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Introduction

The theory of schemes is an integral part of the revolution in algebraic geometry that took
place in the previous century, and it has since spread throughout neighbouring areas of math-
ematics, most prominently to number theory. Its origins are easy to trace: in the first half
of the previous century it was clear that the foundations of algebraic geometry were lacking
in rigour. The unfortunate consequence of this was that several results, particularly in the
Italian school of algebraic geometry led by Castelnuovo, Enriques and Severi, turned out to
be imprecise or even false. As a response to this, Oscar Zariski and Pierre Samuel wrote their
influential volumes on commutative algebra ([ZCS7s], [ZS60]) to cover the prerequisite ma-
terial for a textbook on algebraic geometry which never materialised. André Weil, inspired by
his own endeavours on geometry over finite fields, wrote the tome [Wei62]. However, the es-
tablishment of the foundations of algebraic geometry is usually attributed to Grothendieck,
who developed the language of schemes, which partly through lack of user-friendly exposi-
tion — [Mumui3] being an obvious exception — quickly obtained the reputation of somewhat
of an arcane art.

The rough idea of scheme theory is that starting from the geometric point of view leads
to trouble. For example, the Hilbert Nullstellensatz is a fundamental result in complex alge-
braic geometry which breaks down in spectacular ways over non-algebraically closed fields.
However, starting from commutative algebra, we can recover geometric information from
purely algebraic definitions. By analogy, defining a manifold in terms of a choice of embed-
dinginto RN gives too much auxiliary information, and it is difficult to distinguish intrinsic
and extrinsic information.

Whereas a manifold locally looks like Euclidean space, a scheme s locally identified with a
topological space called the prime spectrum of a given ring. This contains all the information
of the ring, and in fact lets us recover the ring completely. The topology on this space is
very different from the Euclidean topology, but we can nevertheless study “functions” on
open sets just as with manifolds. The natural way of structuring this information is through
sheaves, which we discuss in Chapter 1.

Let us give an example to illustrate why the prime spectrum of a ring is a natural starting
point: let R = C|x], and observe that we have a natural identification of the set of maxi-
mal ideals of R, denoted mSpec(R), with the space C, by (x — 4) <> a. The problem with
mSpec(R) is that given a map of rings ¢: R — S, the ideal ¢! (m) is not necessarily max-
imal, so a ring morphism does not give rise to a function of the associated maximal spectra.
However, if we consider more generally prime ideals, we do indeed have an associated map,
and in fact a functor of categories. Moreover, the additional ideal 0 in this case turns out to
provide valuable geometric information.

However, this topology turns out to be insufficient in several ways. To compensate, we
add more open sets which allow us transfer ideas from the Euclidean setting. In particular,
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we can define the étale fundamental group, the highlight of this thesis, which simultaneously
generalises the covering space theory of Riemann surfaces, and the Galois theory of field
extensions.

On references: very little content in this text is original, because the project was intended
as an exploratory one. However, the figures in the text are all drawn by myself in TikZ.
Chapter 1 uses predominantly [LEo6] with [KS13] for some details. Chapter 2 uses [LEo6],
[EHo6] and to some extent [GW1o0], as well as [Mumi3]. Chapter 3 includes some proofs
from [Miloo] on the étale site, but primarily [Szao9] with supplements from [Leno8]. For
appendix A on commutative algebra, the standard references are [AM94] and [MR89]. The
historical claims in the introduction are backed up by Prof. N. Katz’ review of [Del74].

Although the notes are reasonably self-contained, it is assumed that the reader is famil-
iar with the language of categories, and some Galois theory. Readable sources of these are
[Leir6] and [Nagy7], respectively. For context, a little familiarity with the theory of covering
spaces from, say, [Hatoz] is useful but not necessary.

I am grateful to my supervisor, Dr. Clark Barwick, both for guidance on choice of topic,
and for useful comments on drafts.

Notation and conventions

Throughout, R will be a commutative ring with 1. If /' € R, (f) denotes the ideal gen-
erated by £ in R. If R is a ring, then / < R means that / is an ideal of R, and R* de-
notes the set of units in R. Given left R-modules M and N, Hompg (M, N) is shorthand
for Hommod, (M, N). Unless explicitly stated, all modules will be left modules. If A is a
normal subgroup of G, we write H < G. We use bold type for letters denoting categories.
To denote a set consisting of a single point where the choice of point is unimportant, we use
*. By (attempted) convention, greek letters denote morphisms of rings while roman letters
denote those of topological spaces, sheaves and schemes.



Chapter 1

Sheaves

A sheaf is in very rough terms a tool for structuring local data on a topological space. For
example, on a manifold we might be interested in studying the continuous or smooth func-
tions defined on a given subset. We can regard these as groups “lying over” the open sets, re-
lated by restriction maps which are in a natural way group homomorphisms. Like so many
other places in mathematics, this is best formulated using the language of categories:

1.1 Basic concepts

Definition r.r.1. Let X be a topological space, and U(X) be the following category: the
objects of U(X) are open sets of X, and morphisms are given by

{Z'U,V} lf U Q V:

o} otherwise,

Homyx) (U, V) = { (r1)

where 7,1 U — V denotes the inclusion map of U into V. A presheaf .# on X with
values in C is a contravariant functor .% : U(X)°? — C.

To unpack slightly, this means the following: given open sets U C V' C ¥ with inclu-
sions 7y, = iy © iy, we have corresponding maps denoted py, iy = % (1) such that
the following diagram is commutative:

PWU

Fw) 25 z(r) 2 Z(U), (1.2)

or in other words, pyy,; = py,u © p, 1. Itisimportant to note that the order of composition
is reversed because .% is contravariant.

Although it is not strictly necessary, we will henceforth assume that C admits a forgetful
functor into Set, so that we can talk about elements. We also assume that for any collection
of objects in C, their categorical product and coproduct are also objects in C.

Example r.1.2. Asafirst example, let us consider the Sierpinski topological space, that s, the
set {0, 1} where the subsets @, {1} and {0, 1} are open. The situation looks as follows:
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{01} Z({0,1})0

o{l} ----» oZ({1})

@o F (D)o

On the left, we see the lattice of open sets, and on the right the corresponding lattice after
applying .. Note that the arrows are reversed, since .% is contravariant, and there are no
requirements on what the objects .% (U) should be.

Example r.1.3. Let X be a topological space, and .# be the functor assigning to each open
U C U thering C(U) of continuous real-valued functionson U. For U C V, we define the
restriction map . (iy,r) = pru: C(V) — C(U) to be simply the restriction of f: V" —
R to U, explicitly py,i;(f) = f|v. This is a presheaf of rings on X.

Definition 1.1.4. A section over U is an element of .% (U). The sections over X are called
global sections.

Given a section s € . (V') and arestriction map py,iy: # (V) — % (U), we are prone
to write s|y = pyu(s).

Example 1.5 (The constant pre-sheaf). Let S be a set, and let % be the presheaf on X
defined by .# (U) = S. This is called a constant pre-sheaf.

Definition 1.1.6. For any x € X, the stalk at x of .% is the direct limit %, = lim  F (U)
where U runs over open neighbourhoods of x and the transition maps are the restriction
maps. Fors € #(U), we denote by s, the image of s in ...

In particular, if .7 is a sheaf of sets on X, then .7, is the set of all s € | |5, F (U)/ ~
where s ~ ¢ if there exists a neighbourhood U of x such that forall V' C U, s|, = ¢y

The reason we are not content with presheaves (as the prefix suggests), is that the notion
of isomorphisms of presheaves is too strong. We want sheaves to track local data, so it is
desirable for two sheaves to be equal if they are equal at all the stalks. On the other hand,
presheaves can be isomorphic at the stalks without being globally isomorphic.'

Example r.r.7. Let X = U U V for some sets U and V" where open sets are {@, U, V; X },
let # be the constant presheaf of groups % (W) = Z forall W C X, and ¢ the locally
constant presheaf determined by 4 (U) = 4 (V') = Zand ¥ (X) = Zx Z with (m, n)|y =
m, (m, n)|p = n. Forx € U, we see that

Fo=FU)LFX) ~={meZUZ: m=nifm|y =nly} = FU) (13)

and similarly for .# (V). On the otherhand, ¥, = {s € ZUZ X Z: s = ¢tiff s|y = t|y} =
¢ (U), hence the presheaves are equal on the stalks, but not globally.

