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Introduction

The theory of schemes is an integral part of the revolution in algebraic geometry that took
place in theprevious century, and it has since spread throughoutneighbouring areas ofmath-
ematics, most prominently to number theory. Its origins are easy to trace: in the first half
of the previous century it was clear that the foundations of algebraic geometry were lacking
in rigour. The unfortunate consequence of this was that several results, particularly in the
Italian school of algebraic geometry led by Castelnuovo, Enriques and Severi, turned out to
be imprecise or even false. As a response to this, Oscar Zariski and Pierre Samuel wrote their
influential volumes on commutative algebra ([ZCS75], [ZS60]) to cover the prerequisitema-
terial for a textbookon algebraic geometrywhichnevermaterialised. AndréWeil, inspired by
his own endeavours on geometry over finite fields, wrote the tome [Wei62]. However, the es-
tablishment of the foundations of algebraic geometry is usually attributed to Grothendieck,
who developed the language of schemes, which partly through lack of user-friendly exposi-
tion – [Mum13] being an obvious exception – quickly obtained the reputation of somewhat
of an arcane art.

The rough idea of scheme theory is that starting from the geometric point of view leads
to trouble. For example, the Hilbert Nullstellensatz is a fundamental result in complex alge-
braic geometry which breaks down in spectacular ways over non-algebraically closed fields.
However, starting from commutative algebra, we can recover geometric information from
purely algebraic definitions. By analogy, defining a manifold in terms of a choice of embed-
ding intoRN gives toomuch auxiliary information, and it is difficult to distinguish intrinsic
and extrinsic information.

Whereas amanifold locally looks likeEuclidean space, a scheme is locally identifiedwith a
topological space called the prime spectrum of a given ring. This contains all the information
of the ring, and in fact lets us recover the ring completely. The topology on this space is
very different from the Euclidean topology, but we can nevertheless study “functions” on
open sets just as withmanifolds. The natural way of structuring this information is through
sheaves, which we discuss in Chapter 1.

Let us give an example to illustrate why the prime spectrum of a ring is a natural starting
point: let R = C[x], and observe that we have a natural identification of the set of maxi-
mal ideals of R, denoted mSpec(R), with the spaceC, by (x − a) ↔ a. The problem with
mSpec(R) is that given a map of rings ϕ : R → S, the ideal ϕ−1(m) is not necessarily max-
imal, so a ring morphism does not give rise to a function of the associated maximal spectra.
However, if we consider more generally prime ideals, we do indeed have an associated map,
and in fact a functor of categories. Moreover, the additional ideal 0 in this case turns out to
provide valuable geometric information.

However, this topology turns out to be insufficient in several ways. To compensate, we
add more open sets which allow us transfer ideas from the Euclidean setting. In particular,
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The Étale Topology of Schemes 4

we can define the étale fundamental group, the highlight of this thesis, which simultaneously
generalises the covering space theory of Riemann surfaces, and the Galois theory of field
extensions.

On references: very little content in this text is original, because the project was intended
as an exploratory one. However, the figures in the text are all drawn by myself in TikZ.
Chapter 1 uses predominantly [LE06] with [KS13] for some details. Chapter 2 uses [LE06],
[EH06] and to some extent [GW10], as well as [Mum13]. Chapter 3 includes some proofs
from [Mil00] on the étale site, but primarily [Sza09] with supplements from [Len08]. For
appendix A on commutative algebra, the standard references are [AM94] and [MR89]. The
historical claims in the introduction are backed up by Prof. N. Katz’ review of [Del74].

Although the notes are reasonably self-contained, it is assumed that the reader is famil-
iar with the language of categories, and some Galois theory. Readable sources of these are
[Lei16] and [Nag77], respectively. For context, a little familiarity with the theory of covering
spaces from, say, [Hat02] is useful but not necessary.

I am grateful tomy supervisor, Dr. Clark Barwick, both for guidance on choice of topic,
and for useful comments on drafts.

Notation and conventions
Throughout, R will be a commutative ring with 1. If f ∈ R, (f ) denotes the ideal gen-
erated by f in R. If R is a ring, then I ≤ R means that I is an ideal of R, and R× de-
notes the set of units in R. Given left R-modulesM and N , HomR(M,N ) is shorthand
for HomModR(M,N ). Unless explicitly stated, all modules will be left modules. If H is a
normal subgroup of G, we writeH E G. We use bold type for letters denoting categories.
To denote a set consisting of a single point where the choice of point is unimportant, we use
∗. By (attempted) convention, greek letters denote morphisms of rings while roman letters
denote those of topological spaces, sheaves and schemes.
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Chapter 1

Sheaves

A sheaf is in very rough terms a tool for structuring local data on a topological space. For
example, on a manifold we might be interested in studying the continuous or smooth func-
tions defined on a given subset. We can regard these as groups “lying over” the open sets, re-
lated by restriction maps which are in a natural way group homomorphisms. Like so many
other places in mathematics, this is best formulated using the language of categories:

1.1 Basic concepts
Definition 1.1.1. Let X be a topological space, and U(X) be the following category: the
objects ofU(X) are open sets of X , and morphisms are given by

HomU(X)(U,V ) =

{
{iU,V} if U ⊆ V,
∅ otherwise,

(1.1)

where iU,V : U→ V denotes the inclusion map of U into V . A presheaf F on X with
values inC is a contravariant functorF : U(X)op → C.

To unpack slightly, this means the following: given open setsU ⊆ V ⊆W with inclu-
sions iU,W = iV,W ◦ iU,V , we have corresponding maps denoted ρV,U ..= F (iU,V ) such that
the following diagram is commutative:

F (W ) F (V ) F (U ),
ρW,V

ρW,U

ρV,U (1.2)

or in other words, ρW,U = ρV,U ◦ρW,V . It is important to note that the order of composition
is reversed becauseF is contravariant.

Although it is not strictly necessary, we will henceforth assume thatC admits a forgetful
functor into Set, so that we can talk about elements. We also assume that for any collection
of objects inC, their categorical product and coproduct are also objects inC.

Example 1.1.2. As a first example, let us consider the Sierpinski topological space, that is, the
set {0, 1}where the subsets∅, {1} and {0, 1} are open. The situation looks as follows:
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∅

{1}

{0, 1}

F

F (∅)

F ({1})

F ({0, 1})

On the left, we see the lattice of open sets, and on the right the corresponding lattice after
applying F . Note that the arrows are reversed, since F is contravariant, and there are no
requirements on what the objectsF (U ) should be.

Example 1.1.3. Let X be a topological space, and F be the functor assigning to each open
U ⊆ U the ringC(U )of continuous real-valued functions onU . ForU ⊂ V , we define the
restriction map F (iU,V ) = ρV,U : C(V ) → C(U ) to be simply the restriction of f : V →
R toU , explicitly ρV,U (f ) = f |U . This is a presheaf of rings on X .

Definition 1.1.4. A section overU is an element ofF (U ). The sections over X are called
global sections.

Given a section s ∈ F (V ) and a restriction map ρV,U : F (V )→ F (U ), we are prone
to write s|U ..= ρV,U (s).

Example 1.1.5 (The constant pre-sheaf). Let S be a set, and let F be the presheaf on X
defined byF (U ) = S. This is called a constant pre-sheaf.

Definition 1.1.6. For any x ∈ X , the stalk at x of F is the direct limit Fx
..= lim−→U

F (U )
where U runs over open neighbourhoods of x and the transition maps are the restriction
maps. For s ∈ F (U ), we denote by sx the image of s inFx.

In particular, if F is a sheaf of sets on X , then Fx is the set of all s ∈
⊔

U3x F (U )/ ∼
where s ∼ t if there exists a neighbourhoodU of x such that for allV ⊆ U , s|V = t|V .

The reason we are not content with presheaves (as the prefix suggests), is that the notion
of isomorphisms of presheaves is too strong. We want sheaves to track local data, so it is
desirable for two sheaves to be equal if they are equal at all the stalks. On the other hand,
presheaves can be isomorphic at the stalks without being globally isomorphic.1

Example 1.1.7. Let X = U t V for some sets U and V where open sets are {∅, U, V, X},
let F be the constant presheaf of groups F (W ) = Z for allW ⊆ X , and G the locally
constant presheaf determined byG (U ) = G (V ) = Z andG (X) = Z×Zwith (m, n)|U =
m, (m, n)|V = n. For x ∈ U , we see that

Fx = F (U ) tF (X)/ ∼= {m ∈ Z t Z : m = n iffm|U = n|U} ∼= F (U ) (1.3)

and similarly forF (V ). On the other hand, Gx = {s ∈ ZtZ×Z : s = t iff s|U = t|U} ∼=
G (U ), hence the presheaves are equal on the stalks, but not globally.

1This reflects the fact that Sh can be viewed as a localisation of the category of presheaves, informally by
imposing that morphisms which are isomorphisms at stalks be invertible.
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Definition 1.1.8. A sheaf is a presheaf satisfying the following, for any open U ⊆ X and
any open coveringU ⊆

⋃
i Ui:

(i) If s, t ∈ F (U ), and s|Ui = t|Uj for all i, then s = t;
(ii) Given si ∈ F (Ui) such that si|Ui∩Uj = sj|Ui∩Uj for all i, j, there exists s ∈ F (U ) such

that s|Ui = si for all i.
The second condition states that “compatible” local sections can be glued in a natural

way, and the first that the gluing is unique. The category of presheaves on X with values
in C, where arrows are given by natural transformations, is denoted by pSh(X,C). We are
prone to write pSh(X) or simply pSh if there is no ambiguity. Then Sh(X,C) = Sh(X) is
the full subcategory consisting of presheaves which are also sheaves.

The sheaf condition can be restated more compactly as an equaliser diagram

F (U )
d0−→
∏
i

F (Ui)
d1
⇒
d2

∏
i,j

F (Uij). (1.4)

whereUij
..= Ui ∩ Uj , and d0 : s 7→ (s|Uk)k, d1 : (si)i 7→ (si|Uij)i,j and d2 : (si)i 7→ (si|Uij)j,i.

Unpacking the definitions, this means that F (U ) is in bijective correspondence with the
elements (si) ∈

∏
i F (Ui) satisfying si|Uij = sj|Uij , which is precisely definition 1.1.8.

Example 1.1.9. The presheaf of real-valued continuous functions on a topological space X
considered in example 1.1.3 is a sheaf of rings; one readily sees that any collectionof compatible
sections {fi : Ui → R} glues to a unique continuous function f :

⋃
i Ui → R defined by

f (x) = fi(x) for x ∈ Ui.
Example 1.1.10. Let F be the presheaf of bounded functions on R, that is, the functor
assigning to each open U ⊆ R the set of bounded functions on U . For U ⊆ V , we have a
corresponding restrictionmapF (V )→ F (U )which sends a bounded function f : V →
R to f |U : U → R defined by x 7→ f (x). This is not a sheaf, because the function f (x) = x
is bounded on every bounded subset, but is not globally bounded.
Example 1.1.11 (The skyscraper sheaf). Fix x ∈ X , andA ∈ Ab. The skyscraper sheaf is the
sheaf defined as follows:

F (U ) =

{
A if x ∈ U,
0 otherwise;

(1.5)

and ρU,V ..= IdA if x ∈ U ∩ V , and 0A otherwise. It is a good exercise to check that this is
a sheaf; we omit the details because it will follow effortlessly from the construction in exam-
ple 1.2.8.
Example 1.1.12. The constant presheafF in 1.1.5 is not generally a sheaf. More precisely,F
is a sheaf if and only if every open set inX is connected: if every suchU is connected, then for
any coveringUi we can glue the s|Ui to a section a constant section onU , which is necessarily
unique. Conversely, if an open setU is not connected, sayU = V1 ∪ V2 for clopen setsV1

andV2, we can choose s1 ∈ F (V1) to equal 0 and s2 ∈ F (V2) to be 1. These clearly don’t
glue to a constant section onU .
Example 1.1.13. We can fix the problem in the previous example by requiring thatF be lo-
cally constant as in example 1.1.7. In particular, we form a presheaf of locally constant func-
tions f : X → S, that is, functions constant on connected open sets. One easily checks that
this is in fact a sheaf.
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One might ask if we can always turn a presheaf into a sheaf as above, and this turns out
to be true:

Theorem 1.1.14. The forgetful functor F : Sh(X)→ pSh(X) admits a left adjoint. In other
words, there exists functorS : pSh(X)→ Sh such thatHompSh(F , FG ) ∼= HomSh(SF ,G ).

Proof. [KS13], Prop. 2.2.3.

Definition 1.1.15. The functor S : pSh → Sh defined above is called the sheafification
functor.

1.2 Morphisms of sheaves
Recall that a morphism of sheavesF andG overX is a natural transformation ϕ : F → G .
Explicitly, it consists of a map ϕU : F (U ) → G (U ) for every open U ⊆ X , such that the
diagram

F (V ) G (V )

F (U ) G (U )

ρV,U

ϕV

ρ′V,U
ϕU

(1.6)

where ρ and ρ′ are restrictionmaps, commutes. We say that amorphism ϕ : F → G is injec-
tive at the sections (resp. surjective at the sections) if the corresponding maps ϕU : F (U ) →
G (U ) are all injective (resp. surjective).

Let us check that the definition of a sheaf indeed gives the kind of “local identification”
we wanted:

Lemma 1.2.1. Let ϕ : F → G be amorphism of sheaves onX . If for every x ∈ X the induced
morphism ϕx : Fx → Gx is injective, then ϕ is injective at the sections. If moreover the maps ϕx
are surjective, then ϕ is also surjective at the sections.

Proof. Fix s, t ∈ F (U ) such that ϕU (s) = ϕU (t), and note that (ϕU (s))x = ϕx(sx) =
ϕx(tx) = (ϕU (t))x for all x ∈ U . Thus s and t are equal on some sufficiently small neigh-
bourhood U0 of x, and since this holds for every x, by condition (i) in the definition of a
sheaf, we get that s = t.

Now, suppose further the stalk maps ϕx are surjective, and let t ∈ G (U ). We want to
find s ∈ G (U ) such thatϕU (s) = t. Fix x ∈ U . Then tx has a preimage inFx, say sx, so there
exists someUi(x) 3 x and si(x) ∈ F (Ui(x)) for which ϕUi(x)(si(x)) = t|U0 . This being the case
for every x ∈ U , we obtain a collection of sections si(x) ∈ F (Ui(x)) where {Ui(x)} covers
U . We moreover see that si(x)|Ui(x)∩Ui(y) = si(y)|Ui(x)∩Ui(y) since ϕx is injective. Therefore, by
gluing the si(x), we obtain a section s ∈ F (U ) satisfying ϕU (s) = t.

