines a unique meromorphic differential 𝜔𝐷 ∈ 𝐻0(𝑋,𝛺1(log𝑆)) satisfying
(𝜔𝐷) = 𝐷 and ∫𝛿𝜔𝐷 ∈ 𝑖ℝ for any 𝛿 ∈ 𝐻1(𝑋(𝛤);ℤ) disjoint from 𝑆.

The meromorphic differentials 𝜔𝐷 can be determined explicitly. Let 𝜅 be a
cusp of 𝑋(𝛤) and 𝛤𝜅 the stabiliser of 𝜅 in 𝛤. Fix 𝜎 ∈ Sl2(ℤ) such that 𝜎(∞) = 𝜅 and

𝜎−1𝛤𝜅𝜎 = {(
1 𝑚
0 1) ∶ 𝑚 ∈ ℤ}. (3.1)

If 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝔥 and 𝑠 ∈ ℂ with Re 𝑠 > 1, then we define the real-analytic Eisenstein
series

𝐸𝜅(𝑧, 𝑠) = ∑
𝛾∈𝛤𝜅⧵𝛤

Im(𝜎−1𝛾(𝑧))𝑠 (3.2)

= ∑
𝛾∈𝛤𝜅⧵𝛤

𝑦2

|𝑐𝑧 + 𝑑|2𝑠
, 𝜎−1𝛾 = (∗ ∗

𝑐 𝑑)

and set 𝐺2,𝜅(𝑧) = lim𝑠→1+ (2𝑖
𝜕
𝜕𝑧𝐸𝜅(𝑧, 𝑠)). This is a real analytic automorphic form

of weight 2 on 𝛤, and a generalisation of Hecke’s modified Eisenstein series. Given
a divisor 𝐷 =∑𝜅∈𝑆 𝑛𝜅𝜅, let 𝐺2,𝜅

..=∑𝜅∈𝑆 𝑛𝜅𝐺2,𝜅. Then we have

𝜔𝐷 = 2𝜋𝑖𝐺2,𝐷(𝑧)𝑑𝑧. (3.3)

2The statement that any curve as above is uniformised by a modular curve might seem surpris-
ing at first, since modular curves intuitively are “arithmetic”. However, the density of congruence
subgroups in the collection of all subgroups of Sl2(ℤ) is 0, a statement made precise in section 2 of
Pete Clark’s notes. Non-congruence subgroups generally don’t have the same arithmetical signifi-
cance as congruence subgroups; for example they don’t necessarily admit many correspondences.
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In light of the proof of lemma 2.6, this amounts to showing that the residual divi-
sor of 𝐺2,𝐷(𝑧) equals 𝐷, and that 𝐺2,𝐷(𝑧) is holomorphic away from the support
of 𝐷.

Theorem 3.2 ( [Sch86, Thm. 3]). The image of𝐷 in the Jacobian of𝑋(𝛤) is torsion
if and only if all the Fourier coefficients of 𝐺2,𝐷 in the expansion at ∞ are algebraic.

3.1 Computing Ramanujan sums

In the note [MR87], we start off with the explicit Fourier expansion

𝐺2,𝜅(𝑧) = 1𝜅=∞ −𝜋𝑦− 4𝜋
2

∞
∑
𝑚=1

𝑚𝐴𝜅,𝑚𝑞
𝑚, 𝑞 = 𝑒2𝜋𝑖𝑧, (3.4)

where 1𝜅=∞ = 1 if 𝜅 = ∞ and 0 otherwise, 𝐶 is a constant independent of 𝜅, and

𝐴𝜅,𝑚 = lim
𝑠→1+

∑
𝑐>0

1
𝑐2𝑠
( ∑
0≤𝑑<𝛮𝑐

exp(2𝜋𝑖𝑚𝑑/𝑐)), (∗ ∗
𝑐 𝑑) ∈ 𝜎

−1
𝜅 𝛤. (3.5)

To get rid of the constant terms, we consider the differences 𝐴𝜅,𝑚 −𝐴∞,𝑚. Then
the following is immediate from theorem 3.2:

Proposition 3.3 ( [MR87, Prop. p.254]). theorem 2.1 holds if and only if for all
cusps 𝜅 of 𝛤 and all 𝑚 ∈ ℕ, we have that 𝜋2(𝐴𝜅,𝑚 −𝐴∞) ∈ ℚ.