"This reflects the fact that Sh can be viewed as a localisation of the category of presheaves, informally by
imposing that morphisms which are isomorphisms at stalks be invertible.
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Definition r.1.8. A sheafis a presheaf satistying the following, for any open U C X and
any open covering U C |J, U;:

(i) Ifs,r € F(U),and sy, = l“U, forall 7, thens = #;
(i) Givens; € F(U;) such that s |yny, = s;|uny; for all 7, there exists s € .7 (U) such
thats|y, = s, forall 7.

The second condition states that “compatible” local sections can be glued in a natural
way, and the first that the gluing is unique. The category of presheaves on X with values
in C, where arrows are given by natural transformations, is denoted by pSh(XX;, C). We are
prone to write pSh(X) or simply pSh if there is no ambiguity. Then Sh(X, C) = Sh(X) is
the full subcategory consisting of presheaves which are also sheaves.

The sheaf condition can be restated more compactly as an equaliser diagram

dy

7)) 7w =12 W) (1.4)

4 do 7
7 L]

where Uy = U; N Up,and dy: s = (s|y e di: (s:)i = (luy)iyand da: (5;); = (sl )i

Unpacking the definitions, this means that . (U) is in bijective correspondence with the

elements (5;) € [], 7 (U;) satisfying s;| v, = 5;]u;;, which is precisely definition r.1.8.

Example 1.1.9. The presheaf of real-valued continuous functions on a topological space X
considered in example 1.1.3 is a sheaf of rings; one readily sees that any collection of compatible
sections {f;: U; — R} glues to a unique continuous function f: | J, U; — R defined by

f(x) =fi(x) forx € U,.

Example r.r.10. Let .% be the presheaf of bounded functions on R, that is, the functor
assigning to each open U C R the set of bounded functions on U. For U C V, we have a
corresponding restriction map .# (V') — % (U) which sends abounded functionf: V" —

Rtof|y: U — Rdefined by x — f(x). This is not a sheaf, because the function f(x) = x
is bounded on every bounded subset, but is not globally bounded.

Example r.xr.1x (The skyscraper sheaf). Fixx € X, and 4 € Ab. The skyscraper sheaf is the
sheaf defined as follows:

A ifx € U,

F(U) = { . (s)

0 otherwise;
and pyy = Id, ifx € U NV, and 0,4 otherwise. It is a good exercise to check that this is
a sheaf; we omit the details because it will follow effortlessly from the construction in exam-
ple 1.2.8.

Example r.r.12. The constant presheaf .7 in 1.1.5 is not generally a sheaf. More precisely, #
is asheafif and only if every open setin X is connected: if every such U is connected, then for
any covering U; we can glue the 5|y, to a section a constant section on U, which is necessarily
unique. Conversely, if an open set U is not connected, say U = V1 U V5 for clopen sets V3
and V5, we can choose s; € .Z (V7) toequal 0 and s, € .F (V3) to be 1. These clearly don’t
glue to a constant section on U.

Example r.r.13. We can fix the problem in the previous example by requiring that .% be /o-
cally constant as in example 1.1.7. In particular, we form a presheaf of locally constant func-
tions /1 X — §, that is, functions constant on connected open sets. One easily checks that
this is in fact a sheaf.
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One might ask if we can always turn a presheaf into a sheaf as above, and this turns out
to be true:

Theorem r.x.14. The forgetful functor F: Sh(X) — pSh(X) admits a left adjoint. In other
words, there exists functorS : pSh(X) — Shsuchthat Hompsy (7, FY) = Homgp(S-F, 9).

Proof. [KS13], Prop. 2.2.3. [

Definition r.r.15. The functor S: pSh — Sh defined above is called the sheafification
functor.

1.2 Morphisms of sheaves

Recall that a morphism of sheaves F and ¢ over X is a natural transformation p: F = 9.
Explicitly, it consists of a map ¢y : F (U) — 4 (U) for every open U C X, such that the
diagram
F(V) 2 g(r)
PrU lﬁ’V v (1.6)

Z(U) 2 g(U)

where p and p are restriction maps, commutes. We say thata morphism ¢: . — ¥ is injec-
tive at the sections (resp. surjective at the sections) if the corresponding maps ¢y : .F (U) —
¢ (U) are all injective (resp. surjective).

Let us check that the definition of a sheaf indeed gives the kind of “local identification”
we wanted:

Lemma r.2.x. Let ¢: F — G be a morphism of sheaves on X. If for every x € X the induced
morphism ¢ F. — Y, is injective, then ¢ is injective at the sections. If moreover the maps ¢,
are surjective, then ¢ is also surjective at the sections.

Proof. Fixs,t € % (U) such that ¢y;(s) = ¢y (¢), and note that (¢y(s)), = ¢u(s) =
¢.(2.) = (pu(2))s forallx € U. Thussand ¢ are equal on some sufficiently small neigh-
bourhood U of «x, and since this holds for every x, by condition (i) in the definition of a
sheaf, we get thats = ¢.

Now, suppose further the stalk maps ¢, are surjective, and let # € ¢ (U). We want to
finds € 4(U)suchthatg,(s) = ¢. Fixx € U. Thent, hasa preimage in .%,, say s, so there
exists some Uy(y) 2 xand s;(x) € F (Uy(y)) for which BU (Si(x)) = t|v- This being the case
for every x € U, we obtain a collection of sections s5;;y € F (Uyy)) where { Uy } covers
U. We moreover see that 51’(x)‘l/1~(x)ﬂl/l-(y) = 5i(y) |Uz~(x)ﬂUl-(y) since ¢, is injective. Therefore, by
gluing the 5;(,), we obtain a section s € .F (U) satisfying ¢y (s) = ¢. O

Do note that surjectivity of ¢, for all x need not imply that ¢ is surjective at the sections;
we require injectivity as well.

Example 1.2.2. Let X = C*, and let .# be the sheaf of holomorphic functions on X and
¢/ the sheaf of invertible holomorphic functions. Then the map 2: F# — ¥ defined by
ay(f) = expf is surjective at the stalks, since every holomorphic function has a locally
defined logarithm, but it is not surjective at the sections: for example, the identity function
is not in a; (X) since this would require a globally defined logarithm on C*, which we recall
from complex analysis does not exist.
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Theorem 1.2.3. A morphism of sheaves ¢: F — 9 is an isomorphism if and only if all the
induced morphisms ¢..: F.. — G, are isomorphisms.

Proof. Note first that if ¢ is an isomorphism, then it follows immediately from definition
that each induced map ¢, for x € X is an isomorphism. Conversely, if all ¢, are isomor-
phisms, then by lemma 1.2.1, each map ¢y : Z#(U) — ¥(U) is an isomorphism, hence
invertible. These assemble to a natural transformation ¥: ¢ — %, as it is is straightfor-
ward to see that an appopriate version of eq. (1.6) commutes. Then ¢ is inverse to ¢, proving
our claim. O

One might expect that since the data of a basis for a topology on X is sufficient to de-
termine the topology, a sheaf is uniquely determined by its values at basic open sets. This is
indeed the the case:

Proposition 1.2.4. Let X be a topological space with a basis B, and let U(AB) be the full
subcategory of U(X) with objects given by those in 5. Suppose F is a presheaf on B which
satisfies for any covering V- =\, V; where V, V; € 2 the following:

(i) Ifst € F(V)ands|y, = t|y, forall i, then s = ;
(ii) Fors; € F(V;) satisfying sily,, = s;lv, forall Vi; C Vi O\ V;in B, there exists
s € F (V) such that s|y, = s; for all 1.

Then F extends uniquely to a sheaf on X.

Note that this is essentially the sheaf condition, but with U; N U; replaced with V;; in
(ii) since U; N U is generally not a basic open set.

Proof. Let U be an open set in X, and define

FU) = lm F(V) 6:)

B>VCU

Explicitly, a section s € .# (U) is given by tuples (sp)ycy satistying sy|r = sy for all
W C V. To see that this is indeed a sheaf, let { U;} cover U, and fix s, # € .7 (U) satisfying
slu, = t|u, for each 7. We need to show that s, = #| for any basic V' C U. Since {U;}
also covers 7, we can refine this to a cover of basic open sets { Vlj} by writing U; = UZ.J. Vi
Since 5[y, = ¢|y, by assumption and by definition of the inverse limit, 5|y, = #[y,, forall ;.
By (i), we therefore have that 5|, = ¢|}.. The uniqueness criterion follows from uniqueness
of the 5. Finally, the newly constructed sheaf is unique up to isomorphism because any
collection of isomorphisms .Z (V) — F'(V) for each V' € 2 induces isomorphisms
F(U) = Z'(U) by the universal property of the inverse limit. O

Another useful operation is that of gluing together locally defined sheaves.