Do note that surjectivity of ϕx for all x need not imply that ϕ is surjective at the sections;
we require injectivity as well.

Example 1.2.2. Let X = C×, and let F be the sheaf of holomorphic functions on X and
G the sheaf of invertible holomorphic functions. Then the map α : F → G defined by
αU (f ) = exp f is surjective at the stalks, since every holomorphic function has a locally
defined logarithm, but it is not surjective at the sections: for example, the identity function
is not in αU (X) since this would require a globally defined logarithm onC×, which we recall
from complex analysis does not exist.

8
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Theorem 1.2.3. Amorphism of sheaves ϕ : F → G is an isomorphism if and only if all the
induced morphisms ϕx : Fx → Gx are isomorphisms.

Proof. Note first that if ϕ is an isomorphism, then it follows immediately from definition
that each induced map ϕx for x ∈ X is an isomorphism. Conversely, if all ϕx are isomor-
phisms, then by lemma 1.2.1, each map ϕU : F (U ) → G (U ) is an isomorphism, hence
invertible. These assemble to a natural transformation ψ : G → F , as it is is straightfor-
ward to see that an appopriate version of eq. (1.6) commutes. Then ψ is inverse to ϕ, proving
our claim.

One might expect that since the data of a basis for a topology on X is sufficient to de-
termine the topology, a sheaf is uniquely determined by its values at basic open sets. This is
indeed the the case:

Proposition 1.2.4. Let X be a topological space with a basis B, and let U(B) be the full
subcategory of U(X) with objects given by those in B. Suppose F is a presheaf on B which
satisfies for any coveringV =

⋃
i Vi whereV,Vi ∈ B the following:

(i) If s, t ∈ F (V ) and s|Vi = t|Vi for all i, then s = t;
(ii) For si ∈ F (Vi) satisfying si|Vi,j = sj|Vi,j for all Vi,j ⊆ Vi ∩ Vj in B, there exists

s ∈ F (V ) such that s|Vi = si for all i.
ThenF extends uniquely to a sheaf on X .

Note that this is essentially the sheaf condition, but with Ui ∩ Uj replaced with Vi,j in
(ii) sinceUi ∩ Uj is generally not a basic open set.

Proof. LetU be an open set in X , and define

F (U ) = lim←−
B3V⊆U

F (V ). (1.7)

Explicitly, a section s ∈ F (U ) is given by tuples (sV )V⊆U satisfying sV |W = sW for all
W ⊂ V . To see that this is indeed a sheaf, let {Ui} coverU , and fix s, t ∈ F (U ) satisfying
s|Ui = t|Ui for each i. We need to show that s|V = t|V for any basic V ⊂ U . Since {Ui}
also coversV , we can refine this to a cover of basic open sets {Vij} by writingUi =

⋃
i,j Vi,j .

Since s|Ui = t|Ui by assumption and by definition of the inverse limit, s|Vi,j = t|Vi,j for allVi,j .
By (i), we therefore have that s|V = t|V . The uniqueness criterion follows from uniqueness
of the sV . Finally, the newly constructed sheaf is unique up to isomorphism because any
collection of isomorphisms F (V ) → F ′(V ) for each V ∈ B induces isomorphisms
F (U )→ F ′(U ) by the universal property of the inverse limit.

Another useful operation is that of gluing together locally defined sheaves.

Proposition 1.2.5. Let {Ui} be an open covering of a topological spaceX , supposeFi is a sheaf
onUi and fij : Fi|Ui∩Uj

∼−→ Fj|Ui∩Uj are isomorphisms satisfying the cocycle conditions fii =
Id and fik = fjk ◦ fij for all i, j, k. Then there exists a unique sheafF on X and isomorphisms
gi : F |Ui → Fi such that gj = fij ◦ gi onUi ∩ Uj .

Proof. Define F by F (U ) = qiFi(U ∩ Ui)/ ∼ where si ∼ sj if and only if si|V = sj|V
where V ..= Ui ∩ Uj ∩ U for all pairs i, j. The cocycle conditions ensure that ∼ is an

9
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equivalence relation: in particular, symmetry follows from noting that fii = Id = fji ◦ fij .
One easily checks that the presheaf F is in fact a sheaf. The natural projections F → Fi
inducemaps gi : F |Ui → Fi, which are isomorphisms by construction; finally the sheafF
is uniquely determined by the data ofFi as a consequence of theorem 1.2.3.

Definition 1.2.6. The sheaf F constructed above is called the gluing of the Fi via the
isomorphisms fij .

Given a continuous map f : X → Y , we can transfer a sheaf on X to a sheaf on Y via f
in a natural way:

Definition 1.2.7. Let f : X → Y be a continuousmap andF a sheaf onX . Define f∗F to
be the sheaf on Y determined by f∗F (V ) ..= F (f −1(V )). This is called the pushforward
of F by f .

The map f∗ : Sh(X) → Sh(Y ) is also called the direct image functor; it is indeed a
functor if we define f∗(ϕ) : f∗F → f∗G in the natural way. Explicitly, (f∗ϕ)V sends s ∈
F (f −1(V )) to ϕf−1(V )(s) ∈ G (f −1(V )).

Example 1.2.8. Let x ∈ X , and ι : {x} → X be the inclusionmap. Since{x} is a topological
space endowedwith the discrete topology, we can define a sheafF of, say, abelian groups on
{x} byF ({x}) = A,F (∅) = 0. Then ι∗F is precisely the skyscraper sheaf on X defined
in example 1.1.11!

It is also possible to go in the reverse direction, although it requires some more work.

Definition 1.2.9. Let f : X → Y be continuous, and let G be a sheaf on Y . Then f −1G ,
called the pullback of G by f , is the presheaf defined by

f −1G (U ) ..= lim←−
V⊆f (U )

G (V ). (1.8)

It is a straightforward, albeit slightly tedious exercise to show that f −1G is in fact a sheaf.

Example 1.2.10. We can use sheaves to give a sleek definition of a manifold: Fix a dimen-
sion n, letM be a topological space (Hausdorff, second countable if we want) along with a
covering {Ui}, and let F be the sheaf of continuous functions onM. ThenM is a man-
ifold if (and only if) for each i, the subsheaf (Ui,F |Ui) is isomorphic to Rn with the sheaf
of continuous functions. EquippingRn instead with the sheaf ofCk-functions, we obtain a
Ck-manifold.

Example 1.2.11. While on the topic of manifolds, let E π−→ M be a vector bundle on a
manifoldM. Then the functor F : U 7→ Γ(E, U ) ..= {s ∈ C(U ) : π ◦ s = IdU} assigning
to each open set the sections of π over U defines a sheaf of vector spaces. This is in fact very
closely related to how sheaves were originally defined, see [Zar56].

1.3 Sheaves of modules
Recall from differential geometry that when we defined various vector bundles on a smooth
manifoldM, they had a natural structure of C∞(M)-modules. For example, given a vector

10
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fieldX : M → TM and f ∈ C∞(M), weobtain anewvector field fX definedby f (m)Xm ∈
TmM. It seems reasonable that this should be a local notion, and should serve as sufficient
motivation for the following definition:

Definition 1.3.1. Let X be topological space, and F a sheaf of rings on X . A sheaf of
modules M over F is a sheaf of abelian groups such that for any openU ⊆ X ,M (U ) is
anF (U )-module, and respecting the following commutative diagram:

F (V )×M (V ) M (V )

F (U )×M (U ) M (U )

(1.9)

where the horizontal arrows are the multiplication maps, and the vertical ones are restric-
tions.

Informally, we require the multiplication map to commute with restriction in a natural
way. We will see a number of examples in chapter 2, so for now we are content with the
following:

Example 1.3.2. Let E π−→M be a vector bundle over a smooth manifold. Then the sheaf of
smooth real-valued functions onM is a sheaf ofmodules over the sheaf of sectionsΓ defined
in example 1.2.11. Indeed, for any open U ⊆ M, we know that Γ(U ) is a C∞-module,
and multiplication commutes with restriction because, for any open U ⊆ V , σ ∈ Γ(V )
and f ∈ C∞(V ), we have (fσ)|U = fU σU since they are pointwise equal onU .

Example 1.3.3. For each openU ⊆ X , let IU be an ideal ofF (U ), and suppose the functor
I : U 7→ I (U ) = IU is a sheaf, with restriction maps inherited from F . This is called a
sheaf of ideals, and we claim that it is a sheaf of modules:

Indeed, forU ⊆ V , v ∈ F (V ) and x ∈ I (V )we have ρV,U (vx) = ρV,U (v)ρV,U (x) =
ρV,U (v)ρ′V,U (x)where ρ′V,U is themap IV → IU inducedby ρV,U . On theotherhand, ρV,U (vx) =
ρ′V,U (vx) since vx ∈ IU , so the diagram does indeed commute.

Example 1.3.4. Note thatI need not be a sheaf in general; for example, the ring of contin-
uous functions on an open subset of R has an ideal consisting of bounded functions. But
we saw in example 1.1.10 that the subpresheaf of the sheaf of continuous functions consist-
ing of bounded functions is not a sheaf.

We define morphisms of sheaves of modules in the natural way:

Definition 1.3.5. Fix a sheaf of ringsF , and letM andN be sheaves ofF -modules over
a topological space X . A morphism of sheaves of F -modules is a morphism of sheaves
ϕ : M → N such that for any open U ⊂ X , s ∈ F (U ) and m ∈ M (U ) we have
ϕU (sm) = sϕU (m).

Example 1.3.6. The inclusionmap of a sheaf of ideals forms amorphism of sheaves ofmod-
ules.

11
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1.4 Locally ringed topological spaces
Following [LE06] and [EH06]. A special class of sheaves of rings that are ubiquitous in
algebraic geometry are those for which the stalks have the structure of local rings, that is,
rings with a unique maximal ideal.
Definition 1.4.1. A locally ringed topological space (or a locally ringed space for short)
consists of a topological space X along with a sheaf of ringsOX such that each stalkOX,x is a
local ring, i.e. has a unique maximal idealmx. The sheafOX is called the structure sheaf of
(X,OX), and we call κ(x) ..= OX,x/mx the residue field of X at x.
Example 1.4.2. The sheaf of differentiable functions on a smooth manifoldM is a ringed
topological space; the stalksOX,x then consists of differentiable functions which are defined
on someneighbourhoodof x, and it is straightforward to show that theuniquemaximal ideal
of OM,x consists of functions that vanish at x. The residue field ofM at x is then precisely
{f /g : g(x) 6= 0}, the field of ratios of smooth functions where the denominators do not
vanish at x.
Example 1.4.3. LetU ⊆ X be an open subset of a locally ringed space. Then (U,OX |U ) is
itself a locally ringed space, since (OX |U )x = OX,x.

One might wonder what a morphism of locally ringed spaces should be. Let us first
consider the special case of smoothmanifolds as above. LetM andN be smoothmanifolds,
and ϕ : M → N a continuous map. One easily shows that this is a smooth map if and only
if for every open V ⊆ N and f : V → R, the pullback ϕ∗f ..= f ◦ ϕ is a smooth function
on the open set ϕ−1(V ). In the language of sheaves, we require that f induces a morphism
of sheaves given by FN (V ) → ϕ∗FM(V ). In a more general setting, the continuous map
ϕ does not canonically induce a morphism of locally ringed spaces, so this datum, namely
ϕ# : FN → ϕ∗F , needs to be specified separately. Now ϕ and ϕ# ought to be compatible
somehow, and in line with the philosophy of sheaves being determined by stalks, the right
notion turns out to be that the induced map from ϕ# on the stalks preserve maximal ideals
in the sense that ϕ#x

−1(mx) = mϕ(x).
Definition 1.4.4. Amorphism of locally ringed topological spaces consists of a contin-
uousmap ϕ : X → Y and amorphism of sheaves ϕ# : OY → ϕ∗OX such that for any x ∈ X ,
ϕ#x

−1(mx) = mϕ(x).
The following gives a simple recipe for constructing such morphisms:

Proposition 1.4.5 (Gluing of morphisms). Let X and Y be locally ringed topological spaces,
suppose {Ui} is a covering of X and fi : Ui → X a collection of morphisms of locally ringed
spaces such that fi|Ui∩Uj = fj|Ui∩Uj for all pairs (i, j). Then there exists a unique morphism of
locally ringed spaces f = (f, f #) : X → Y such that f |Ui = fi.
Proof. From topology we know that the continuous maps fi assemble to a continuous map
f : X → Y . Since each Ui is naturally a locally ringed space, we have morphisms of sheaves
f #i : OY → (fi)∗OX |Ui . We claim that these assemble to a sheaf map f # : OY → f∗OX .
Indeed, note that there is a natural identification OX(f −1(U )) =

∏
i OX(f −1

i (U ))/ ∼,
where si ∼ sj if si|f−1

i (U )∩f−1
j (U ) = sj|f−1

i (U )∩f−1
j (U ). Since themapsOY (U )→ OX(f −1

i (U ))

assemble to a map OY (U ) →
∏

i OX(f −1
i (U )) by s 7→ (f #i (s))i which factors through the

quotient, we have a unique map f # : OY → f∗OX , as required. Since the condition on the
stalks is a local one, this is naturally satisfied by f #.

12



Chapter 2

Schemes

After a crisis of foundations in the beginning of the 20th century, algebraic geometry was
put on firm footing through its reformulation in terms of schemes. While the ideas can
arguably be traced back to Chevalley (cf. [GC04]), the theory was brought to fruition by
Grothendieck in his seminalmulti-volume treatiseÉléments de géométrie algébrique, or EGA
for short.

One guiding intuition behind scheme theory is to “globalise” rings – this is the view
taken in [Mum13] – by patching together spectra of rings. By analogy, in example 1.2.10
we defined a manifold as a topological space equipped with a sheaf locally isomorphic to
that of functions onRN . The moral of the story is that the passage from rings to schemes is
analogous to passing from Euclidean subsets to an abstract manifold.

2.1 The affine scheme
An affine scheme is simply the prime spectrum of a ring (cf. section A.1) made into a locally
ringed space. More precisely:

Definition 2.1.1. Let R be a ring, and consider X ..= SpecR equipped with the Zariski
topology. Let OX be the presheaf generated by OX(D(f )) = Rf for any principal open set
D(f ) ⊆ SpecR. The pair (X,OX) is called the affine scheme over R.

Let us check that this does indeed form a locally ringed space.