The inner sums in eq. (3.5) can be viewed as “generalised Ramanujan sums”

in the following sense: if we take 𝛤 = 𝛤(𝑁) and 𝜅 = 0, then 𝜎𝜅 = (
0 −1
1 0 ) and

𝜎−1𝜅 𝛤 = {(∗ ∗
𝑐 𝑑) ∈ Sl2(ℤ) ∶ 𝑐 ≡ ±1 mod 𝑁, 𝑑 ≡ 0 mod 𝑁, (𝑐,𝑑) = 1}. (3.6)

Therefore,
𝐴𝜅,𝑚 = ∑

𝑐>0
𝑐≡±1 mod 𝛮

1
𝑐2

∑
0≤𝑑<𝛮𝑐
(𝑐,𝑑)=1

𝑑≡0 mod 𝛮

exp(2𝜋𝑖𝑚𝑑/(𝑐𝑁)), (3.7)

and the inner sums bear resemblance to, and can be evaluated using, Ramanujan
sums of the form

∑
0≤ℎ<𝑘
(ℎ,𝑘)=1

exp(2𝜋𝑖𝑚ℎ/𝑘). (3.8)

The strategy for proving proposition 3.3 is to reduce to the case of 𝛤 = 𝛤(𝑁) as in
section 2.3, and then to rewrite the sums 𝐴𝜅,𝑚 first in terms of the Möbius func-
tion, and then in terms of Dirichlet series. The result is an expression consisting
of finite sums of roots of unity, finite sums of Dirichlet characters, and known
rational values of Dirichlet 𝐿-functions, proving algebraicity.
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An interesting corollary is that the finiteness of the image of the cuspidal di-
visor group in the Jacobian of a Fermat curve, known by a result of Rohrlich,
implies the rationality of the Fourier coefficients of the associated Eisenstein se-
ries.

3.2 Rationality of Rademacher symbols

The recent paper [Bur21] continues this line of investigation, now with 𝛤 a gen-
eral non-cocompact Fuchsian group, meaning a discrete subgroup of Sl2(ℤ) with
non-compact fundamental domain. We can attach Eisenstein series to any cusp

𝜅 as above, and the key result is that for any 𝛾 = (𝑎 𝑏
𝑐 𝑑) ∈ 𝛤 which is hyperbolic

(i.e. |𝑎 + 𝑑| > 2) and has positive trace, we have ( [Bur21, Lemma 3.1])

∫
𝛾
𝐺𝜅(𝑧)𝑑𝑧 = 𝛹𝜅(𝛾), (3.9)

where ∫𝛾 is the integral along the geodesic connecting a fixed 𝑧0 ∈ 𝔥 and 𝛾(𝑧0), and
𝛹𝜅 is the Rademacher symbol associated to the cusp 𝜅. Its definition is somewhat
complicated, so we limit our attention to the very special case 𝛤 = Sl2(ℤ): for

𝛾 = (𝑎 𝑏
𝑐 𝑑) define the Dedekind symbol

𝛷(𝛾) = {
𝑏
𝑑 if 𝑐 = 0,
𝑎+𝑑
𝑐 − 12sign(𝑐) ⋅ 𝑠(𝑎, 𝑐) if 𝑐 ≠ 0,

(3.10)

where 𝑠(𝑎, 𝑐) denotes theDedekind sum, see [Apo90, §3.3]. Then theRademacher
symbol associated to the cusp ∞ is given by 𝛹∞(𝛾) = 𝛷(𝛾) − 3sign(𝑐(𝑎 + 𝑑)), and
this is invariant under conjugation. From the preceding section and eq. (3.9) it
is clear that the Manin-Drinfeld theorem is equivalent to the rationality of the
Rademacher symbols 𝛹𝜅(𝛾) for all hyperbolic elements 𝛾 ∈ 𝛤 of positive trace.

This immediately extends the Manin-Drinfeld to classes of non-congruence
subgroups known to have rational Dedekind-Rademacher symbols; in particular,
this includes non-cocompact Fuchsian groups of genus 0, and the Helling groups
𝑋(𝑁)+, which are congruence subgroups enlarged with all their respective Atkin-
Lehner involutions.

3.3 Concluding remarks

There are many other topics related to the Manin-Drinfeld theorem worth pur-
suing, including:

∘ Generalisations, for example the extensions to imaginary quadratic fields
and CM-fields by Kurčanov, [Kur78, Kur80].
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∘ Understanding better why the naïve generalisation of Manin-Drinfeld fails
to hold for Hilbert modular surfaces, as explained in the end of section 7.6
of [Fra98].

∘ The proof of Manin-Drinfeld using modular symbols, described in [Lan87,
§4.2].

∘ In [BM16], the authors rephrase Manin-Drinfeld as saying that so-called
Eisenstein cycles define a rational subspace of𝐻1(𝑋(𝛤);ℚ). By writing these
as rational combinations of modular symbols, they obtain an “explicit”
version of Manin-Drinfeld for 𝛤 = 𝛤(𝑁) where 𝑁 is an odd prime.

I am very grateful to Tiago Jardim da Fonseca for giving useful comments on
the essay, and for clarifying several confusing points on the construction in sec-
tion 1.2 as well as the splitting in section 2. Another thanks to him and to Nils
Matthes for giving a lovely course on Hodge theory.
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