Proposition r.2.5. Let {U;} be an open covering of a topological space X, suppose F; is a sheaf
on U; and f; : ,%-|UI.QU/ SN ffj|Ume are isomorphisms satisfying the cocycle conditions f;; =
Id and fir = fir o fii for all 1, j, k. Then there exists a unique sheaf F on X and isomorphisms
g0 Flu, — Fisuch that g; = f;; 0 g;on U; N U,

Proof. Define # by Z (U) = ,.%,(U N U;)/ ~ wheres; ~ s;if and only if 5|y = 5|1
where I == U; N U; N U for all pairs 5,7. The cocycle conditions ensure that ~ is an
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equivalence relation: in particular, symmetry follows from noting that f;; = Id = f; o f;;.
One easily checks that the presheaf .% is in fact a sheaf. The natural projections .# — .%;
induce maps g;: .# |y, — %;, which are isomorphisms by construction; finally the sheaf .7
is uniquely determined by the data of .%; as a consequence of theorem 1.2.3. [

Definition 1.2.6. The sheaf .% constructed above is called the gluing of the .7, via the
isomorphisms f;;.

Given a continuous map / : X — Y, we can transfer a sheaf on X to a sheaf on Y via f
in a natural way:

Definition 1.2.7. Let/: X — Y be a continuous map and .# asheaf on X. Define .. Z to
be the sheaf on Y determined by /.7 (V) :== .Z (f~}(V)). This is called the pushforward
of 7 byf.

The map f,.: Sh(X) — Sh(Y) is also called the direct image functor; it is indeed a
functor if we define £i.(¢): fi.# — fi¥ in the natural way. Explicitly, (£i¢)y sends s €

F (V) togr10n(s) €4 ([FHV)).

Exampler.2.8. Letx € X,and:: {x} — X be theinclusion map. Since {x} is a topological
space endowed with the discrete topology, we can define a sheaf .7 of, say, abelian groups on
{x} by F ({x}) = 4, # (@) = 0. Then *.7 is precisely the skyscraper sheaf on X defined

in example r.1.11!
It is also possible to go in the reverse direction, although it requires some more work.

Definition 1.2.9. Let /: X — Y be continuous, and let & be a sheaf on Y. Then /!9,
called the pullback of ¢ by £, is the presheaf defined by

f'9U) = lim G(V). (1.8)

Vef(o)
Itis a straightforward, albeit slightly tedious exercise to show that f 147 is in fact a sheaf.

Example 1.2.10. We can use sheaves to give a sleck definition of a manifold: Fix a dimen-
sion 7, let M be a topological space (Hausdorff, second countable if we want) along with a
covering {U; }, and let .% be the sheaf of continuous functions on M. Then A is a man-
ifold if (and only if) for each 7, the subsheaf (U, .%|y;,) is isomorphic to R” with the sheaf
of continuous functions. Equipping R” instead with the sheaf of C k_functions, we obtain a
C*-manifold.

Example 1.2.xx. While on the topic of manifolds, let £ Ly M be a vector bundle on a
manifold M. Then the functor F: U +— I'(E, U) = {s € C(U) : w o5 = Idy } assigning
to each open set the sections of w over U defines a sheaf of vector spaces. This is in fact very
closely related to how sheaves were originally defined, see [Zars6].

1.3 Sheaves of modules

Recall from difterential geometry that when we defined various vector bundles on a smooth
manifold A7, they had a natural structure of C*°(A)-modules. For example, given a vector

10
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fieldX: M — TMandf € C* (M), we obtain anew vector field £X defined by £ (m)X,, €
T,,M. It seems reasonable that this should be a local notion, and should serve as sufficient
motivation for the following definition:

Definition r.3.1. Let X be topological space, and .% a sheaf of rings on X. A sheaf of
modules ./ over .7 is a sheaf of abelian groups such that for any open U C X, .# (U) is
an .% (U)-module, and respecting the following commutative diagram:

FV)Xx MV) —— M (V)

l l (r.9)

F(U) x MU) —— H(U)

where the horizontal arrows are the multiplication maps, and the vertical ones are restric-
tions.

Informally, we require the multiplication map to commute with restriction in a natural
way. We will see a number of examples in chapter 2, so for now we are content with the
following:

Example 1.3.2. Let E = M be a vector bundle over a smooth manifold. Then the sheaf of
smooth real-valued functions on A is a sheaf of modules over the sheaf of sections I" defined
in example 1.2.11. Indeed, for any open U C M, we know that I'(U) is a C*°-module,
and multiplication commutes with restriction because, for any open U C V, o € ['(V)
and f € C™(V), we have (fo)|y = fuoy since they are pointwise equal on U.

Example 1.3.3. For each open U C X, let [y be an ideal of .% (U), and suppose the functor
F U F(U) = Iy is a sheaf, with restriction maps inherited from .%. This is called a
sheaf of ideals, and we claim that it is a sheaf of modules:

Indeed, for U C V,v € F(V)andx € I (V) we have py,iy(vx) = pru(v)pru(x) =
pru(v)py y(x) wherepl, , isthe map Iy — Iy induced by py; ;. On the other hand, oy, (vx)
Pyu(vx) since vx € Iy, so the diagram does indeed commute.

Example 1.3.4. Note that . need not be a sheaf in general; for example, the ring of contin-
uous functions on an open subset of R has an ideal consisting of bounded functions. But
we saw in example 1..10 that the subpresheaf of the sheaf of continuous functions consist-
ing of bounded functions is not a sheaf.

We define morphisms of sheaves of modules in the natural way:

Definition 1.3.5. Fix a sheaf of rings .%, and let .# and . 4" be sheaves of . -modules over
a topological space X. A morphism of sheaves of .7 -modules is a morphism of sheaves
¢: M — N such thatforanyopen U C X,s € F(U)andm € A (U) we have

pu(sm) = spu(m).

Example 1.3.6. The inclusion map of a sheaf of ideals forms a morphism of sheaves of mod-
ules.

1I
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1.4 Locally ringed topological spaces

Following [LEo6] and [EHo6]. A special class of sheaves of rings that are ubiquitous in
algebraic geometry are those for which the stalks have the structure of local rings, that is,
rings with a unique maximal ideal.

Definition 1.4.1. A locally ringed topological space (or a locally ringed space for short)
consists of a topological space X along with a sheaf of rings O such that each stalk Oy, is a
local ring, i.e. has a unique maximal ideal m,. The sheaf O is called the structure sheaf of
(X, Ox), and we call x(x) := Oy, /m, the residue field of X at x.

Example 1.4.2. The sheaf of differentiable functions on a smooth manifold A1 is a ringed
topological space; the stalks O, then consists of differentiable functions which are defined
on some neighbourhood of x, and itis straightforward to show that the unique maximal ideal
of Oy consists of functions that vanish at x. The residue field of A1 at x is then precisely
{f/g : g(x) # 0}, the field of ratios of smooth functions where the denominators do not
vanish at x.

Example 1.4.3. Let U C X be an open subset of a locally ringed space. Then (U, Ox|y) is
itself a locally ringed space, since (Ox|y), = O

One might wonder what a morphism of locally ringed spaces should be. Let us first
consider the special case of smooth manifolds as above. Let A4 and /N be smooth manifolds,
and ¢: M — N a continuous map. One easily shows that this is a smooth map if and only
if for every open V' C N and f: V' — R, the pullback ¢*f := f o ¢ is a smooth function
on the open set ¢ (V). In the language of sheaves, we require that f induces a morphism
of sheaves given by Zn (V') — ¢..%2/(V'). In a more general setting, the continuous map
¢ does not canonically induce a morphism of locally ringed spaces, so this datum, namely
¢": Fn — $.F, needs to be specified separately. Now ¢ and ¢* ought to be compatible
somehow, and in line with the philosophy of sheaves being determined by stalks, the right
notion turns out to be that the induced map from ¢* on the stalks preserve maximal ideals
in the sense that g7 ' (m,) = My ().