Proposition 2.1.2. Let (X,OX) be an affine scheme. Then (X,OX) is a locally ringed topo-
logical space.

Proof. We did not specify what the functorOX does to maps, so we will do that now: Sup-
pose D(f ) ⊆ D(g) for some f, g ∈ R. Then by proposition A.2.9, f n = gr for some
r ∈ R, n ∈ N, and so g is invertible in Rf . Then we have a map Rg → Rf determined by
ag−m 7→ armf −nm, which is easily checked to be a ring homomorphism. Wewill take this as
our restriction map. IfD(f ) = D(g), the map is evidently an isomorphism.

In light of proposition 1.2.4, we know that OX is a sheaf provided it satisfies the corre-
sponding sheaf conditions (i) and (ii) on the collection of principal open sets {D(f ) : f ∈
R}. Note also that it suffices to consider coverings of X = SpecR, since any basic open set
U = D(f ) can be viewed as SpecRf in a natural way, and finite such since SpecR is quasi-
compact (cf. proposition A.1.12)

13



The Étale Topology of Schemes 14

So, let {D(fi)} be a covering of SpecR, and fix s ∈ R such that s|D(fi) = 0 for all i.
Proving that s = 0 is now equivalent to (i) after replacing s with x − y. Then f mi s = 0
for somem ∈ N sufficiently large, and sinceD(fi) ⊆ D(f mi ), we can write 1 =

∑n
i=1 rif mi .

Multiplying by s now gives s =
∑n

i=1 rif mi s = 0, as required.
As for (ii), suppose si ∈ D(fi) for each i, with si|D(fifj) = sj|D(fifj). We want to define

some s ∈ R by analogy with partitions of unity on a paracompact manifold. In Rfi , we can
write si = aif ki where k ∈ N is independent of i. By assumption there exists a sufficiently
largem ∈ N such that (fifj)m(f kj ai − f ki aj) = 0, or equivalently for l = m+ k, bi ..= f ki ai,
that f lj bi = f li bj . As in the previous part, write 1 =

∑n
i=1 rif li , and define s ..=

∑n
i=1 ribi.

Now

f lj s =
n∑

i=1

rif lj bi =
n∑

i=1

rif li bj = bj , (2.1)

which shows that s|D(fj) = sj , since aj has the same image as bj inRfj for any j.
Finally, to show that OX,x is a local ring for any x ∈ X , fix a prime ideal p ∈ SpecR

corresponding to x. By definition,

OX,x = lim−→
D(f )3x

OX(D(f )) ∼= lim−→
f 6∈p

Rf = Rp, (2.2)

and since Rp is a local ring whose unique maximal ideal is precisely the image of p in the
localisation, this concludes our proof.

SinceOX(D(1)) = R1 = R, we also have the following:

Corollary 2.1.3. We haveOSpecR(SpecR) = R.

Amorphism of affine schemes is simply amapof locally ringed topological spaces between
twoaffine schemes. As such, affine schemes and theirmorphisms these assemble to a category
denoted by SchAff.

We next consider a few examples in order to get some intuition for this object.

Example 2.1.4. Let X ..= Spec k, where k is a field. Then X consists of a single point, ∗,
corresponding to the only prime ideal 0 of k, and by the preceding propositionOSpec k(∗) =
k.

Example 2.1.5. Recall that a discrete valuation ring (DVR) is a principal ideal domainwith a
unique non-zero prime ideal. LetR be a DVR, and note that X ..= SpecR = {0, p}, where
p is the unique prime ideal. The topology on X is then the Sierpinski topology, where p is
closed, while 0 is not.

Example 2.1.6. Letting X ..= SpecZ, we recall that as a set, X = {0, 2, 3, 5, . . .}, and using
lemma A.2.8 we readily see that κ(p) = Z(p)/(p) = Z/(p) ≡ Fp for p 6= 0. For p = 0, we
similarly see that κ(0) = Q. We can visualise SpecZ as the collection of primes in Z, along
with the “generic point” 0, which is dense, being contained in any open set.

(2) (3) (5) (7)
(0)

14



The Étale Topology of Schemes 15

It is worth keeping in mind that there is no “line” between two primes; however, the
space is not topologically disconnected either, since any open set contains infinitely many
primes.

Definition 2.1.7. LetRbe a ring, anddefine affinen-spaceoverR asAn
R

..= SpecR[x1, . . . , xn].

Example 2.1.8. Let k be a field, and X ..= A1
k the affine line. Then each point in X corre-

sponds to an irreducible polynomial P ∈ A1
k . In particular, if k is algebraically closed, then

each irreducible polynomial is on the form x − a for some a ∈ k, and via the identification
(x−a)↔ awe obtainA1

k thatA1
k as a set can is in bijectionwith kt∗, where ∗ corresponds

to the maximal ideal (0).

One might ask whether there are natural subobjects in SchAff. Indeed, in the construc-
tion of the affine scheme we saw that showing the sheaf axioms for OX(X) was just as easy
as forOX(D(f )) for fixed f ∈ R. Indirectly, we proved the following:

Lemma 2.1.9. Let X = SpecR be an affine scheme, and let f ∈ R. Then the open subset
D(f ) equipped with the structure sheafOX |D(f ) is isomorphic to SpecRf .

Since affine schemes are determined by the data of the underlying rings, the following
proposition seems self-evident.

Proposition 2.1.10. Let ϕ : R → S be a ring homomorphism. Then ϕ induces a morphism
of affine schemes (ϕ̃, ϕ#) : Spec S → SpecR.

Proof. Recall that ϕ̃ : Spec S → SpecR is a continuous map with respect to the Zariski
topology; we ought to define a map ϕ# : OSpecR → ϕ̃∗OSpec S . In light of proposition 1.2.4
it suffices to define ϕ# on the principal open sets and show that it is compatible with restric-
tion maps. Note first that ϕ̃∗OSpec S(D(f )) = OSpec S(D(ϕ(f ))) for any f ∈ R. Recall
that the map ϕ : R → S induces a map of the localisations ϕf : Rf → Sϕ(f ) by ϕf (a/f α) =
ϕ(a)/ϕ(f )α, which is awell-definedmapof rings. Via this, wehavenaturalmapsOSpecR(D(f )) =
Rf → Sϕ(f ) = ϕ̃∗OSpec S(D(ϕ(f ))) induced by ϕ, which we furthermore easily check to be
compatible with restrictions. This defines the sheaf map ϕ# : OSpecR → ϕ̃∗OSpec S .

Finally, we need to check that for any p ∈ Spec S, we have ϕ#p(mϕ̃(p)) ⊆ mp. But note
that for any p ∈ SpecR, the map ϕ#p : (ϕ̃∗OSpec S)p → OSpecR,p = Rp is precisely the canon-
ical map Sϕ̃(p) → Rp, which we know (if we do not, it is a nice exercise to check) to be a
homomorphism of local rings.

Theorem 2.1.11. There is an equivalence of categories SchAff ↔ Ringop given by X 7→
OX(X).

Proof. The other direction is of course given by R 7→ SpecR. By the above discussion,
it suffices to show that every morphism of affine schemes arises from a ring map. But it is
straightforward to show that given amorphism of affine schemes ϕ : X → Y , this equals the
map of schemes induced by ϕ#Y : OY (Y ) → OX(X) from proposition 2.1.10. See [LE06],
Lemma 3.3.23 for details.

15



The Étale Topology of Schemes 16

2.2 General schemes
We are finally ready to define a general abstract scheme. It is useful to keep in mind the
definition of a manifold – and particularly the one given in example 1.2.10 – for intuition.

Definition 2.2.1. A scheme is a locally ringed topological space which is locally isomorphic
to an affine scheme. More precisely, it consists of a locally ringed space (X,OX) along with a
covering {Ui} and corresponding rings {Ri} such that (Ui,OX |Ui)

∼= (SpecRi,OSpecRi).

Wheneverunambiguous,wewill identifyXiwithSpecRi. Again, amorphismof schemes
is a morphism of the underlying locally ringed topological spaces. We assemble schemes and
their morphisms into a category denoted Sch.

Example 2.2.2. Affine schemes are schemes.

Example 2.2.3. Let X = SpecZ[x] and U ..= D(x) ∪ D(p) ⊂ Z[x] for some prime p ∈
Z. Intuitively, U looks like Z[x] with the closed point (x, p) removed. Then (U,OX |U ) is
evidently a scheme; on the other hand, noting that OX(U ) = OX(X) and appealing to
theorem 2.1.11, this cannot be an affine scheme.

We will give more examples once we have examined the properties of schemes more
closely.

Definition 2.2.4. Let U ⊂ X be an open subset of scheme. Then (U,OX |U ) – or simply
U , if there is no room for confusion – is called an open subscheme of X .

Proposition 2.2.5. An open subscheme is a scheme.

Proof. Let Y ⊂ X be an open subscheme, and let {Xi} be an affine open covering of X .
Then {Xi∩Y } is an open covering ofY , andwe canwrite eachXi∩Y as a union of principal
open sets. By lemma 2.1.9, these are themselves affine schemes, so we have obtained an affine
open covering of Y .

In the same way as we can consider the category of smooth bundles over a manifold,
there is a natural notion of schemes over a specified scheme.

Definition 2.2.6. Let S be a scheme. A scheme over S, or an S-scheme, is a scheme X
along with amap π : X → S. Themap π is called the structural morphism ofX . Given S-
schemes X π−→ S and X ′ π′−→ S, amorphism of S-schemes ϕ : X → X ′ is a map of schemes
satisfying π = π′ ◦ ϕ.

In the case where S = Spec k for some field k, convention dictates that we drop the
“Spec” and simply say “k-scheme”. The category of S-schemes is denoted by Sch/S. While
defining a new category for every schememight seem unnecessary, it is actually quite useful.
For example, in algebraic geometry we are frequently interested in studying complex curves.
Then it seems reasonable to expect that SpecC has trivial automorphism group, since it con-
sists of a single point; however, in Sch we have that Aut(S) ∼= Gal(C/Q), a very large and
complicated object. In Sch/SpecC, on the other hand, we have Aut(SpecC) = ∗, as ex-
pected.

Example 2.2.7. Any R-algebra A is an R-scheme: by proposition 2.1.10 the canonical map
R→ A induces a morphism of schemes π : SpecA→ SpecR.

16
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Example 2.2.8. As a particular case of the previous example, since any ringR admits a nat-
ural map Z → R determined by 1 7→ 1R, every affine scheme is a SpecZ-scheme. More
generally, by writing X as a union of affine schemes with corresponding maps into SpecZ
and gluing via proposition 1.4.5, we see that every scheme is naturally a SpecZ-scheme.

Example 2.2.9. If X π−→ S is an S-scheme and U ⊂ X an open subscheme, then U is
naturally an S-scheme as well, by π|U : U → S.

Definition 2.2.10. A morphism of schemes f : X → Y is an open immersion if the un-
derlying map of topological spaces is an homeomorphism onto an open subset of Y , and f
is an isomorphism at the level of stalks.

Example 2.2.11. The inclusion of an open subscheme Z → X is an open immersion.

Recall that in complex analysis, we define our first non-trivial complexmanifoldP1
C – the

Riemann sphere – asCt{∞}with the charts z onC and 1/z onC×t{∞}. It should come
as no surprise that this has an algebro-geometric analogue,1 which will be the first example
of the following very general construction:

Proposition 2.2.12 (Gluing of S-schemes). Let Xi be a collection of S-schemes, and for each
pair of indices (i, j), an open subscheme Xij and an isomorphism of S-schemes fij : Xij → Xji
subject to the following conditions:

(i) fii = IdXi ;
(ii) fij = f −1

ji and fij(Xij ∩ Xik) = Xji ∩ Xjk;
(iii) fik = fjk ◦ fij on Xij ∩ Xik.

Then there exists an S-scheme X , unique up to isomorphism, with a covering of S-subschemes
isomorphic to {Xi} such that the maps fij on Xij correspond to the identity map in the image of
Xij in X .

It is worth pointing out that conditions (i)–(iii) bear close similarity to the construction
of a vector bundle from the transition maps.

Proof. Define X ..= qiXi/ ∼ where xi ∼ xj whenever xi ∈ Xi, xj ∈ Xj and xj = fij(xi).
Conditions (i)–(iii) show that this determines an equivalence relation. We then have natural
inclusions Xi

gi−→ X satisfying gi = gj ◦ fij on Xi ∩ Xj . By proposition 1.2.5, we can glue
together the structure sheaves Ui

..= gi∗OXi along the morphisms {fij}, yielding a ringed
topological space (X,OX), any stalk OX,x being a local ring because we can find Xi 3 x with
OXi ,x

∼= OX,x. Moreover, by considering affine open coverings Uij of each Xi, the images of
{Ui} in X form an affine open covering, so X is a scheme. From the maps gi we obtain iso-
morphisms Xi ∼= Ui, and if πi : Xi → S are the structural morphisms, we can glue πi ◦ g−1

i
to yield a scheme morphism X → S. Finally, X is unique up to isomorphism by construc-
tion.

Of course, by taking S = SpecZ, we can glue any schemes together without paying
attention to structure morphisms.

1The charts are, after all, given by rational functions!
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Example 2.2.13. Fix a ringR, and defineX = SpecR[x/y] andY = SpecR[y/x] considered
as subrings of A ..= R[x, y, x−1, y−1]. We then have a natural isomorphism f : X → Y
induced by the ringmap y/x 7→ x/y, cf. proposition 2.1.10. Let us define the gluing data: set
U = D(x/y) ⊂ X andV = D(y/x) ⊂ Y , and let f : U → V be the isomorphism induced
by the equality R[y/x]y/x → R[x/y]x/y inside A. Conditions (i)–(iii) of proposition 2.2.12
now hold trivially, so we obtain a scheme, denoted by P1

R.

In the case ofR = C, this ought to remind us of projective coordinates on the Riemann
sphere: there we have coordinates [x:y], and pass to charts by fixing x or y to be zero or non-
zero. Of course, we can generalise this construction:

Example 2.2.14. Fix a ringR, and let A be the localisation

A ..= R[x1, . . . , xn](x1,...,xn) = R[x1, . . . , xn, x−1
1 , . . . , x−1

n ].

As subrings of A, we take Ai
..= R[x1x−1

i , . . . , xnx−1
i ], and set Xi

..= SpecAi and Xij
..=

D(xjx−1
i ) ⊆ Xi. Since OXi(Xij) = (Ai)(xjx−1

i ) = R[x1x−1, . . . xnx−1
i , x1x−1

j , . . . , xnx−1
j ] =

OXj(Xji), wehave gluing isomorphismsXij → Xjiwhich clearly satisfy the cocycle conditions
since they are induced by the identity map.

Definition 2.2.15. The scheme defined in the preceeding example is called projective n-
space over R, denoted by Pn

R.

2.3 Properties of schemes and the fibre product
There are many conditions one might impose on schemes in order to exclude pathologies.
Here we consider a few of them.

Definition 2.3.1. An affine variety over a field k is an affine scheme SpecA where A is a
finitely generated k-algebra.

Fix an algebraically closed field k, and let V be an affine variety in the classical sense,
that is, the zero-locus of a collection of polynomials f1, . . . , fm ∈ k[x1, . . . , xn]. One ver-
sion ofHilbert’s Nullstellensatz states that there is a bijective correspondence between affine
varieties in kn and radical ideals in k[x1, . . . , xn] (see e.g. Thm. 4.7 in [CLO10]). Explicitly,
the datum of an affine variety is equivalent to that of the radical ideal a ..=

√
(f1, . . . , fm) ≤

k[x1, . . . , xn]. But by theorem 2.1.11 this uniquely determines a scheme X ..= SpecR, where
R ..= k[x1, . . . , xn]/a. Note thatR is a finitely generated k-algebra because k[x1, . . . , xn] is, so
X is indeed an affine variety in the scheme-theoretic sense.

Now recall that for a subfieldL ⊆ k, anL-rational point onV is a tuple (a1, . . . , an) ∈ Ln
such that

f1(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0. (2.3)

Nowthere is a bijectionbetween the set ofL-rational points onV ,V (L), and the setHomk(R, L).
In terms of schemes, by theorem 2.1.11 this is in bijection with HomSpec k(SpecL, SpecR).
Motivated by this, we define the following:

Definition 2.3.2. Let X and Y be S-schemes. The set HomS(X, Y ) is called the set of Y -
points of X , and we denote it by X(Y ).

18
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It is important to note this depends on the choice of structure morphisms X, Y → S.
In the “classical case” where Y and S are spectra of rings, we revert to the terminology “L-
rational points”, and write X(L).

Definition 2.3.3. Let X be a scheme. Given a connected subset Z ⊆ X , a point η ∈ Z is
called a generic point if {η} is dense in Z.

Recall that a topological space X is reducible if X = X1 t X2 for closed proper subsets
X1 and X2, and irreducible otherwise.

Proposition 2.3.4. There is a bijection

{generic points of X} ↔ {irreducible closed subsets of X} (2.4)

given by η 7→ {η}.

Proof. [LE06], Prop. 2.4.12a).

It is tempting to define π0(X) as the collection of irreducible closed subsets of X ; the
proposition above then gives a bijection between the set π0(X) and the set of generic points
of X .

If a certain adjective applies to all the local rings of a scheme, we are prone to apply the
adjective to the scheme itself. For example:

Definition 2.3.5. A scheme X is reduced if all the local ringsOX,x are reduced; that is, con-
tain no nilpotent elements.

Definition 2.3.6. A scheme X is integral if for every open subset U ⊆ X , OX(U ) is an
integral domain.

Recall that a ring R is integrally closed (in its fraction fieldK) if any r ∈ K which is the
root of some monic polynomial P ∈ R[x] is also contained inR.

Definition 2.3.7. A scheme X is normal if all the stalksOX,x are integrally closed domains.

Later we will need the following definition:

Definition 2.3.8. Amorphism of schemes f : X → Y is an affinemorphism if there exists
an affine open cover {Ui} of Y such that each f −1(Ui) is an affine subscheme of X .

Example 2.3.9. The canonical morphism X → SpecZ is affine if and only if X is affine.

The fibre product
Recall that products inRing often do not preserve nice properties of the constituents, such
as being an integral domain – for example, (0, 1) · (1, 0) = (0, 0) ∈ Z× Z – and the same
is true for Sch. Trying to define the product of two schemesX and Y in the naïve way as the
product of the underlying topological spaces equipped with the product sheaf runs into the
problem thatOX×Y,(x,y) = OX,x × OX,y: the product of local rings is not local.2

In lieu of this, we can define the following more general notion:
2IfR has a unique maximal idealm, thenR× R has two maximal idealsR×m andm× R.
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Definition 2.3.10. LetC be an arbitrary category, letX and Y be objects in Y , and suppose
f : X → Z and g : Y → Z aremorphisms. Then thefibre product ofX andY with respect
to f and g, or simply the fibre product ofX andY is a solution (X×Z Y, p, q) to the following
universalmappingproblem: for anypair ofmorphismsϕ : A→ X andψ : A→ Y such that
fϕ = gψ , there exists a unique h : A→ X ×Z Y such that the following diagram commutes:

A

X ×Z Y X

Y Z

ϕ

ψ

h

p

q f

g

(2.5)

Example 2.3.11. The fibre product of X
f−→ Z and Y

g−→ Z in Set is given by {(x, y) ∈
X × Y : f (x) = g(y)} and the natural projections onto X and Y .

Theorem 2.3.12. Fibre products exist in Sch, and are unique up to unique isomorphism.

To prove this, it is sensible to start with the case where all the schemes are affine.

Lemma 2.3.13. Given ringsR, S and A, we have SpecR×SpecA Spec S ∼= Spec (R⊗A S).

Proof. This follows immediately from theorem 2.1.11 by noting that the universal property
of fibre products in SchAff is dual to that of tensor products inRing. This also proves that
the fibre product is unique up to unique isomorphism.

Proof of theorem 2.3.12. Supposefirst thatS andY are affine, and thatX is an arbitrary scheme
covered by affine open schemesXi = SpecRi. Then the fibre product (Xi×S Y, pi, qi) exists
for each i, and for every pair i and j we have an isomorphism p−1

i (Xi∩Xj) ∼= (Xi∩Xj)×S Y ;
this gives isomorphisms fij : p−1

i (Xi ∩ Xj) → p−1
j (Xi ∩ Xj). By uniqueness of the isomor-

phism (Xi ∩ Xj ∩ Xk)×S Y ∼= p−1(Xi ∩ Xj ∩ Xj), we see that {fij} satisfy the cocycle con-
ditions in proposition 2.2.12, so theXi ×S Y glue to a unique S-scheme, say,W . By viewing
W as a gluing of X -schemes (resp. Y -schemes) through the maps pi (resp. qi), we see that
these assemble to morphisms p : W → X and q : W → Y .

We need to check that (W, p, q) satisfies the universal property of fibre products in Sch:
letϕ : A→ X andψ : A→ Y bemorphisms inSch such that fψ = gϕ. Defineϕi : f −1(Xi)→
Xi and ψi ..= ψ |ϕ−1(Xi), and apply the universal property of eachXi×S U , giving a collection
of maps hi : A→ Xi ×S U such that

ϕ−1(Xi)

Xi ×Z Y Xi

Y Z.

ϕi

ψi

hi

pi

qi fi
g

(2.6)

Nowusing proposition 1.4.5 we can glue together hi to a uniquemap h, which is readily seen
to make the corresponding diagram eq. (2.5) commute.
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Next, let us remove that assumption that Y be affine; let Yi be an affine covering, and
construct the fibre products X ×S Yi by the above method, noting that the fibre product is
symmetric. In a similar way we can glue these, and by a similar argument as above check that
X ×S Y is indeed a fibre product.

Finally, suppose S is no longer affine, and let us cover it with Si. Letting f : X → S
and g : Y → S as before be the structure morphisms, we can define Xi

..= f −1(Si), Yi ..=
g−1(Si) and form the fibre products (Xi ∩ Xj) ×Si (Yi ∩ Yj). Note that by uniqueness of
solutions to universal mapping problems, these are not only fibre products over Si, butmust
also equal the fibre products over S . By gluing the Xi ×S Yi along the natural inclusions of
(Xi ∩ Xj) ×S (Yi ∩ Yj), we obtain a scheme which one easily checks satisfies the universal
property.

When we take the fibre product of schemes X and Y over an affine scheme SpecR, we
are sometimes prone to drop the “Spec” and simply write X ×R Y .

Example 2.3.14. For any ringR and positive integers n,m ∈ N, we have

An
R ×R Am

R
∼= SpecR[x1, . . . , xn]⊗R R[y1, . . . , ym] ∼= SpecR[z1, . . . , zn+m] = An+m

R .

The universal property gives many desirable properties of the fibre product for free:

Proposition 2.3.15. Let X, Y and Z be S-schemes. Then
(i) X ×S S = X ;
(ii) X ×S Y = Y ×S X ;
(iii) (X ×S Y )×S Z = X ×S (Y ×S Z).

Proof. Here “=” means that the constituents are isomorphic via a canonical isomorphism.
These all follow from showing that the right and left hand sides both satisfy the universal
property of fibre products, hence are related by a unique isomorphism by the standard ar-
gument. We omit the details.

Definition 2.3.16. Let f : X → Y be amorphism of schemes, and construct the fibre prod-
uct X ×Y X over the identity map X → X as in the diagram:

X

X ×Y X X

X Y

∆X/Y

IdX

IdX

f

f

The morphism ∆X/Y : X → X ×Y X is called the diagonal morphism of X with
respect to ϕ.

The diagonal morphism is the scheme-theoretic analogue of the diagonal∆: X → X×
X where∆(x) = (x, x) of a topological space X .

Proposition 2.3.17. The diagonal morphism∆X/Y is an immersion.
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Proof. Fix affineopenV ⊂ Y andU ⊂ f −1(V ). ThenU×VU is affineopen inX×YX . By
using proposition 1.4.5, it suffices to show thatU → U ×V U is a closed immersion for any
givenU andV . But in this case, when passing to rings the diagonal map corresponds to the
multiplicationmapR⊗R′ R→ R, r⊗ s 7→ rs. This is injective, and soR ∼= R⊗R′ R/a for
some ideal a ≤ R⊗R′ R. It is straightforward to show algebraically that SpecR⊗R′ R/a ∼=
V (a), which is closed, proving our claim.

Recall that the topological diagonal ∆(X) is closed if and only if X is a Hausdorff. A
schemeX will usually usually notHausdorff: ifX has a generic point η, then there is no way
of separating η from a point x in its closure by open sets. The right analogue turns out to be
defined precisely in terms of the diagonal morphism:

Definition 2.3.18. Let f : X → Y be amorphism of schemes. If∆X/Y is a closedmap, then
we say that f is separated.

The fibre product also allows us to settle the problem “how to turn an S-scheme into a
S ′-scheme?” through the following construction:

Definition 2.3.19. LetX and S ′ be S-schemes, and let (X ×S S ′, p, q) be their fibre product.
Regarding X ×S S ′ as an S ′-scheme with q as its structure morphism is called base change
by the map S ′ → S.

Example 2.3.20. For any ringR, one easily checks that Pn
Z ×SpecZ SpecR ∼= Pn

R.

However, for base change to be a nice way of passing between categories, we need to be
able to transfer maps.

Proposition 2.3.21. Let X → Y be a morphism of S-schemes, and suppose S ′ → S is also a
scheme over S. Then we have a natural map X ×S S ′ → Y ×S S ′, and base change is in fact
functorial.

Proof. If all schemes are affine, then we can simply take X ×S S ′ → Y ×S S ′ to be the map
f ⊗ Id. In the general case, we can glue themorphism using proposition 1.4.5. From this and
uniqueness of gluing, functoriality is immediate.

Corollary 2.3.22. Base change gives a functor Sch/S → Sch/S ′.

Definition 2.3.23. We say that a property P is stable under base change if the property
holding true for an S-scheme X → S implies it holds true for X ×S S ′ formed by base-
changing via S ′ → S.

Definition 2.3.24. Let ϕ : X → Y be a morphism of schemes, and fix y ∈ Y . The fibre of
f at y, is by definition Xp

..= OX,x ×Y Spec κ(y), where κ(y) ..= OY,y/my is the residue field
at y in Y , and the map κ(y)→ Y is given by ∗ 7→ y.

Example 2.3.25. An alternative way to view an S-scheme X → S is as a family of schemes
parameterised by the points of S, sincewe have a correspondence of schemes s↔ Xs between
points s ∈ S and fibres Xs of the structure morphism.
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Various flavours of finite
As in commutative algebra, finiteness conditions are frequently quite useful.

Definition 2.3.26. A scheme isNoetherian if it admits a finite affine open covering {Xi}
such that eachOXi(Xi) is a Noetherian ring.

Example 2.3.27. Affine n-space An
R and projective n-space Pn

R are clearly Noetherian, as is
any affine scheme.

We say that a ring homomorphism R → S is of finite presentation if S is isomorphic to
a quotient of R[x1, . . . , xn] for some n ∈ N. It is of finite type if there exists a surjection of
R-algebrasR[x1, . . . , xn]→ S.

Definition 2.3.28. A morphism of schemes f : X → Y is locally of finite presentation
(resp. finite type) if for any x ∈ X , there exists an affine open neighbourhood U ⊆ X
of x and affine open V ⊃ f (U ) such that the induced map OY (V ) → OX(U ) is of finite
presentation (resp. finite type).

Note that being locally of finite presentation implies being of locally finite type.

Example 2.3.29. If X = SpecR[x1, . . . , xn]/I for some I ≤ R[x1, . . . , xn], then the canon-
ical map X → SpecR is of finite presentation. Indeed, we can take X to be the affine open
set containing any x ∈ X , and the ring morphism OSpecZ(SpecR) = R → OX(X) =
R[x1, . . . , xn]/I is clearly of finite presentation.

A ring homomorphism ϕ : R → S is finite if the action (r, s) 7→ ϕ(r)s makes S into a
finiteR-module.

Definition 2.3.30. Amorphism of schemes f : X → Y is finite if it is affine, and if for any
affine openV ⊂ Y andU = f −1(V ), the induced ring mapOY (V )→ OX(U ) is finite.

Proposition 2.3.31. The properties of being finite, of finite type and of finite presentation are
individually stable under composition and base change.

Proof. See [GW10], appendix C.

2.4 A menagerie of schemes
Definition 2.4.1. An arithmetic scheme is a scheme of finite type over SpecZ.

We already described SpecZ in example 2.1.6, which is certainly an arithmetic scheme; a
less trivial example is that of the Gaußian integersZ[i].

Example 2.4.2. Recall that the prime elements ofZ[i] are given by
(i) primes p ∈ Zwhere p ≡ 3 (mod 4),
(ii) n+mi if p ..= n2 +m2 is a prime with p ≡ 1 (mod 4),
(iii) 1 + i.