Definition 1.4.4. A morphism of locally ringed topological spaces consists of a contin-
uous map ¢: X — ¥ and amorphism of sheaves ¢*: Oy — ¢, Oy such thatforany x € X,
ge " (m,) = my(,).

The following gives a simple recipe for constructing such morphisms:

Proposition 1.4.5 (Gluing of morphisms). Let X and Y be locally ringed topological spaces,
suppose { Uy} is a covering of X and f;: U; — X a collection of morphisms of locally ringed
spaces such that f;|u,nu, = filunu, for all pairs (4, 7). Then there exists a unique morphism of
locally ringed spaces f = (f, f*): X — Y such that f |y, = f..

Proof. From topology we know that the continuous maps f; assemble to a continuous map
f:X — Y. Since each Uj is naturally a locally ringed space, we have morphisms of sheaves
fi: Oy — (f)«Ox|u,. We claim that these assemble to a sheaf map f#: 0y — f.0y.
Indeed, note that there is a natural identification Ox(f~1(U)) = [[, Ox (£, (U))/ ~,

wheres; ~ fjif51'|ﬁ*1(u)mj§*1(u) = 5j|ﬁ*1(U)ry§fl(U)- Since the maps Oy (U) — ﬁXQ‘;_l(U))
assemble to a map Oy (U) — [[, Ox (£, (U)) bys — (! (s)): which factors through the

quotient, we have a unique map /*: Oy — f.OY, as required. Since the condition on the
stalks is a local one, this is naturally satisfied by /. O

12



Chapter 2

Schemes

After a crisis of foundations in the beginning of the 20th century, algebraic geometry was
put on firm footing through its reformulation in terms of schemes. While the ideas can
arguably be traced back to Chevalley (cf. [GCo4]), the theory was brought to fruition by
Grothendieck in his seminal multi-volume treatise Eléments de géométrie algébrigue, or EGA
for short.

One guiding intuition behind scheme theory is to “globalise” rings — this is the view
taken in [Mumi3] — by patching together spectra of rings. By analogy, in example 1.2.10
we defined a manifold as a topological space equipped with a sheaf locally isomorphic to
that of functions on R". The moral of the story is that the passage from rings to schemes is
analogous to passing from Euclidean subsets to an abstract manifold.

2.1 The affine scheme

An affine scheme is simply the prime spectrum of a ring (cf. section A.1) made into a locally
ringed space. More precisely:

Definition 2.r.1. Let R be a ring, and consider X := Spec R equipped with the Zariski
topology. Let Oy be the presheaf generated by Ox (D(f)) = Ry for any principal open set
D(f) C Spec R. The pair (X, OY) is called the affine scheme over R.

Let us check that this does indeed form a locally ringed space.

Proposition 2.1.2. Let (X, Ox) be an affine scheme. Then (X, Oy) is a locally ringed topo-
logical space.

Proof. We did not specify what the functor &y does to maps, so we will do that now: Sup-
pose D(f) C D(g) for some f,¢ € R. Then by proposition A.2.9, f* = gr for some
r € R,n € N, and so g is invertible in R;. Then we have a map R, — Ry determined by
ag™ "+ ar”f ", which is easily checked to be a ring homomorphism. We will take this as
our restriction map. If D(f) = D(g), the map is evidently an isomorphism.

In light of proposition 1.2.4, we know that Oy is a sheaf provided it satisfies the corre-
sponding sheaf conditions (i) and (ii) on the collection of principal open sets {D(f): f €
R}. Note also that it suffices to consider coverings of X = Spec R, since any basic open set
U = D(f) can be viewed as Spec Ry in a natural way, and finite such since Spec R is quasi-
compact (cf. proposition A.1.12)

13
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So, let {D(f;)} be a covering of Spec R, and fix s € R such that s|p) = 0 for all 7.
Proving that s = 0 is now equivalent to (i) after replacing s with x — y. Then s = 0
for some m € N sufficiently large, and since D(f;) C D(f7*), we can write 1 = Y ", r,f7".
Multiplying by s now givess = > °7_; 7,7"s = 0, as required.

As for (ii), suppose s; € D(f;) for each 7, with 5| D(if) = 5 p(ff)- We want to define
some s € R by analogy with partitions of unity on a paracompact manifold. In Rz, we can
write 5; = éllf;-k where £ € N is independent of 7. By assumption there exists a sufficiently
large m € N such that Q‘;ﬁ)m([;kai — ﬁkzzj) = 0, or equivalently for / = m + k, b, == fFa,,
that ﬂbz- = fl-lbj. As in the previous part, write 1 = > 7, 7,f/, and defines := > 7| 7;b..
Now

fo=2ribi= 3 il = by ()
i=1 =1
which shows that s|p(z) = s, since 4; has the same image as &, in R, for any ;.
Finally, to show that Oy, is a local ring for any x € X, fix a prime ideal p € Spec R
corresponding to x. By definition,

Or.= lim Ox(D(f)) = lim Ry = R, (2.2)
D(f)>x fép

and since R, is a local ring whose unique maximal ideal is precisely the image of p in the
localisation, this concludes our proof. O

Since Oy (D(1)) = Ry = R, we also have the following:
Corollary 2.1.3. We have Oy g(Spec R) = R.

A morphism of affine schemes is simply a map of locally ringed topological spaces between
two affine schemes. Assuch, affine schemes and their morphisms these assemble to a category
denoted by Sch .

We next consider a few examples in order to get some intuition for this object.

Example 2.1.4. Let X = Spec &, where £ is a field. Then X consists of a single point, *,

corresponding to the only prime ideal 0 of #, and by the preceding proposition Ogpec (%) =
k.

Example 2.1.5. Recall that a discrete valuation ring (DVR) is a principal ideal domain with a
unique non-zero prime ideal. Let R be a DVR, and note that X := Spec R = {0, p}, where
p is the unique prime ideal. The topology on X is then the Sierpinski topology, where p is
closed, while 0 is not.

Example 2.1.6. Letting X = Spec Z, we recall that as a set, X = {0,2,3,5,...},and using
lemma A.2.8 we readily see that x(p) = Z,)/(p) = Z/(p) = F, torp # 0. Forp = 0, we
similarly see that x(0) = Q. We can visualise Spec Z as the collection of primes in Z, along
with the “generic point” 0, which is dense, being contained in any open set.

(2) (3) (5) (7)

14
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It is worth keeping in mind that there is no “line” between two primes; however, the
space is not topologically disconnected either, since any open set contains infinitely many
primes.

Definition 2.1.7. Let R bearing, and define affine #-space over R as A% := Spec R[xy, ..., %,).

Example 2.1.8. Let £ be a field, and X := A} the affine line. Then each point in X corre-
sponds to an irreducible polynomial P & Ai. In particular, if % is algebraically closed, then
each irreducible polynomial is on the form x — « for some 4 € k, and via the identification
(x—a) <> aweobtain A} that A} asaset can is in bijection with £ LI x, where * corresponds
to the maximal ideal (0).

One might ask whether there are natural subobjects in Schag. Indeed, in the construc-
tion of the affine scheme we saw that showing the sheaf axioms for Oy (X)) was just as easy

as for Ox(D(f)) for fixed f € R. Indirectly, we proved the following:

Lemma 2.1.9. Let X = Spec R be an affine scheme, and let f € R. Then the open subset
D(f) equipped with the structure sheaf Ox|p(s) is isomorphic to Spec Ry.

Since affine schemes are determined by the data of the underlying rings, the following
proposition seems self-evident.

Proposition 2.1.10. Let ¢: R — S be a ring homomorphism. Then ¢ induces a morphism
of affine schemes (¢, ¢*): Spec S — Spec R.