23



The Étale Topology of Schemes 24

A proof of this can be found in [NS13], Thm. 1.4. To study the geometry of SpecZ[i], let us
consider the fibres under the canonical map ϕ into SpecZ. Fix a prime (p) ∈ SpecZ. Then

(SpecZ[i])(p) = SpecZ[i]×Z Spec κ(p) = Spec (Z[i]⊗ Fp) = SpecFp[i],

and consider first the case where p = 2. Since Fp[i] ∼= Fp[x]/(x2 + 1), this ring has four
elements. But via the automorphism x 7→ x + 1, we see that F2[i] ∼= F[x]/x2, so the fibre
of 2, which consists of only the point (1 + i), is a fat point, since the fibre is not a field.

Taking p ∼= 3 (mod 4), we claim that the fibre of (p) is a field. Indeed, x2 + 1 is irre-
ducible in Fp[x], hence generates a maximal ideal, so Fp[x]/(x2 + 1) ∼= Fp2 . On the other
hand, if p ≡ 1 (mod 4), then x2+1 is not irreducible overFp, but decomposes as the prod-
uct of two linear factors P1(x) and P2(x). Then we have a corresponding decomposition of
the fibre, as Fp[x]/p1(x)× Fp[x]/p2(x) ∼= Fp × Fp.

We can draw the picture as follows:

(2) (3) (5) (7)
(0)

(1 + i) (3)

(2− i)

(2 + i)
(7)

(0)

Wedraw the dot at (1+i) slightly thicker to signify that the fibre of 2 is “singular”. This gives
a geometric interpretationof the statement fromalgebraic number theory that2 viewed as an
integer ramifies in Z[i]: notice the geometric likeness to covering maps. Note that we have
an action of the Galois group Gal(Q[i]/Q) acting on each fibre. Of course, Gal(Q[i]/Q) is
generated by the automorphism z 7→ z̄which sends 2 + i to 2− i, 3 to itself, and so on.

Example 2.4.3. Consider now A1
Z = SpecZ[x]. Recall that a prime ideal p ∈ SpecZ[x]

takes one of the following forms:
(i) p = (0);
(ii) p = (p), where p ∈ Z is a prime;
(iii) p = (f ), where f is a polynomial which is irreducible over Q. This follows from

Gauß’ lemma.
(iv) p = (p, g), where p ∈ Z is a prime and g is a polynomial which is irreducible modulo

p.
That these are all possibilities is easy to see by considering the fibres under the canonical map
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SpecZ[x]→ SpecZ and splitting into cases.

(2) (3) (5) (7)
(0)

(2, x − 1)

(2)

(3, x2 + 1)

(3)

(5, x − 1)

(5, x + 1)

(5)

(7, x2 + 1)

(7)

(x2 + 1)

(3, x − 1) (7, x − 1)
(x − 1)

(0)

(2, x) (3, x) (5, x) (7, x)
(x)

The fibre of a prime (p) ∈ SpecZ corresponds to a vertical line in the drawing: it contains
every polynomial g as described in (iv), in addition to the point (p)which is dense in the fibre.
On the far right we have the prime ideals of type (iii), polynomials which are irreducible over
Q. These all lie in the fibre of (0) ∈ SpecZ, alongwith (0), which is dense (hence the stiple).

This is an example of an arithmetic surface, which is themain object of study inArakelov
theory. Although the picture above might not scream “surface”, there are two compelling
reasonswhy SpecZ[x] should indeed be called so: first of all, at any closed point the structure
sheaf has Krull dimension 2, and secondly the maximal chains of proper irreducible subsets
have length 2.

Example 2.4.4. Let f (x, y) = y− x2, and g(x, y) = y. We form the schemes

X ..= Spec
C[x, y]
(f (x, y))

and Y ..= Spec
C[x, y]
(g(x, y))

.

Geometrically, we can identify this with the following subset ofC:

y = x2

y = 0

Note that the classical intersection ofX and Y when viewed as curves inC is simply a point.
However, scheme-theoretically, their intersection isC[x, y]/(f, g) ∼= C[x]/(x2), which con-
sists of a single point along with extra information arising from the fact that f is tangent to
g, namely that of a nilpotent, x. Although we do not yet have the tools to see it, this mirrors
the situation with the “singular fibre” in example 2.4.2.

Over an algebraically closed field such as C, there is a well-established area called inter-
section theory describing various forms of intersection and tangency of algebraic varieties.
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For arithmetic schemes, the problems is vastly more complicated, and compactifying arith-
metic surfaces to make them suitable for intersection theory is one of the main ideas behind
Arakelov theory.

2.5 Quasi-coherent sheaves on a scheme
Following [Mum13]. Recall from section 1.3 that there is a natural analogue of modules over
a sheaf of rings. This turns out to be a very useful tool for studying schemes.

Proposition 2.5.1. Let X = SpecR be an affine scheme, and letM be an R-module. Then
there exists a sheaf of modules M̃ of OX , unique up to isomorphism, such that M̃(D(f )) =
M ⊗ Rf .

Proof. With the data M̃(D(f )) = M ⊗R Rf , we obtain as in the construction of the struc-
ture sheaf thatM⊗OX is a sheaf using proposition 1.2.4. To show that this is indeed a sheaf
of modules, it suffices to show thatM ⊗R Rf is an Rf -module for any f , and that multipli-
cation commutes with restriction. But these both follow immediately from definition.

Definition 2.5.2. LetX be a scheme. Aquasi-coherent sheaf onX is anOX -moduleF for
which there exists an affine open cover {Ui = SpecRi} of X such that F |Ui is isomorphic
to an OUi -module of the form M̃i for some Ri-moduleMi. If eachMi is finitely generated
overRi, thenF is said to be a coherent sheaf.

Example 2.5.3. TakeX = SpecR, and letM be anR-module. Then M̃ is a quasi-coherent
sheaf on X , and coherent if and only ifM is finitely generated overR.

Example 2.5.4. Fix a ringR, and let X be any scheme. Define a sheafF as follows: for any
affine open setUi = SpecRi inX , letF (Ui) = HomRing(R,OX(Ui)) = HomRing(R,Ri).
One easily checks that defines a sheaf of modules on the cover of affine open sets, since

Ri ×Hom(R,Ri) Hom(R,Ri)

Rj ×Hom(R,Rj) Hom(R,Ri)

(2.7)

commutes: given a restriction ρ : Ri → Rj , we have an induced map ρ̃ : Hom(R,Ri) →
Hom(R,Rj) given by f 7→ ρf , and we readily verify that ρ(ri)ρ̃(f ) = ρ̃(rif ) for ri ∈ Ri and
f ∈ Hom(R,Ri) since (ρ̃(f ))(r) = ρ(f (r)) for any r ∈ R.

Recall that any ring homomorphism ψ : R → S imposes an R-module structure on S
given by r · s = ψ(r)s. We might expect that the same should hold for schemes, that is, that
given a morphism of schemes ϕ : X → Y , ϕ∗OX is a sheaf of modules on Y . It is not very
difficult to show that this is indeed the case, however it need not be the case that that ϕ∗OX
is a quasi-coherent sheaf on Y , see for example [GW10], exercise 10.14.

For our purposes, themost important example of a quasi-coherent sheaf is the following,
which is a purely algebraic analogue of the differentials found in differential geometry.

Let ϕ : R → S be a ring homomorphism, and define an S-module ΩS/R as the free S-
module on {ds : s ∈ S}modulo the following relations, for s1, s2 ∈ S,
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(i) d(s1 + s2) = ds1 + ds2,
(ii) d(s1s2) = s1ds2 + s2ds1, and
(iii) dϕ(r) = 0 for all r ∈ R.

ThenHomModS(ΩS/R,M) is isomorphic to the module ofR-derivations S →M for any S-
moduleM. Explicitly, given a morphism of S-modules τ : ΩS/R →M, the map s 7→ τ(ds)
determines an R-derivation, and an R-derivation D : S → M gives a map ΩS/R → M
generated by ds 7→ D(s).

Definition 2.5.5. The S-module ΩS/R is called the module of Kähler differentials, or
relative differentials, of S overR.

Theorem 2.5.6. Letm : S ⊗R S → S be the multiplication map,m(s, s′) = ss′, and define
I ..= kerm ≤ S ⊗R S. Then I/I2 is canonically isomorphic toΩS/R.

Proof. Wewill construct the isomorphism explicitly: letΦ: ΩS/R → I/I2 be determined by
Φ(ds) = s⊗1−1⊗ s. Note that s⊗1−1⊗ s ∈ kerm, sincem(s⊗1−1⊗ s) = s⊗−s = 0
since s⊗−s = −(s⊗−s). ThenΦ is compatible with conditions (i)–(iii).

In the reverse direction, let A = S ⊕ ΩS/R and define Ψ: S × S → A by Ψ(s1, s2) =
(s1s2, s1ds2). This isR-bilinear becauseΨ(rs1, s2) = (rs1s2, rs1ds2) = rΨ(s1, s2) and

Ψ(s1, rs2) = (rs1s2, s1d(rs2)) = (rs1s2, rs1ds2) = rΨ(s1, s2), (2.8)

where we use (iii) in the last equality, so that d(rs2) = rds1 + s1dr = rds1. Therefore
we obtain a map Ψ̃ : S ⊗R S → A, and for any i ∈ I , the first component of Ψ̃(i) is
0 by definition of I . Moreover, since (ii) implies that any square in ΩS/R is 0, the second
component of Ψ̃ factors through the quotient of I/I2. It is easily checked that these maps
are mutually inverse.

Example 2.5.7. Let R be some field k, and let S = k[x1, . . . , xn]. Then ΩS/R is the free S-
module generated by dx1, . . . , dxn such that for any f ∈ S,

df =
n∑

i=1

∂ f
∂ xi

dxi,

which is precisely the analogue of analytic differentials in the special case of polynomials.

Now we want to “globalise” the construction to the case of schemes.

Theorem 2.5.8. [LE06] Let f : X → Y be amorphism of schemes. Then there exists a unique
quasi-coherent sheafΩ1

X/Y on X such that for any affine openV ⊂ Y andU ⊂ f −1(V ) with
x ∈ U , we have

Ω1
X/Y |U ∼= Ω̃OX (U )/OY (V ) and (Ω1

X/Y )x
∼= (Ω̃OX (U )/OY (V ))x. (2.9)

Our strategy will be the following: first we define the stalks ofΩ1
X/Y , and then we patch

together in a natural way. We first need the following technical lemma:

Lemma 2.5.9. Let ϕ : R → R′ be a ring homomorphism, and fix q ∈ SpecR′ and p =
ϕ−1(q) ∈ SpecR. Then we have canonical isomorphisms

Ω1
R′/R ⊗ R′

q = Ω1
R′
q/R = Ω1

R′
q/Rp

. (2.10)
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Proof. See [LE06], Prop. 6.1.8.

Proof of theorem 2.5.8. For simplicity, write Ωx
..= Ω1

OX,x/OY,f (x)
for x ∈ X . Given U,V and

x as in the theorem statement, and ω ∈ Ω1
OX (U )/OY (V ), let ωx denote the image of ω in

Ω1
OX (U )/OY (V ) ⊗ OX,x = Ωx, identifying the two by the previous lemma. Next, for an ar-

bitrary openU ⊂ X , defineΩ1
X/Y (U ) to be the set of maps

s : U →
∐
x∈U

Ωx (2.11)

such that for any x ∈ U , there exists affine open neighbourhoods Vy ⊂ Y of y = f (x)
and Ux ⊂ f −1(Vy) and ω ∈ Ω1

OX (Ux)/OY (Vy)
with ωx′ = s(x′) for every x′ ∈ Ux. It is

straightforward to check (but tedious to write out) thatΩ1
X/Y forms a sheaf ofOX -modules

on X with restriction maps given by restriction of domains. By design, the stalks (Ω1
X/Y )x

are isomorphic toΩx, and for affine open V ⊂ Y andU ⊂ f −1(V ) we have a natural map
of rings Ω1

OX (U )/OY (V ) → Ω1
X/Y (U ) given by dr 7→ (x′ 7→ drx′). Noting that this is in fact

an isomorphism at the level of stalks, it is accordingly an isomorphism of OX |U -modules,
proving eq. (2.9). By definition,Ω1

X/Y is therefore quasi-coherent.

Definition 2.5.10. Fix a morphism of schemes f : X → Y . The quasi-coherent sheafΩ1
X/Y

defined above is called the sheaf of Kähler differentials, or relative differentials of de-
gree 1 of X over Y .
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Chapter 3

The Étale Topology

3.1 Insufficiency of the Zariski topology
Compared to the Euclidean topology, the Zariski topology is lacking in many respects. For
example, it is never Hausdorff unless the underlying space is finite because every open set
contains infinitely many prime ideals. Points need no longer be closed sets, in fact, these
are precisely the ideals which are maximal. If we want to transfer ideas from, say, complex
differential geometry, we need to work with a finer topology. Amore concrete motivation is
the following:

The Weil Conjectures
We follow [Har77] and [FK88]. Let X be a scheme of finite type over finite field k = Fq,
and define the base-change X̄ = X ×k k̄, where k̄ is a fixed an algebraic closure of k. Suppose
Nr, for r ∈ N, denotes the number of Fqr -rational points in X̄ . In classical language, these
are precisely the points of X̄ with coordinates in Fqr .

Definition 3.1.1. The zeta function of X is the formal power series

Z(X, t) ..= exp

(∑
r∈N

Nrtr

r

)
∈ Q[[t]]. (3.1)

Here exp denotes the formal power series exp(t) = 1 + t/1! + t2/2! + t3/3! + . . ..
Weil conjectured, inspired by direct verification in a few special cases, that the zeta function
should obey certain properties analogous to those of the Riemann zeta function. Precisely:

Conjecture (W1). Z(X, t) is a rational function in t.

Conjecture (W2). IfE is the self-intersectionnumber of the diagonal inX×X , thenZ satisfies

Z
(
X,

1

qnt

)
= ±qnE/2tEZ(X, t). (3.2)

This is an analogue of the functional equation for the Riemann zeta function,

π− s
2Γ
( s
2

)
ζ (s) = π− 1−s

2 Γ

(
1− s
2

)
ζ (1− s).
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The next is inspired by the Riemann hypothesis:

Conjecture (W3). Let n ..= dimX . Then Z can be written on the form

Z(X, t) =
P1(t)P3(t) . . . P2n−1(t)
P0(t)P2(t) . . . P2n

, (3.3)

where P0 = (1− t), P2n = (1− qnt) and Pi =
∏

j(1− αijt) where aij are algebraic integers
with |αij| = qi/2.

Assuming (W3), we define the Betti numbers βi(X) ..= degPi. In the classical setting, if
X is a subvariety ofCwith theEuclidean subspace topology, we candefine theBetti numbers
βi(X) as the dimensions of the vector spaces H r(X,Q). However, over arbitrary fields this
fails, and the Zariski topology proves inadequate:

Proposition 3.1.2. If a topological space X is irreducible, thenH r(X,F ) = 0 for all r > 0
and every constant sheafF .

Since every integral scheme is irreducible, this shows that the Zariski topology is inade-
quate when we try to apply cohomological methods toZ-schemes. The näive way to fix this
problem is to refine the Zariski topology by adding more open sets. This turns out to be a
very fruitful approach; the difficulty lies in choosing the correct ones.

Weil’s ingenious idea was that if we were to define the “correct” homology theory of
varieties over finite fields, then we might have a good chance at proving these result. In his
honour, a “good” homology theory, that is, one satisfying a list of axioms including those
needed for the resolution of the Weil conjectures, is called aWeil cohomology theory. Along
cameGrothendieck, whowith the apparatus of scheme theory was revolutionising algebraic
geometry. Equipped with the étale topology, he and Michael Artin were able to provide the
necessary formalism toprove conjectures (W1) and (W2). However, theRiemannhypothesis
remained elusive until it was settled by Pierre Deligne in 1974 [Del74].

3.2 Étale morphisms
Recall from calculus the inverse function theorem:

Theorem 3.2.1 (Inverse function theorem). Fix x ∈ Rm. If f : Rm → Rn satisfies

det
[
∂ fi
∂ xj

∣∣∣
x

]
i,j
6= 0, (3.4)

then there exists a neighbourhoodU of x such that f |U is a diffeomorphism onto its image.

Proof. (See [MW97], p.4).

The idea is simple: to refine the Zariski topology, we add to our topology sets which are
the preimages of open sets undermaps which satisfy a suitable analogue of the hypothesis of
the inverse function theorem. This turns out to be themaps which are étale, meaning “still”
or “slack”, by analogy with the sea. The first ingredient in the definition of étale maps is the
idea of an unramified morphism:
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Unramified maps
Informally, in complex analytic geometry we say that a map of Riemann surfaces is ramified
at a point if it “branches out” there. For example, the map ϕ : z 7→ zn in C is n-to-1 at an
arbitrary non-zero point p inC, with the n distinct n-th roots of pmapping to p. However,
0 has only a single preimage, and we say that ϕ is ramified at 0, or that 0 is a branch point
of ϕ. Topologically, we can think of 0 as having no neighbourhood on which ϕ is injective.
If our notion of étale morphisms are meant to mirror local homeomorphisms, the algebro-
geometric analogue of ramification certainly needs to be precluded.

f

Figure 3.1: A triple coverwith two ramified points. f is not a local homeomorphism
near the first ramification point since by removing a single point we obtain six con-
nected components in the domain, but only two in the image.

As usual, we start off “locally”, in the world of rings: Recall that a morphism of local
rings ϕ : R→ S is unramified if S/ϕ(mR) is a finite separable field extension ofR/mR.
Definition 3.2.2. A morphism locally of finite presentation f : X → Y is unramified at
x ∈ X if the induced map of local rings OY,f (x) → OX,x is unramified. If f is unramified at
all x ∈ X , then we say that f is unramified.

This definition is not always the easiest to use in practice, but fortunately we have the
following:
Proposition 3.2.3. Let f : X → Y be a morphism locally of finite type. Then the following
are equivalent:

(i) f is unramified at x,
(ii) the stalk (Ω1

X/Y )x = 0,
(iii) there exists aneighbourhoodU of x restricted towhich thediagonalmorphism∆X/Y : X →

X ×Y X is an open immersion.
Proof. Unfortunately, we do not have space to develop themachinery required to prove this.
See [Mil80], Prop. 1.3.5, or [Sza09], Prop. 5.2.7.
Example 3.2.4. Proceeding as in example 2.4.2, consider the natural map f : SpecZ[i] →
SpecZ. In the setting of algebraic number theory one might recall that (1+ i) ramifies over
Z, so we expect that the same holds for f .

Note first that sinceZ[i] = Z[x]/(x2 + 1) and 0 = d(x2 + 1) = 2dx, we have

ΩZ[i]/Z ∼=
Z[i]dx
Z[i]2dx

∼=
Z[i]
2Z[i]

.

For any p ∈ Z[i], we find that (Z[i]/2Z[i])p = 0 if 2 6∈ p, since it is a field containing a
nilpotent, i+1. If 2 ∈ p, then 2 ∈ (Z[i]/2Z[i])p 6= 0, so (ΩSpecZ[i]/SpecZ)p 6= 0. Of course,
the only prime ideal inZ[i] containing 2 is p = (1 + i), which verifies our expectation.
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Flat morphisms
The second ingredient in the definition of étale is flatness. While many concepts in scheme
theory come fromgeometry, flatness is decidedly algebraic. Asmemorably put byMumford,
“The concept of flatness is a riddle that comes out of algebra, but which technically is the
answer to many prayers”([Mum13], p. 214). We say that a ring homomorphism ϕ : R → S
is flat if the action defined by (r, s) 7→ ϕ(r)smakes S a flat R-module, that is, a module for
which the functor−⊗R S is exact. Globally, we take the following:

Definition 3.2.5. A morphism of schemes f : X → Y is flat if the corresponding local
homomorphismsOY,f (x) → OX,x are flat.

We are now set to define étale morphisms:

Definition 3.2.6. A morphism of schemes f : X → Y is étale if it is locally of finite pre-
sentation, flat and unramified. Similarly, we say that an S-scheme X π−→ S is étale whenever
π is.1

We denote by Ét/S the category of étale S-schemes along with arrows given by étale
morphisms of S-schemes.

Example 3.2.7. Any open immersion is étale, because it is an isomorphism at the level of
stalks.

Definition 3.2.8. An étale cover is surjective étale morphism.

Example 3.2.9. Let S = Spec k. Then by unraveling the definitions, we find that an étale
cover X → S is simply a disjoint union of finite separable extensions of k.

Definition 3.2.10. We say that an étale cover f : X → S is trivial if X is isomorphic to a
disjoint union of copies of S, restricted to each of which f is the identity.

Étale maps obey a few other useful properties:

Proposition 3.2.11. Let f : X → Y and g : Y → Z be étale morphisms.
(i) g ◦ f is étale;
(ii) if X is an S-scheme and S ′ → S a morphism, then the induced map X ×S S ′ → Y is

also étale.

Proof. [Mil80], Prop. 1.3.3.

In light of proposition 3.2.3, it seems reasonable that étale maps should have a straight-
forward characterisation in terms of the “differential properties” of a scheme.

Theorem 3.2.12. A morphism of schemes f : X → Y is étale if and only if for each x ∈ X ,
there exist open affine neighbourhoods U = SpecR of x and V = Spec S of y = f (x) such
that for some n ∈ N,

R = S[T1, . . . , Tn]/(P1, . . . , Pn) and det
[
∂Pi
∂Tj

]
i,j
∈ R×. (3.5)

Proof. [Mil80], Cor. 3.16.
1This is slightlymore restrictive thanmore common definitions which require f to be of finite presentation

instead of locally finite, but this sufficient for our purposes.
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3.3 Grothendieck Topologies
Grothendieck observed in his famous Tohoku paper ([Gro57]) that all the axioms of a topol-
ogy were not necessary to define sheaves, and by extension, cohomology theories. In fact,
if we adjust the definition of a sheaf somewhat, it suffices to consider appropriately chosen
coverings of a given scheme. More precisely:

Definition 3.3.1. LetCbe a category. AGrothendieck topology J consists of the following
data: for each object U ∈ C, a collection J (U ) of sets of maps {ϕi : Ui → U} where each
set if called a covering of U , satisfying the following conditions:

(i) For any morphism V → U in C, the fibre products Ui ×U V exist, and induces a
covering {Ui ×U V → V}i ofV .

(ii) If for each i, {Vij → Ui}j is a covering of Ui, then {Vij → U}i,j is also a covering of
U .

(iii) The class consisting only of the identity mapU → U is a covering ofU .
A pair (C, J ) is called a site, often abbreviated byC.2

Let us check that this indeed generalises the notion of an open cover:

Example 3.3.2. Any “classical” open cover {Ui} on a topological space X is a covering.

Proof. LetU(X) be the poset categorywhich has objects given by open sets ofX , and arrows
given by inclusions. For any openV ⊆ X , the fibre productsUi ×X V are given byUi ∩V ,
as seen by the pullback diagram

Ui ∩ V V

Ui X

Since Ui ∩ V are also open subsets of X , they are objects inU(X), and form an open cover
of V . To prove (ii), let {Vij} be a covering ofUi for each i. Then Vij is an open cover ofU .
Finally,U is an open cover of itself, proving (iii).

Example 3.3.3. LetX be a scheme. TheZariski site onX ,Xzar, is the site associated with the
(Zariski) topology on X .

Having defined coverings categorically, it is reasonable to do the same continuousmaps.

Definition 3.3.4. Let C,C′ be sites. A continuous map C → C′ is a functor which pre-
serves fibre products and coverings.

Example 3.3.5. If X and Y are topological spaces, and f : X → Y a continuous map, then
f induces a continuous mapU(Y )→ U(X), defined by pulling back coverings of Y via f .

The key to generalising sheaves to this situation turns out to be the equaliser condition:
2The original definition is more general, since it does not require the existence of fibre products. However,

this is sufficient for our purposes. We followMilne.[Mil80]
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Definition 3.3.6. A sheafona site (C, J ) is a contravariant functorF : Cop → C′ satisfying
the equaliser condition

F (U )→
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj). (3.6)

In other words, F (U ) can be identified with the collection of (si) ∈
∏

i F (Ui) satis-
fying si|Ui×UUj = sj|Ui×UUj . In light of example 3.3.2, we see that this reduces to the original
case when considering topological spaces.

The following will not be used later, but is nice to know:

Definition 3.3.7. A topos is a category equivalent the category of sheaves on a site.

Definition 3.3.8. The étale site onX ,Xét, has the underlying category Ét/X . A covering of
X is a surjective family of étalemorphisms inÉt/X , in otherwords a collection ofX -schemes
{ϕi : Ui → X}maps such that

⋃
i ϕi(Ui) = X .

Proposition 3.3.9. The étale site is indeed a site on X .

Proof. This is an immediate consequence of proposition 3.2.11.

This is the first step into developing ℓ -adic cohomology, which is the key idea behind the
resolution of the Weil conjectures. However, instead of venturing into this vast and com-
plicated area, we will consider another application of étale maps, namely that of the étale
fundamental group.

3.4 The Galois theory of finite étale covers
Inwhat follows, we shall see that finite étale covers havemany features in commonwith finite
covers of topological space. We start off with a technical lemma:

Lemma 3.4.1. Let ψ : Y → X and ϕ : X → S be morphisms of schemes.
(i) If ϕ ◦ ψ is finite and ϕ is separated, then ψ is finite.
(ii) If in addition ϕ ◦ ψ and ϕ are étale, then so is ψ .

Proof. (i) By definition of ϕ being separated, the diagonal morphism∆X/S : X → X ×S X
is a closed immersion. Now define the graph of ψ , Γψ as the fibre product

Y

Y ×S X X

Y S

IdY

Γψ

ψ

pr2

ϕ

ϕ◦ψ

Then Γψ is finite by proposition 2.3.31. Similarly, pr2 is a finite map since we can consider it
as the base change of ϕ ◦ ψ by ϕ. Therefore pr2 ◦ Γψ = ψ is finite as well.
(ii): Suppose ϕ is an étale cover. By proposition 3.2.3,∆X/S is an isomorphism onto a clopen
subset of X ×S X , hence finite étale. Since being finite étale is stable under base change by
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proposition 3.2.11 and proposition 2.3.31, so isΓψ . For the same reason, pr2 ◦Γψ = ψ is finite
étale.

Proposition 3.4.2. Let f : X → S be a finite étale cover, and let s : S → X be a section of f .
Then s is an isomorphism onto some clopen subscheme of X .

Proof. By the previous lemma, s is finite étale. Being a section, it is injective, and so an
isomorphism onto its image. The fact that the image is clopen is slightly more subtle, cf.
[Sza09], Remark 5.2.2(3), and we omit the proof for the sake of brevity.

Definition 3.4.3. A geometric point s̄ of scheme S is a map SpecΩ→ S, whereΩ is some
algebraically closed field. If X is an S-scheme, the geometric fibre of X over s̄ is the fibre
product X ×S SpecΩ.

Corollary 3.4.4. If Z → S is a connected S-scheme, f1 : Z → X and f2 : Z → X are
morphisms satisfying f1 ◦ z̄ = f2 ◦ z̄ for some geometric point z̄ : SpecΩ→ Z, then f1 = f2.

Proof. Since being étale is stable under base change, it suffices to prove this for S = Z. But
by the proposition above, two sections f1, f2 of X → S are determined by their value at the
image of a geometric point, since the connected component of X containing the image of
the fi is uniquely specified by z̄.

Definition 3.4.5. Given amorphism of f : X → S, let Aut(X/S) be the group of automor-
phisms λ : X → X satisfying f (λ(x)) = f (x) for all x ∈ X .

There is a natural group action of Aut(X/S) on X by λ · x = λ(x), and this induces an
action on any geometric fibre Xs̄ = X ×S SpecΩ.

Lemma 3.4.6. Let f : X → S be a connectedfinite étale cover, and s̄ : SpecΩ→ S a geometric
point. Then non-trivial elements ofAut(X/S) act without fixed points on Xs̄.

Proof. This is immediate from corollary 3.4.4 by taking f1 = f and and f2 = f ◦ λ.

Since the underlying set of Xs̄ is finite, we thus have:

Corollary 3.4.7. If X → S is a finite étale cover, thenAut(X/S) is a finite group.

Just as with sets, there is a natural notion of a quotient of a scheme by a group action.

Theorem 3.4.8. Let f : X → S be an affine, surjective map and G a finite subgroup of
Aut(X/S). Then there exists a scheme with underlying set the orbits of X under G, being
the unique scheme up to isomorphism satisfying the following universal property: there exists
a unique morphism of schemes ϕ : X → G\X such that for any morphism g : X → Y where
Y is affine and surjective, subject to g(λ(x)) = g(x) for all λ ∈ G, there exists a unique map
g̃ : G\X → Y such that

X Y

G\X

ϕ

g

g̃

commutes.