Proof. Recall that ¢: SpecS — SpecR is a continuous map with respect to the Zariski
topology; we ought to define a map ¢*: Ospecr — 93* Ospecs- In light of proposition 1.2.4
it suffices to define ¢* on the principal open sets and show that it is compatible with restric-
tion maps. Note first that ¢, Ospecs(D(f)) = Ospecs(D($(f))) for any f € R. Recall
that the map ¢: R — S induces a map of the localisations ¢ : Ry — Sy(r) by ¢¢(a/f*) =
#(a)/o(f)*, whichisa well-defined map of rings. Via this, we have natural maps Ospec 2 (D(f)) =
Re — Syr) = PxOspec s(D(¢(f))) induced by ¢, which we furthermorg easily check to be
compatible with restrictions. This defines the sheaf map ¢*: Ospec R — 4 Ospec s

Finally, we need to check that for any p € Spec S, we have ¢ (m5,)) € my,. Butnote
that for any p € Spec R, the map ¢f: (¢« Ospecs)p — Ospecrp = Ry is precisely the canon-
ical map S,y — Ry, which we know (if we do not, it is a nice exercise to check) to be a
homomorphism of local rings. O]

Theorem 2.1.1x. There is an equivalence of categories Schpg <+ Ring” given by X +—
Oy (X).

Proof. The other direction is of course given by R + Spec R. By the above discussion,
it suffices to show that every morphism of affine schemes arises from a ring map. But it is
straightforward to show that given a morphism of affine schemes ¢ : X — Y, this equals the
map of schemes induced by ¢} : Oy(Y) — Ox(X) from proposition 2.1.10. See [LEo6],
Lemma 3.3.23 for details. O]

Is
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2.2 General schemes

We are finally ready to define a general abstract scheme. It is useful to keep in mind the
definition of a manifold — and particularly the one given in example 1.2.10 — for intuition.

Definition 2.2.1. A scheme is a locally ringed topological space which is locally isomorphic
to an affine scheme. More precisely, it consists of a locally ringed space (X, Oy ) along with a

covering { U; } and corresponding rings {R;} such that (U}, Ox|y,) = (Spec Ry, Ospecr, )-

Whenever unambiguous, we will identify X; with Spec R;. Again, amorphism of schemes
is a morphism of the underlying locally ringed topological spaces. We assemble schemes and
their morphisms into a category denoted Sch.

Example 2.2.2. Affine schemes are schemes.

Example 2.2.3. Let X = SpecZ[x] and U := D(x) U D(p) C Z[x| for some prime p €
Z. Intuitively, U looks like Z[x| with the closed point (x; p) removed. Then (U, Ox|y) is
evidently a scheme; on the other hand, noting that Ox(U) = Ox(X) and appealing to

theorem 2.1.11, this cannot be an affine scheme.

We will give more examples once we have examined the properties of schemes more
closely.

Definition 2.2.4. Let U C X be an open subset of scheme. Then (U, Ox|y;) - or simply
U, if there is no room for confusion - is called an open subscheme of X

Proposition 2.2.5. An open subscheme is a scheme.

Proof. Let Y C X be an open subscheme, and let {X;} be an affine open covering of X.
Then {X;NY } is an open covering of ¥, and we can write each X; MY as a union of principal
open sets. By lemma 2.1.9, these are themselves affine schemes, so we have obtained an affine
open covering of Y. ]

In the same way as we can consider the category of smooth bundles over a manifold,
there is a natural notion of schemes over a specified scheme.

Definition 2.2.6. Let S be a scheme. A scheme over S, or an S-scheme, is a scheme X
alongwithamap z: X — §. The map 7 is called the structural morphism of X. Given S-

schemes X % Sand X' = S, a morphism of S-schemes ¢: X — X is a map of schemes
satisfying 7 = 7’ o ¢.

In the case where § = Spec £ for some field £, convention dictates that we drop the
“Spec” and simply say “k-scheme”. The category of S-schemes is denoted by Sch/S. While
defining a new category for every scheme might seem unnecessary, it is actually quite useful.
For example, in algebraic geometry we are frequently interested in studying complex curves.
Then it seems reasonable to expect that Spec C has trivial automorphism group, since it con-
sists of a single point; however, in Sch we have that Aut(S) = Gal(C/Q), a very large and
complicated object. In Sch/Spec C, on the other hand, we have Aut(Spec C) = , as ex-
pected.

Example 2.2.7. Any R-algebra 4 is an R-scheme: by proposition 2.1.10 the canonical map
R — A induces a morphism of schemes 7: Spec. 4 — Spec R.

16
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Example 2.2.8. As a particular case of the previous example, since any ring R admits a nat-
ural map Z — R determined by 1 +— 1g, every affine scheme is a Spec Z-scheme. More
generally, by writing X as a union of affine schemes with corresponding maps into Spec Z
and gluing via proposition 1.4.5, we see that every scheme is naturally a Spec Z-scheme.

Example 2.2.9. If X 5 S is an S-scheme and U C X an open subscheme, then U is
naturally an S-scheme as well, by 7| : U — .

Definition 2.2.10. A morphism of schemes f': X — Y is an open immersion if the un-
derlying map of topological spaces is an homeomorphism onto an open subset of Y, and f
is an isomorphism at the level of stalks.

Example 2.2.11. The inclusion of an open subscheme Z — X is an open immersion.

Recall that in complex analysis, we define our first non-trivial complex manifold P{. - the
Riemann sphere — as CLI{ oo} with the chartszon Cand 1 /z on C* LI{oo}. Itshould come
as no surprise that this has an algebro-geometric analogue,' which will be the first example
of the following very general construction:

Proposition 2.2.12 (Gluing of S-schemes). Let X; be a collection of S-schemes, and for each
pair of indices (4,7), an open subscheme X;; and an isomorphism of S-schemes f: Xy — X
subject to the following conditions:

(i) fir = Idy,
(ii) f5 = fi ' and f(Xy 0 Xy) = X 0 Xys
(iif) f = f © fiy on Xy N Xy
Then there exists an S-scheme X, unique up to isomorphism, with a covering of S-subschemes

isomorphic to {X;} such that the maps f;; on X; correspond to the identity map in the image of
X;inX.
g

It is worth pointing out that conditions (i)—(iii) bear close similarity to the construction
of a vector bundle from the transition maps.

Proof. Define X := II.X;/ ~ where x; ~ x; whenever x; € Xj, %y € X;and x; = f5(x;).
Conditions (i)—(iii) show that this determines an equivalence relation. We then have natural
inclusions X; LN satisfying g; = g; o f;; on X; N X;. By proposition 1.2..5, we can glue
together the structure sheaves U; = g, Oy, along the morphisms {fl]}, yielding a ringed
topological space (X, O ), any stalk Oy, being a local ring because we can find X; > x with
O, = Ox.. Moreover, by considering affine open coverings U; of each X}, the images of
{U;} in X form an affine open covering, so X is a scheme. From the maps g; we obtain iso-
morphisms X; = U, and if 7;: X; — § are the structural morphisms, we can glue 7; o g;° 1
to yield a scheme morphism X — §. Finally, X is unique up to isomorphism by construc-
tion. ]

Of course, by taking § = Spec Z, we can glue any schemes together without paying
attention to structure morphisms.

"The charts are, after all, given by rational functions!

7
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Example 2.2.13. Fixaring R, and define X = Spec R[x/y]and ¥ = Spec R[y/x] considered
as subrings of 4 == R[x, ,x~ %,y !|. We then have a natural isomorphism f: X — Y
induced by the ring map y/x + x/y, cf. proposition 2.1.10. Let us define the gluing data: set
U=D(x/y) CXand V' = D(y/x) C Y,andletf: U — V be the isomorphism induced
by the equality R[y/x],). — Rlx/y]./, inside 4. Conditions (i)—(iii) of proposition 2.2.12
now hold trivially, so we obtain a scheme, denoted by IP’]IQ.

In the case of R = C, this ought to remind us of projective coordinates on the Riemann
sphere: there we have coordinates [x:y], and pass to charts by fixing x or y to be zero or non-
zero. Of course, we can generalise this construction:

Example 2.2.14. Fix aring R, and let 4 be the localisation

A= R[x1,..., %) (x1,) = R[X15 005 %y x w0t

As subrings of 4, we take 4, = R[xlxl-_l, .. .,xnxl-_l], and set X; = Specd; and X;; =
D(xix; ') C X,. Since Ox,(X;) = (Al‘)(xjx‘fl) = Rlxix .. x xlxj_l,...,x”xj_l} =

O X; (X},-), we have gluing isomorphisms X;; — Xj; which clearly satisfy the cocycle conditions

since they are induced by the identity map.

Definition 2.2.15. The scheme defined in the preceeding example is called projective 7-
space over R, denoted by IP%.

2.3 Properties of schemes and the fibre product

There are many conditions one might impose on schemes in order to exclude pathologies.
Here we consider a few of them.

Definition 2.3.1. An affine variety over a field £ is an affine scheme Spec 4 where A is a
finitely generated £-algebra.

Fix an algebraically closed field %, and let 7" be an affine variety in the classical sense,
that is, the zero-locus of a collection of polynomials £3,..., f,, € k[x1,...,x,]. One ver-
sion of Hilbert’s Nullstellensatz states that there is a bijective correspondence between affine
varieties in £” and radical ideals in £[xy, ..., x,] (see e.g. Thm. 4.7 in [CLO10]). Explicitly,
the datum of an affine variety is equivalent to that of the radical ideal a :== /(fi,..., /) <
k[x1, ..., x,). But by theorem 2.1.11 this uniquely determines a scheme X := Spec R, where
R = k[x1,...,x,]/a. Note that R is a finitely generated £-algebra because k[xy, . . ., x,] is, so
X is indeed an affine variety in the scheme-theoretic sense.

Now recall that forasubfield L C &, an L-rational pointon Visatuple (ay, ..., a,) € L”

such that
filay,...,a,) = =fulay,...,a,) = 0. (23)

Now thereis a bijection between the set of L-rational pointson 7, (L), and the set Homy (R, L).
In terms of schemes, by theorem 2.1.11 this is in bijection with Homgp.. £(Spec Z, Spec R).
Motivated by this, we define the following:

Definition 2.3.2. Let X and Y be S-schemes. The set Homg(X; Y) is called the set of Y-
points of X, and we denote it by X (Y).

18
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It is important to note this depends on the choice of structure morphisms X, ¥ — .
In the “classical case” where ¥ and S are spectra of rings, we revert to the terminology “L-
rational points”, and write X (L).

Definition 2.3.3. Let X be a scheme. Given a connected subset Z C X, a pointy € Zis
called a generic point if {»} is dense in Z.

Recall that a topological space X is reducible it X = X; L X, for closed proper subsets
X, and X5, and zrreducible otherwise.

Proposition 2.3.4. There is a bijection

{generic points of X} < {irreducible closed subsets of X } (2.4)

given by y — m
Proof. [LEo6], Prop. 2.4.12a). ]

It is tempting to define 7y (X) as the collection of irreducible closed subsets of X; the
proposition above then gives a bijection between the set 7(X) and the set of generic points
of X.

If a certain adjective applies to all the local rings of a scheme, we are prone to apply the
adjective to the scheme itself. For example:

Definition 2.3.5. A scheme X is reduced if all the local rings O, are reduced; that is, con-
tain no nilpotent elements.

Definition 2.3.6. A scheme X is integral if for every open subset U C X, Ox(U) is an
integral domain.

Recall that a ring R is ntegrally closed (in its fraction field K) if any » € K which is the
root of some monic polynomial P € R[] is also contained in R.

Definition 2.3.7. A scheme X is normal if all the stalks O, are integrally closed domains.
Later we will need the following definition:

Definition 2.3.8. A morphism of schemes /' : X — Y is an affine morphism if there exists
an affine open cover { U; } of ¥ such that each f ! (U}) is an affine subscheme of X.

Example 2.3.9. The canonical morphism X — Spec Z is affine if and only if X is affine.

The fibre product

Recall that products in Ring often do not preserve nice properties of the constituents, such
as being an integral domain - for example, (0, 1) - (1,0) = (0,0) € Z x Z - and the same
is true for Sch. Trying to define the product of two schemes X and Y in the naive way as the
product of the underlying topological spaces equipped with the product sheaf runs into the
problem that O y,(xy) = Ox. X Of,: the product of local rings is not local.”

In lieu of this, we can define the following more general notion:

*If R has a unique maximal ideal m, then R x R has two maximal ideals R X mandm x R.

9
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Definition 2.3.10. Let C be an arbitrary category, let X and Y be objects in Y, and suppose
f:X = Zandg: Y — Zare morphisms. Then the fibre product of X and Y with respect
to f and g, or simply the fzbre product of X and Y is asolution (X x 2 Y, p, ¢) to the following
universal mapping problem: for any pair of morphisms¢: 4 — X andy: 4 — Y such that
f¢ = gv, there exists aunique b: 4 — X X Y such that the following diagram commutes:

Xx, v 2 x (2-5)

y —% 7z

Example 2.3.11. The fibre product of X Ly Zand ¥ %5 Zin Setis given by {(x ) €
X X Y: f(x) = ¢g(y)} and the natural projections onto X and Y.

Theorem 2.3.x2. Fibre products exist in Sch, and are unique up rto unique isomorphism.
To prove this, it is sensible to start with the case where all the schemes are affine.
Lemma 2.3.13. Grven rings R, S and A, we have Spec R Xspeca SpecS = Spec (R®,.9).

Proof. This follows immediately from theorem 2.1.11 by noting that the universal property
of fibre products in Schg is dual to that of tensor products in Ring. This also proves that
the fibre product is unique up to unique isomorphism. O

Proof of theorem 2.3.12. Suppose first thatS'and Y are affine, and that X is an arbitrary scheme
covered by affine open schemes X; = Spec R,. Then the fibre product (X; xs ¥, p;, g;) exists
for each 7, and for every pair 7 and j we have an isomorphism p; ' (X; NX;) = (X;NX)) x5 Y;
this gives isomorphisms £ : p; ' (X; N X;) — pfl (X; N X;). By uniqueness of the isomor-
phism (X; N XN Xp) Xs Y = p_l(X,» NX; N X}), we see that {ﬁ]} satisfy the cocycle con-
ditions in proposition 2.2.12, so the X; X Y glue to a unique S-scheme, say, I#. By viewing
W as a gluing of X-schemes (resp. Y-schemes) through the maps p; (resp. g;), we see that
these assemble to morphisms p: W — X andg: W — Y.

We need to check that (77 p, ¢) satisfies the universal property of fibre products in Sch:
letg: A — Xandy: 4 — Y bemorphismsinSchsuch that /i = g¢. Define¢,: £ 1(X,) —
X;and y; = y/| -1(x,)> and apply the universal property of each X; x s U, giving a collection
of maps b;: A — X; X5 U such that

? (2.6)

N

y —¢ 7

Now using proposition 1.4.5 we can glue together /, to a unique map b, which is readily seen
to make the corresponding diagram eq. (2.5) commute.

20
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Next, let us remove that assumption that Y be affine; let ¥; be an affine covering, and
construct the fibre products X X ¢ Y; by the above method, noting that the fibre product is
symmetric. In a similar way we can glue these, and by a similar argument as above check that
X Xg Y isindeed a fibre product.

Finally, suppose S is no longer affine, and let us cover it with ;. Letting f: X — §
and g: ¥ — S as before be the structure morphisms, we can define X; = £~1(S,), ¥; ==
2 (8/) and form the fibre products (X; N X;) xs, (¥: N Y;). Note that by uniqueness of
solutions to universal mapping problems, these are not only fibre products over S;, but must
also equal the fibre products over S . By gluing the X; X ¥; along the natural inclusions of
(X; NX;) x5 (Y; N Y;), we obtain a scheme which one easily checks satisfies the universal

property. O

When we take the fibre product of schemes X and Y over an affine scheme Spec R, we
are sometimes prone to drop the “Spec” and simply write X xp Y.

Example 2.3.14. For any ring R and positive integers 7, m € N, we have
A% xg AR = Spec R[x1, ..., %) @r R[Y15 -5 Y| = Spec Rz1, ... 2] = AR
The universal property gives many desirable properties of the fibre product for free:

Proposition 2.3.15. Let X, Y and Z be S-schemes. Then

(i) X %58 = X;
(i) X x5 ¥ = ¥ x5 X;
(111) (X Xs Y) XsZ =X Xg (Y st>.

Proof. Here “=" means that the constituents are isomorphic via a canonical isomorphism.
These all follow from showing that the right and left hand sides both satisfy the universal
property of fibre products, hence are related by a unique isomorphism by the standard ar-
gument. We omit the details. ]

Definition 2.3.16. Letf: X — Y beamorphism of schemes, and construct the fibre prod-
uct X Xy X over the identity map X — X as in the diagram:

Idy

X
RANAS'%%
o

gy X XyX ——X

| b

x—> .y

The morphism Ay y: X — X xy X is called the diagonal morphism of X with
respect to 4.