Proof. [Sza09], Prop. 5.3.6.
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Lemma 3.4.9. Let f : X → S be a connected finite étale cover, and G ⊂ Aut(X/S). Then
the induced morphisms X → G\X andG\X → S are finite étale as well.

Definition 3.4.10. Aconnectedfinite étale coverX → S is called aGalois cover ifAut(X/S)
acts transitively on Xs̄ for any geometric point s̄ : SpecΩ→ S.

Theorem 3.4.11. Let f : X → S be a Galois cover, let ψ : Z → S be a morphism of schemes,
and suppose ϕ ◦ π = ψ for some π : X → Z.

(i) π is a finite étale cover, Z ∼= H\X for some H ≤ G ..= Aut(X/S), and there is a
bijection

{subgroupsH ≤ G} ↔ {intermediate covers X → Z → S};

(ii) ψ : Z → S is Galois if and only ifH E G, in which caseAut(Z/S) ∼= G/H .

Proof. [Sza09], Prop.5.3.8.

The next lemma shows that in some cases, we need only check a single fibre to determine
if X → S is Galois.

Lemma 3.4.12. Let X → S be a connected finite étale map. IfAut(X/S) acts transitively on
Xs̄ for some s̄ : SpecΩ→ S, then X is Galois over S.

Proof. Consider Aut(X/S)\X . This is connected, and the fibre of s̄ consists of a single ele-
ment. Therefore this is isomorphic to X . By the previous theorem, it follows that X → S is
Galois.

The following can be seen as an analogue of the result in Galois theory that every field
extension has a normal closure.

Theorem 3.4.13. Let f : X → S be a connectedfinite étale cover. Then there exists amorphism
P → X such that P

ϕ◦π−−→ X is a Galois cover, and every S-morphism Q → X where Q is a
Galois cover factors through P.

Proof. Fix geometric points s̄ : SpecΩ → S and F = {x̄1, . . . x̄n} where x̄i : SpecΩ → Xs̄.
By choosing an ordering on F , we get a unique geometric point

x̄ : SpecΩ→ Xn ..= X ×S . . .×S X︸ ︷︷ ︸
n times

.

Now letP ⊂ Xn be the connected component containing the image of x̄, and let π : P → X
be the restriction of the projection Xn → X onto the first component. Note that π is finite
étale by virtue of being the base change of f , by proposition 3.2.11 (ii).

We claim that any point of Ps̄ can be represented as (x̄σ(1), . . . , x̄σ(n)) for some permuta-
tion σ ∈ Sn. Indeed, since each point of Xn

s̄ arises from an element of F n, it suffices to show
that points in P have distinct coordinates. Note that∆X/S : X → X ×S X is a clopen map
because f is separated, hence the preimage of∆(X) under the projection πij : Xn → X×SX
is clopen as well. Now note that π−1

ij (∆(X)) ∩ P = ∅ since otherwise we would have
P ⊂ π−1

ij (∆(X)), which is impossible since then x̄ would have a repeated coordinate. This
proves our claim.
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Next we aim to show that P → X is Galois; note that each permutation σ of the x̄i
induces an automorphism λσof Xn by permuting components, and if λσ ◦ x̄ ∈ Ps̄, then
λσ(P) ∩ P 6= ∅. Consequently, λσ ∈ Aut(P/S), and so Aut(P/S) acts transitively on a
geometric fibre of P. By lemma 3.4.12, it follows that P is Galois.

Finally, to show the universality, note that for any S-morphism q : Q → X where Q
is a Galois cover of S, we can choose a preimage ȳ in Q of the geometric point x̄. By theo-
rem 3.4.11, q is a surjective morphismwhich by composing with elements of Aut(Q/S) gives
nmorphisms qi : Q→ X satisfying qi ◦ ȳ = x̄i. These induce amorphismQ→ Xn, and we
see that the image lies wholly in P since ȳ 7→ x̄. Thus q factors through P, as claimed.

3.5 The étale fundamental group
In algebraic topology and homotopy theory, we are interested in studying the homotopy
groups of a given topological space. While we have a natural definition of π0(X) for any
scheme X as the set of irreducible components, we quickly run into trouble when trying
to define the first fundamental group π1(X, x). This was one of several problems occupying
AlexanderGrothendieck in themid-1950’s, as hehimselfwrites in a letter to Jean-Pierre Serre:
“Obviously, I am looking for an algebraic definition of the fundamental group...” ([GC04],
p. 55).

Definition 3.5.1. Let s̄ : SpecΩ → S be a geometric point, and let the fibre functor
Fib̄s : FÉt/S → Set be the composition of the base change functor X 7→ X ×s SpecΩ
and the forgetful functor Sch→ Set sending a scheme to its underlying set.

Given a functor F : C → C′, let Aut(F ) be the automorphism group of F , namely the
group of invertible natural transformations F → F under composition. Explicitly, each
ϕ ∈ Aut(F ) consists of an automorphism ϕC of C for each C ∈ C, and if C is set-valued,
we have a natural action of Aut(F ) on each object C by ϕ · c = ϕC(c) for c ∈ C .

Definition 3.5.2. Given a scheme S and a geometric point s̄ : SpecΩ→ S, the étale funda-
mental group with basepoint s̄, π1(S, s̄), is the automorphism group of the fibre functor
Fib̄s on FÉt/S.

Analogously to how the topological fundamental group acts on the covers of a topolog-
ical space via deck transformations, we have the following:

Theorem 3.5.3 (Grothendieck). Let S be a connected scheme and s̄ : SpecΩ→ S a geometric
point.

(i) The groupπ1(S, s̄) is profinitewith a continuous action onFib̄s(X) for everyX ∈ FÉt/S;
(ii) The functor Fib̄s induces an equivalence of categories between FÉt/S and the category of

finite sets with a continuous left π1(S, s̄)-action, where connected covers correspond to sets
with a transitive action of π1(S, s̄), and Galois covers to finite quotients of π1(S, s̄).

Example 3.5.4. From the picture in example 2.1.6, one might anticipate that π1(SpecZ) =
0. Using Minkowski theory, one can prove the following:

Theorem 3.5.5. There are no unramified field extensions ofQ.
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See for example [NS13], Thm. 2.2.18. for a proof. To apply this, wewill state – but unfor-
tunately cannot prove, see [Len08], cor. 6.17 – a key result on the covering theory of normal
integral schemes likeZ:

Theorem 3.5.6. Let X be a normal integral scheme with function field k, fix an algebraic
closure k̄ of k, and let U/k be the maximal unramified separable extension contained in k̄.
Then π1(X, s̄) ∼= Gal(U/k).

Now, by Minkowski’s theorem the maximal unramified extension is simply Q, which
we recall is also the function field ofZ. Therefore, π1(Z, s̄) = 0 for any geometric point s̄.

Finite étale algebras
To see how this relates to classical Galois theory, let us first consider its reformulation due to
Grothendieck. The main reference is [Sza09], chapter 1.

Definition 3.5.7. Afinite-dimensional k-algebraA is étaleover k if it is isomorphic to afinite
direct sum of separable extensions of k. If all the separable extensions have finite degree over
k, then A is said to be a finite étale algebra.

Example 3.5.8. Any separable extension of k can be viewed as a finite étale algebra.

Example 3.5.9. The spectrumof afinite étale algebraAover a field k is a finite étale k-scheme.

Definition 3.5.10. Fix a separable closure ks of k. The groupGal(k) ..= Gal(ks/k) consisting
of automorphisms of ks fixing k is called the absolute Galois group of k.

In general, this is a very mystical object, but we can prove the following theorem:

Theorem 3.5.11 (Grothendieck’s reformulation of the Galois correspondence). Let k be a
field with a separable closure ks. Then the correspondence

{Finite étale k-algebras} ↔ {LeftGal(ks/k)-sets}
A 7→ Homk(A, ks)

is an anti-equivalence of categories between the category of finite étale k-algebras and the cate-
gory ofGal(ks/k)-sets.

To see how this ties in with classical Galois theory, we need the following lemma, which
is easily checked:

Lemma 3.5.12. LetG be a group. Then there is a one-to-one correspondence between subgroups
ofG and quotients ofG as aG-set, given byH 7→ G/H .

Under this correspondence, we see that Grothendieck’s reformulation reduces to:

Corollary 3.5.13 (The classical Galois correspondence). Let Gal(k) be the absolute Galois
group of k. Then there is a one-to-one correspondence

{finite separable extensions of k} ↔ {open subgroups ofGal(k)},

where a subfieldK corresponds to the subgroup of automorphisms which fixK .

38



The Étale Topology of Schemes 39

Of course, we can also look at a fixed (Galois) subfield and consider its subextensions
with corresponding subgroups of the Galois group. For a direct proof, see for example
[Nag77],Chapter 7. Weare content to showhow it follows fromGrothendieck’sπ1-theorem.

Proof of theorem 3.5.11. In theorem 3.5.3, take S = Spec k, and recall from example 3.2.9 ,
since the map X → S is surjective, any finite étale scheme is the spectrum of some finite
étale k-algebra. In this case a geometric point SpecΩ → S corresponds to a field extension
Ω/k, and the fibre functor sends SpecA to the underlying set of SpecA⊗kΩ, by definition of
the fibre product. In the special case whereA = L is some finite separable extension of k, we
claim that this set bijectively corresponds to the set Homk(L,Ω). Recall fromGalois theory
that a finite separable extension of degree n has exactly n distinct k-algebra morphisms into
an algebraic closureΩ (eg. [Sza09], Lemma 1.1.6). But sinceLbreaks into linear factorswhen
tensored withΩ, SpecL⊗ Ω = qn

i=1Ω, whose spectrum has precisely n points. The image
of these morphisms lie in ks, so we obtain that Fib̄s(X) = Homk(L, ks), and so π1(S, s̄) ∼=
Gal(k).

Representable and pro-representable functors
Recall that a functor F : C → Set is representable if there exists some object C ∈ C such
that F is naturally isomorphic to Hom(C,−).

From the proof of theorem 3.5.11 one might suspect that Fib̄s is representable for S =
Spec k since we can identify Fib̄s with the functorX 7→ Hom(Spec ks, X). However, Spec ks
is not finite étale over Spec k. On the other hand, it is represented by something that looks
like a limit of elements of FÉt/S, which inspires the following definition:

Definition 3.5.14. LetCbe a category, andF : C→ Set a functor. ThenF ispro-representable
if there exists an inverse system (Cλ, ϕλ)λ∈Λ such that

F (X) ∼= lim−→
λ∈Λ

Hom(Cλ, X).

Example 3.5.15. Every representable functor is evidently pro-representable.

Example 3.5.16. Consider forgetful functor F : FinGrp → Set sending a finite group to
its underlying set. This is not representable since for any finite group G we can find some
finiteH such that Hom(G,H) = 0; taking anyH with order coprime to that ofG suffices.
However, one can show that G = Hom(Ẑ, G) as sets, where Ẑ is the profinite comple-
tion of the integers lim←−Z/mZwhere the limit system is given by the natural projectionmap
Z/mZ→ Z/nZwhenever n|m. This is an example of a pro-representable functor which is
not representable.

Theorem 3.5.17. Fix a scheme S and a geometric point s̄ : SpecΩ → S. Then the functor
Fib̄s : FÉt/S → Set is pro-representable.

Proof. Define the inverse system Λ in FÉt/S by taking objects to be Galois covers Pα → S,
withPα ≺ Pβ if there exists amorphismPβ → Pα. Note that this forms a directed set because
for any Pα, Pβ ∈ Λ, we can apply theorem 3.4.13 to a connected componentZ of Pα×S Pβ to
obtain a Pγ and maps Pγ → Z → Pα and Pγ → Z → Pβ.

However, this morphism is generally not unique, and we require unique arrows to form
a directed system. To remedy this, consider the additional data of an arbitrary pα ∈ Fib̄s(Pα)
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for every α. Then by corollary 3.4.4 there exists a unique S-automorphism λ of Pβ such that
ϕ ◦ λ sends pβ to pα. We can now define ϕαβ ..= ϕ ◦ λ, and by construction, this is the unique
map Pβ → Pα such that Fib̄s(ϕαβ(pβ)) = pα.

As in the classical case, we have for each X ∈ FÉt/S, Pα ∈ Λ, a map Hom(Pα, X) →
Fib̄s(X) given by ϕ 7→ Fib̄s(ϕ)(pα). This respects the inverse system in the sense that a map
ϕαβ : Pβ → Pα induces a map Hom(Pβ, X) → Hom(Pα, X) by precomposition. Therefore
we obtain a functorial map

lim−→
Pα∈Λ

Hom(Pα, X)→ Fib̄s(X). (3.7)

We aim to construct an inverse to this map. Without loss of generality, we can assume that
X is connected; recall from theorem 3.4.13 that we can choose a Galois closure π : P → X .
Note that P = Pα for some α, so for any x̄ ∈ Fib̄s(X) there exists a unique S-automorphism
λ such that Fib̄s(π ◦ λ) : pα 7→ x̄. The map sending x̄ to the element corresponding to π ◦ λ
in the left hand side of (3.7) gives the required inverse.

Corollary 3.5.18. The automorphism groupsAut(Pα)op form an inverse system whose limit is
isomorphic to π1(S, s̄).

Proof. We claim that every automorphism of Fib̄s arises from an automorphism of the in-
verse system (Pα)α∈Λ, meaning a collection of automorphisms λα ∈ Aut(Pα/S) compatible
with the transitionmaps. Indeed, any automorphism of Fib̄s sends the collection (pα) of dis-
tinguished elements to a corresponding system (p′α), and since Pα are all Galois, each assign-
ment pα → p′α gives rise to an automorphism λα of Pα. The λα respect the transition maps
precisely because (pα) and (p′α) are compatible systems.

Nowby theorem3.4.11, forPα ≺ Pβwehavenatural surjectionsAut(Pβ/S)→ Aut(Pα/S).
Thus we have an inverse system (Aut(Pα/S))α∈Λ, and by the above, the automorphisms of
Fib̄s correspond bijectively to automorphisms of the system (Pα), which are precisely the el-
ements of the inverse limit.

Covering spaces
Theorem 3.5.19 (Generalised Riemann existence theorem). Let X be a smooth variety over
C. Then every finite finite covering space of X has the structure of a smooth variety.

Proof. Proving this is long andhard, andwepoint the reader to the corresponding references
in [Sza09], Thm. 5.7.4, along with Serre’s seminal ‘GAGA’ paper [Ser55].

In light of this and theorem 3.2.12, it is reasonable to suspect that our purely algebraic
definition of π1 might contain as a special case the theory of covering spaces. That is indeed
the case.

Example 3.5.20. Recall (a special case of) the Riemann-Hurwitz formula: given a holomor-
phic map f : X → Y between Riemann surfaces, we have 2 − 2gY = deg f · (2 − 2gX),
where gX is the genus of X .3 Because of this, we know there are no non-constant holomor-
phic maps P1

C → Y with gY > 0, since otherwise we would have 0 < deg f · (2− 2gX) = 0.
3See for example [Sza09] Cor 3.6.12ff. or [Don11] section 7.2.1.
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Since any étale covering induces such a map, any such covering of P1
C is trivial. Thus all Ga-

lois covers of P1
C are isomorphic to P1

C, and so in the limit we obtain π1(P1
C, x) = 0 for any

x ∈ P1
C, which agrees with our topological intuition.

We finally prove our main result, Grothendieck’s π1-theorem.

Proof of theorem 3.5.3. (i) Fix an inverse system (Pα)α∈Λ which pro-represents Fib̄s. Since the
groups AutS(Pα) are finite by corollary 3.4.7, π1(S, s̄) is profinite. An action of π1(S, s̄) on
Fib̄s(X) is induced by a corresponding automorphism of the inverse system, and this left
action is continuous because if x̄ ∈ Fib̄s(X) comes fromHom(Pα, X) for someGalois cover
Pα, then the automorphism factors through Aut(Pα/S), which has the discrete topology.

(ii) Recall that proving that a functor is an equivalence of categories is tantamount to
showing that it is essentially surjective, meaning that any object in the codomain is the im-
age of some element of the domain, and that it is fully faithful, that the functor induces a
bijection of corresponding Hom-sets.

Let Σ be a finite continuous π1(S, s̄)-set. By considering each orbit separately, we may
assume that the group action is transitive. Fix a point x ∈ Σ, and note that by lemma A.3.7,
Stabx is an open subgroup of π1(S, s̄). Let πα : π1(S, s̄) → Aut(Pα/S)op be the natural pro-
jection maps, and note that (Nα

..= ker πα)α∈Λ form a basis of open neighbourhoods of 1
in π1(S, s̄). Then Stabx contains some Nα, and we can consider the image H of Stabx in
Aut(Pα/S)op. By lemma 3.4.9, we obtain an action of Hop on Pα, and define X to be the
quotient set. ThenΣ ∼= Fib̄s(X), so Fib̄s is essentially surjective.

Finally,weprove fully faithfulness. Fixfinite étaleS-schemesX andY , andΦ: Fib̄s(X)→
Fib̄s(Y )be aπ1(S, s̄)-equivariantmap. Up to considering orbits separately, this is determined
by the action at some x ∈ Fib̄s(X). Since Φ is π1(S, s̄)-equivariant, we have a natural in-
clusion StabΦ(x) ⊂ Stabx ⊂ π1(X, s̄), and by theorem 3.4.11 these determine a unique map
X → Y → S. Thus we have a bijection HomFÉt(X, Y ) → Hom(Fib̄s X, Fib̄s Y ), as re-
quired.

Proposition 3.5.21. Let S be a connected scheme. Given geometric points s̄ : SpecΩ→ S and
s̄′ : SpecΩ′ → S, there exists a natural isomorphism of functors Fib̄s

∼−→ Fib̄s′ .

Proof. From the proof above, it is clear that the inverse systems have the same objects, but
the morphisms might differ. So, let (Pα, ϕαβ) and (Pα, ψαβ) be inverse systems defining Fib̄s
and Fib̄s′ , respectively. Associatedwith (Pα, ϕαβ)wehave distinguished points pα ∈ Fib̄s(Pα).
Fix λβ ∈ Aut(Pβ/S). Now define λα to be the unique isomorphism sending pα to p′α ..=
Fib̄s(ϕαβ)(pβ). By corollary 3.4.4 applied to z̄ = pα, f1 = ψαβ ◦ λβ and f2 = λα ◦ ϕαβ we have
a commutative diagram

Pβ Pβ

Pα Pα

λβ

ϕαβ ψαβ

λα

and defining maps ραβ : Aut(Pβ/S)→ Aut(Pα/S) by λβ 7→ λα we obtain an inverse system
(Aut(Pα/S), ραβ)of non-empty finite sets. It is straightforward to verify that the inverse limit
of such a system has a non-empty limit, so in particular there exists an element λ in the limit
which defines an isomorphism (Pα, ϕαβ)→ (Pα, ψαβ).

By considering the isomorphism ϕ 7→ λ−1 ◦ ϕ ◦ λ, we obtain the following:
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Corollary 3.5.22. If S is connected and s̄ : Ω→ S and s̄′ : Ω′ → S are geometric points, then
π1(S, s̄) ∼= π1(S, s̄′).
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Appendix A

Commutative Algebra

A.1 The Zariski topology
Definition A.1.1. Let R be a ring. The (prime) spectrum of R is the set of prime ideals in
R, denoted by SpecR.

Example A.1.2. Let k be a field. Then Spec k consists of a single point, corresponding to
the unique prime ideal (0).

Example A.1.3. ForR = Z, we have that SpecZ = {(p) : p is prime} ∪ 0.

Example A.1.4. Let k be a field, and R = k[x]. Then every point of SpecR is uniquely
identified with a polynomial irreducible over k, as k[x] is a PID.

Example A.1.5. As a special case of the previous example, considerA1
C

..= SpecC[x]. Since
the irreducible polynomials overC are all monomials, we see that there is a correspondence
SpecC[x]↔ C ∪ ∗ determined by (x − a) 7→ a. However, 0 is also prime, so we treat this
as corresponding with ∗ above. Note that 0 unlike the other elements p ∈ SpecC[x] does
not correspond to a maximal ideal.

Definition A.1.6. Let R be a ring. The set V (f ) ..= {p ∈ SpecR : f ∈ p} is called a
principal closed set in SpecR, and its complement, denoted byD(f ) ..= V (f )c, is called a
principal open set.

We will promptly justify the name:

Proposition A.1.7. The collection of principal closed setsV (f ) generate a topology on SpecR.

Proof. In order for {D(f ) : f ∈ R} to be a basis of open sets on SpecR, we need to check
that intersection of two principal sets contains a principal open set, and that the collection
covers SpecR; the latter is evident since SpecR = D(1). By definition,D(f ) ∩ D(g) is the
set of prime ideals containing neither f nor g. But by definition of being prime, this implies
that fg 6∈ D(f ) ∩D(g), soD(fg) ⊂ D(f ) ∩D(g).

Definition A.1.8. The topology so defined is called the Zariski topology on SpecR.

Proposition A.1.9. Every ring homomorphism ϕ : R → S induces a map ϕ̃ : Spec S →
SpecR which is continuous with respect to the Zariski topology. Morover, this is functorial in
the sense that ifR

ϕ−→ S
ψ−→ A are ring morphisms, then ψ̃ ◦ ϕ = ϕ̃ ◦ ψ̃ .
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Proof. Let us first check that ϕ̃ : Spec S → SpecR is well-defined: if p ∈ Spec S, define
ϕ̃(p) = ϕ−1(p). Suppose ab ∈ ϕ−1(p). Then ϕ(ab) = ϕ(a)ϕ(b) ∈ p, so ϕ(a) or ϕ(b) ∈ p,
and so either a or b is in ϕ−1(p), so ϕ−1(p) is indeed a prime ideal.

To show continuity, it suffices to show that for any f ∈ R, there exists g ∈ S such that
ϕ̃−1(D(f )) ⊂ D(g). But taking g = ϕ(f ), we see that ϕ̃−1(p) contains f if and only if p
contains ϕ(f ) = g. Finally, the functoriality condition is easily verified.

Corollary A.1.10. We can regard Spec as a functor Spec : Ring→ Top.

In algebraic geometry, there is an unfortunate convention of meaning “compact Haus-
dorff” when one says “compact”; the replacement for “compact” is the following:

Definition A.1.11. A topological space is quasi-compact if every open covering has a finite
subcovering.

Proposition A.1.12. The topological space SpecR is quasi-compact for any ringR.

Proof. Let {Ui} be an open covering of SpecR where R is Noetherian, and write Ui =⋃
j D(fij). ThenD(1) = SpecR =

⋃
i,j D(fij), so 1 ∈ (fi,j)i,j , and by definition there exists

a finite subcollection, say f1, . . . , fn, so that 1 = f1r1+ . . .+ fnrn, hence {D(fi)}ni=1 is a finite
subcover.

A.2 Localisation
Definition A.2.1. Let R be a commutative ring, and let S ⊆ R be a multiplicative set,
that is, a set containing 1 and is closed under multiplication. The localisation of R at S,
written (j, S−1R), is the solution to the following universal mapping problem: for any ring
T , if f : R → T maps every element of S to a unit of T , then there exists a unique ring
homomorphism g : S−1R→ T such that the following diagram commutes.

R T

S−1R

f

j
∃!g

Remark. While it’s hardly obvious from the definition, an informal description of the lo-
calisation ofR at S is a ring consisting of elements ofRwhere those in S are treated as units.
For example, ifR is an integral domain, then we want the localisation ofR at S = Rr 0 to
be the field of fractions ofR. The unique map g is then defined by g(r/s) = f (r)f (s)−1.

If we drop the assumption ofR being an integral domain, the condition a
b =

c
d iff ac −

bd = 0 cannot possibly hold. For example, ifR = Z/6Z and S = {1, 2, 4}, then we would
obtain 0

1
= 0

2
= 3

1
which would seem to imply that 0 = 3. This corresponds to the fact

that the map j is not injective in general.
We ought to prove the existence of such an object:

Proposition A.2.2. The localisation ofR at S exists.
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Proof. Define an equivalence relation on R × S by (r1, s1) ∼ (r2, s2) if there exists a t ∈ S
such that t(r1s2 − r2s1) = 0, and let S−1R ..= R× S/ ∼. Let j : R→ R× S be defined by
(r, 1), and let g : (r, s) 7→ f (r)f (s)−1. Then g ◦ j : r 7→ f (r), so (j, R × S/ ∼) satisfies the
universal property.

Lemma A.2.3. The localisation S−1R is trivial if and only if 0 ∈ S.

Proof. If 0 ∈ S, then (r, s) ∼ (0, 1) for any (r, s) ∈ R × S. If 0 6∈ S, then (0, 1) ∈
R−1S.

Example A.2.4. Let p be a prime ideal inR, and take S = Rr p. Then S−1R is called the
localisation ofR at p.

Recall that a local ring is a ring with a unique maximal ideal.

Proposition A.2.5. The localisationRp is a local ring.

Proof. If I ≤ R is not contained in p, then j(i) is a unit for any i ∈ I , and so j(I) = Rp.
Thus any ideal inRp is contained in j(p), so this is the maximal ideal.

Example A.2.6. Fix f ∈ R, and let S = {1, f, f 2, . . .}. Then S is a multiplicative set, and
Rf

..= S−1R is called the localisation ofR at f . By Lemma A.2.3,Rf is trivial if and only if f
is nilpotent.

Example A.2.7. Let S consist of the elements ofR that are not zero-divisors. ThenQ(R) ..=
S−1R is called the total ring of fractions ofR.

Lemma A.2.8. LetR be a ring,m amaximal ideal inR, and let j : R→ Rm be the localisa-
tion map. ThenRm/j(m) = R/m.

Proof. LetR→ Rm be the natural map, and by composing with the quotient map we have
a ring morphism ϕ : R → Rm/j(m). Since Im ϕ is an ideal in Rm/j(m) and ϕ is not the
zero-map, ϕ is surjective. Now we see that m ≤ ker ϕ, which by maximality implies that
m = ker ϕ. We thus have an isomorphismRm/j(m) = R/m, as required.

Proposition A.2.9. LetD(f ) ⊂ D(g) for some f, g ∈ R. Then there exists r ∈ R and n ∈ N
such that f n = gr.

Proof. [LE06], Lemma 2.1.6b)

A.3 Topological groups
Definition A.3.1. A topological group is a group element in the category of topological
spaces. In other words, it is a topological spaceG alongwith continuousmapsm : G×G →
G and i : G → G, and a distinguished element e ∈ G, such that m(g, e) = m(e, g) = g,
m(g, i(g)) = e, andm(m(g, g′), g′′) = m(g, m(g′, g′′)), for all g, g′, g′′ ∈ G.

Of course, m and i are just multiplication and inversion, respectively, and we tend to
write gg′ ..= m(g, g′) and g−1 ..= i(g). Alternatively, we can define a topological group as a
group where the underlying set has a topology, with respect to which the group operations
are continuous.
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Example A.3.2. Let G be any finite group equipped with the discrete topology. Then m
and i are automatically continuous, and soG can be regarded as a topological group.

Example A.3.3. Let G = C with the standard topology. Then it is easy to verify that
(x, y) 7→ x + y and x 7→ −x are continuous, so C is also a topological group. Similarly,
we can show thatC× with operations (x, y) 7→ xy and x 7→ 1/x is a topological group.

Whenconsidering topological groups,we canoften reduce local problems to considering
neighbourhoods of the identity. More precisely, ifN is a neighbourhood of g, then g−1N is
a neighbourhood of e, open if and only ifN is open.

Definition A.3.4. Aprofinite group is a topological group forwhich the underlying space
is compact Hausdorff and totally disconnected.

Proposition A.3.5. LetG be a Hausdorff group. Then the following are equivalent:
(i) G is profinite,
(ii) G is compact andG admits a basis of neighbourhoods of the identity consisting of clopen

normal subgroups,
(iii) G is a topological inverse limit of finite discrete groups.

Proof. [Neu08], Prop. 1.1.3.

Definition A.3.6. Let G be a group. Then a G-set S is a set S along with a group action
G � S. A G-equivariant map is a set map f : S → S ′ for which g · f (s) = f (g · s) for all
g ∈ G, s ∈ S.

The category ofG-sets with morphisms given byG-equivariant maps, denoted by SetG,
is a full subcategory of Set. If a groupG acts on a topological spaceX , we say that the action
is continuous if the associated mapG × X → X is.

Lemma A.3.7. Let X be a topological space equipped with the discrete topology, and suppose a
topological groupG acts continuously on X . Then Stabx ..= {g ∈ G : gx = x for all x ∈ X} is
an open subgroup ofG.

Proof. Fix x ∈ X , let m : G × X → X denote the multiplication map, and let ix : G →
G × X be the inclusion g 7→ (g, x). Then m ◦ ix is continuous, and since {x} is open,
Stabx = (m ◦ ix)−1(x) is open.
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