The diagonal morphism is the scheme-theoretic analogue of the diagonal A: X — X x
X where A(x) = (x, x) of a topological space X.

Proposition 2.3.17. The diagonal morphism Ay )y is an immersion.
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Proof. Fixaffineopen V' C YandU C f~*(V). Then U X U isaffine openin X x y X. By
using proposition 1.4.5, it suffices to show that U — U x U is a closed immersion for any
given U and V. But in this case, when passing to rings the diagonal map corresponds to the
multiplication map R @g' R — R, 7 @ s > rs. This is injective, and so R = R @' R /a for
someideal a < R ®p/ R. Itis straightforward to show algebraically that Spec R @p' R/a =
V' (a), which is closed, proving our claim. O

Recall that the topological diagonal A(X) is closed if and only if X is a Hausdorff. A
scheme X will usually usually not HausdorfF: it X has a generic point 7, then there is no way
of separating 7 from a point x in its closure by open sets. The right analogue turns out to be
defined precisely in terms of the diagonal morphism:

Definition 2.3.18. Letf: X — Y bea morphism of schemes. If Ay y is a closed map, then
we say that / is separated.

The fibre product also allows us to settle the problem “how to turn an S-scheme into a
S’-scheme?” through the following construction:

Definition 2.3.19. Let X and S’ be S-schemes, and let (X x5, p, ¢) be their fibre product.
Regarding X' X< " as an §’-scheme with g as its structure morphism is called base change
by the map S — S.

Example 2.3.20. For any ring R, one easily checks that P, Xp..z Spec R = 5.

However, for base change to be a nice way of passing between categories, we need to be
able to transfer maps.

Proposition 2.3.21. Let X — Y be a morphism of S-schemes, and suppose S — S is also a
scheme over S. Then we have a natural map X x5S — Y XgS', and base change is in fact
functorial.

Proof. If all schemes are affine, then we can simply take X X5 5" — ¥ x5 .5 to be the map
f ®Id. In the general case, we can glue the morphism using proposition 1.4.5. From this and
uniqueness of gluing, functoriality is immediate. L]

Corollary 2.3.22. Base change gives a functor Sch/S — Sch/S'.

Definition 2.3.23. We say that a property P is stable under base change if the property
holding true for an S-scheme X — § implies it holds true for X xg S’ formed by base-
changing via §" — S.

Definition 2.3.24. Let ¢: X — Y be a morphism of schemes, and fix y € Y. The fibre of
[ at y, is by definition X, == 0%, Xy Spec x(y), where x(y) = ﬁxy/my is the residue field
atyin Y, and the map x(y) — Y is given by * — y.

Example 2.3.25. An alternative way to view an S-scheme X — S'is as a family of schemes
parameterised by the points of S, since we have a correspondence of schemess <+ X; between
points s € S and fibres X; of the structure morphism.
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Various flavours of finite

As in commutative algebra, finiteness conditions are frequently quite useful.

Definition 2.3.26. A scheme is Noetherian if it admits a finite affine open covering {X;}
such that each Oy, (X;) is a Noetherian ring.

Example 2.3.27. Affine #-space A% and projective #-space IP% are clearly Noetherian, as is
any affine scheme.

We say that a ring homomorphism R — S is of finite presentation if S is isomorphic to
a quotient of R[xy,..., x,| for some n € N. It is of finite type if there exists a surjection of
R-algebras R[xy, ..., x,] — S.

Definition 2.3.28. A morphism of schemes /': X — Y is locally of finite presentation
(resp. finite type) if for any x € X, there exists an affine open neighbourhood U C X
of x and affine open V" O f(U) such that the induced map Oy (V') — Ox(U) is of finite

presentation (resp. finite type).
Note that being locally of finite presentation implies being of locally finite type.

Example 2.3.29. If X = Spec R[xy,...,x,]/] forsome ] < R[xy,...,x,], then the canon-
ical map X — Spec R is of finite presentation. Indeed, we can take X to be the affine open
set containing any x € X, and the ring morphism Ogyecz(SpecR) = R — Ox(X) =
R[x1, ..., x,]/1 is clearly of finite presentation.

A ring homomorphism ¢: R — S is finite if the action (7 5) +— ¢(r)s makes S into a
finite R-module.

Definition 2.3.30. A morphism of schemes f: X — Y is finite if it is affine, and if for any
affine open V' C Y and U = f~1(V), the induced ring map Oy (V) — Ox(U) is finite.

Proposition 2.3.31. The properties of being finite, of finite type and of finite presentation are
individually stable under composition and base change.

Proof. See [GW10], appendix C. ]

2.4 A menagerie of schemes
Definition 2.4.1. An arithmetic scheme is a scheme of finite type over Spec Z.

We already described Spec Z in example 2.1.6, which is certainly an arithmetic scheme; a
less trivial example is that of the GaufSian integers Z[7].
Example 2.4.2. Recall that the prime elements of Z[7] are given by

(i) primesp € Z wherep =3 (mod 4),
(i) 7+ miifp = n® + m*isaprime withp =1 (mod 4),
(iii) 1+ 7.
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A proof of this can be found in [NS13], Thm. 1.4. To study the geometry of Spec Z[z], let us
consider the fibres under the canonical map ¢ into Spec Z. Fix a prime (p) € Spec Z. Then

(Spec Z[1]) () = Spec Z[7] xz Spec x(p) = Spec (Z[i]] ® F,) = SpecF,[],

and consider first the case where p = 2. Since F,[i] = F,[x]/(x* 4 1), this ring has four
elements. But via the automorphism x — x + 1, we see that F5[i] = F[x]/x?, so the fibre
of 2, which consists of only the point (1 + 7), is a faz point, since the fibre is not a field.

Taking p = 3 (mod 4), we claim that the fibre of (p) is a field. Indeed, x* 4 1 is irre-
ducible in I, [x], hence generates a maximal ideal, so F,[x]/(x* 4+ 1) = F,2. On the other
hand, ifp = 1 (mod 4), then x* + 1 is not irreducible over IF,, but decomposes as the prod-
uct of two linear factors Py (x) and P> (x). Then we have a corresponding decomposition of
the fibre, as F,[x] /p1(x) X F,[x]/pa(x) 2 F, x I,

We can draw the picture as follows:

(1+4) (3)

We draw the dot at (1+7) slightly thicker to signify that the fibre of 2 is “singular”. This gives
ageometric interpretation of the statement from algebraic number theory that 2 viewed asan
integer ramifies in Z[7]: notice the geometric likeness to covering maps. Note that we have
an action of the Galois group Gal(Q[7]/Q) acting on each fibre. Of course, Gal(Q[7]/Q) is
generated by the automorphism z — z which sends 2 + 7 to 2 — 7, 3 to itself, and so on.

Example 2.4.3. Consider now A}, = Spec Z[x]. Recall that a prime ideal p € Spec Z|x]
takes one of the following forms:

(i) p=(0);
(ii) p = (p), wherep € Zis a prime;
(iii) p = (f), where f is a polynomial which is irreducible over Q. This follows from
Gauf?’ lemma.
(iv) p = (p, g), wherep € Zisaprime and g is a polynomial which is irreducible modulo

p-

That these are all possibilities is easy to see by considering the fibres under the canonical map
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Spec Z[x] — Spec Z and splitting into cases.

(2,x—1)

The fibre of a prime (p) € Spec Z corresponds to a vertical line in the drawing: it contains
every polynomial g as described in (iv), in addition to the point (p) which is dense in the fibre.
On the far right we have the prime ideals of type (iii), polynomials which are irreducible over
Q. These alllie in the fibre of (0) € Spec Z, along with (0), which is dense (hence the stiple).

This is an example of an arithmetic surface, which is the main object of study in Arakelov
theory. Although the picture above might not scream “surface”, there are two compelling
reasons why Spec Z|x] should indeed be called so: first of all, at any closed point the structure
sheaf has Krull dimension 2, and secondly the maximal chains of proper irreducible subsets
have length 2.

Example 2.4.4. Let (%, y) = y — x4, and g(«, y) = y. We form the schemes

Clx y]
X = Spec and Y = Spec ———
P ) P

Geometrically, we can identify this with the following subset of C:

y=a

y=0

Note that the classical intersection of X and ¥ when viewed as curves in C is simply a point.
However, scheme-theoretically, their intersection is C[x, y] /(£ g) = Clx]/(x?), which con-
sists of a single point along with extra information arising from the fact that £ is tangent to
¢, namely that of a nilpotent, x. Although we do not yet have the tools to see it, this mirrors
the situation with the “singular fibre” in example 2.4.2.

Over an algebraically closed field such as C, there is a well-established area called 7nzer-
section theory describing various forms of intersection and tangency of algebraic varieties.
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For arithmetic schemes, the problems is vastly more complicated, and compactifying arith-
metic surfaces to make them suitable for intersection theory is one of the main ideas behind

Arakelov theory.

2.5 Quasi-coherent sheaves on a scheme

Following [Mumi3]. Recall from section 1.3 that there is a natural analogue of modules over
a sheaf of rings. This turns out to be a very useful tool for studying schemes.

Proposition 2.5.1. Let X = Spec R be an affine scheme, and let M be an R-module. Then

there exists a sheaf of modules M of Oy, unique up to isomorphism, such t/mz‘M D(f
MR Rf

Proof. With the data M (D(f)) = M ®g Ry, we obtain as in the construction of the struc-
ture sheaf that M ® O is a sheaf using proposition 1.2.4. To show that this is indeed a sheaf
of modules, it suffices to show that M @z Ry is an Rp-module for any £, and that multipli-
cation commutes with restriction. But these both follow immediately from definition. [

Definition 2.5.2. Let X beascheme. A quasi-coherent sheaf on X isan 0y-module . for
which there exists an affine open cover {U; = Spec R;} of X such that . |, is isomorphic
to an Oy,-module of the form ﬂN/I for some R;-module ;. If each M, is finitely generated
over R,, then .7 is said to be a coherent sheaf.

Example 2.5.3. Take X = Spec R, and let A1 be an R-module. Then Misa quasi-coherent
sheaf on X, and coherent if and only if A1 is finitely generated over R.

Example 2.5.4. Fix aring R, and let X be any scheme. Define a sheaf .7 as follows: for any
affine open set U; = Spec R;in X, let 7 (U;) = Homging(R, Ox(U;)) = Homging(R, R;).

One easily checks that defines a sheaf of modules on the cover of affine open sets, since

R; x Hom(R, R;) —— Hom(R, R;)

| | (27)

R; x Hom(R, R;) — Hom(R, R;)

commutes: given a restriction p: R; — R;, we have an induced map p: Hom(R, R;) —
Hom(R, R;) given by f — pf, and we readily verify that p(r;)p(f) = p(r,f) for r; € R, and
f € Hom(R, R;) since (5(f))(7) = p(f (7)) for any » € R.

Recall that any ring homomorphism y: R — S imposes an R-module structure on S
given by 7 - s = y/(r)s. We might expect that the same should hold for schemes, that is, that
given a morphism of schemes ¢: X — Y, ¢, OY is a sheaf of modules on Y. It is not very
difficult to show that this is indeed the case, however it need not be the case that that ¢, Oy
is a quasi-coherent sheaf on Y, see for example [GW1o0], exercise 10.14.

For our purposes, the most important example of a quasi-coherent sheaf is the following,
which is a purely algebraic analogue of the differentials found in differential geometry.

Let ¢: R — S be a ring homomorphism, and define an S-module {2/ as the free S-
module on {ds: s € S} modulo the following relations, for 53,50 € S,
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(i) d(.fl +52) = d.fl + d.fg,
(il) d(s152) = s1dsa + sodsy, and
(iii) dg(r) = Oforall » € R.
Then Homuod, (§2s/x, M) is isomorphic to the module of R-derivations S — A for any S-
module M. Explicitly, given a morphism of S-modules 7: §35/r — M, the map s — 7(ds)
determines an R-derivation, and an R-derivation D: § — M gives a map {ds/p — M
generated by ds — D(s).

Definition 2.5.s. The S-module )/ is called the module of Kihler differentials, or
relative differentials, of S over R.

Theorem 2.5.6. Let m: S @r S — S be the multiplication map, m(s,s') = ss', and define
I:=kerm < S ®gS. Then I/I? is canonically isomorphic to Qs/z.

Proof. We will construct the isomorphism explicitly: let ®: Qg/p — I/ 2 be determined by
O(ds) =5®1—1®s. Notethats®@ 1 —1®s € kerm, sincem(s@1—1®s) =s®@—s=0
since s ® —s = —(s ® —s). Then ® is compatible with conditions (i)-(iii).

In the reverse direction, let 4 = § @ /g and define W: § x .S — A by V(sy,5) =
(5152, s1d52). This is R-bilinear because W (7sy, s5) = (75159, 751ds2) = r¥(s1,52) and

U (51, 759) = (75152, 51d(752)) = (75152, r51dsy) = r¥(sy, $2), (2.8)

where we use (iii) in the last equality, so that d(rs2) = rds; + s1dr = rds;. Therefore

we obtain a map U: S ®xS — 4, and for any 7 € I, the first component of U () is
0 by definition of /. Moreover, since (ii) implies that any square in {25z is 0, the second

component of U factors through the quotient of 7/7?. It is easily checked that these maps
are mutually inverse. ]

Example 2.5.7. Let R be some field £, and let S = k[xy, ..., x,). Then Qg/g is the free S-
module generated by dx;, ..., dx, such that forany f € S,

0
df = Z af; dx;

which is precisely the analogue of analytic differentials in the special case of polynomials.
Now we want to “globalise” the construction to the case of schemes.

Theorem 2.5.8. [LEo6] Letf: X — Y be a morphism of schemes. Then there exists a unique
quasi-coberent sheaf b, sy on X such that for any affine open V- C Y and U C f V) with
x € U, we bhave

W vlo = Qoywyjovry and  (Qxyy)s = Qoyw)ovr) ) (2.9)

Our strategy will be the following: first we define the stalks of 2}, I and then we patch
together in a natural way. We first need the following technical lemma:

Lemma 2.5.9. Let ¢: R — R’ be a ring homomorphism, and fix ¢ € Spec R’ and p =
¢~ (q) € Spec R. Then we have canonical isomorphisms

Qrijr @ Ry = Qe jr = Qe v, (2.10)
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Proof. See [LEo6], Prop. 6.1.8. O

Proof of theorem 2.5.8. For simplicity, write {2, = Qlﬁm [0 forx € X. Given U, V' and
x as in the theorem statement, and w € Qé’x( 0))0v(7) let w, denote the image of w in
QZ;X( 0y ov(r) @ Oy, = ()., identifying the two by the previous lemma. Next, for an ar-
bitrary open U C X, define Q5 /7 (U) to be the set of maps

s: U — H Q. (2.1)

such that for any x € U, there exists affine open neighbourhoods V, C Y of y = f(x)
and U, C f1(V,) andw € Qlﬁ’X(Ux)/ﬁY(Vy) with wy = s(¥’) for every ' € U,. Itis
straightforward to check (but tedious to write out) that Q} Iy forms a sheaf of &y-modules
on X with restriction maps given by restriction of domains. By design, the stalks (Q} Iy )
are isomorphic to €2, and for affine open V' C Y and U C f (V) we have a natural map
of rings Qp,. 1)/, (r) = Ly (U) given by dr = (x' = dr). Noting that this is in fact
an isomorphism at the level of stalks, it is accordingly an isomorphism of Oy |y-modules,
proving eq. (2.9). By definition, 2, sy is therefore quasi-coherent. 0

Definition 2.5.10. Fix a morphism of schemes : X — Y. The quasi-coherent sheaf 2, Iy
defined above is called the sheaf of Kihler differentials, or relative differentials of de-
gree 1 of X over Y.

2.8



Chapter 3
The Etale Topology

3.1 Insufficiency of the Zariski topology

Compared to the Euclidean topology, the Zariski topology is lacking in many respects. For
example, it is never Hausdorft unless the underlying space is finite because every open set
contains infinitely many prime ideals. Points need no longer be closed sets, in fact, these
are precisely the ideals which are maximal. If we want to transfer ideas from, say, complex
differential geometry, we need to work with a finer topology. A more concrete motivation is
the following:

The Weil Conjectures

We follow [Har77] and [FK88]. Let X be a scheme of finite type over finite field k£ = F,,
and define the base-change X = X X k, where £ is a fixed an algebraic closure of £. Suppose
N,, for » € N, denotes the number of I -rational points in X. In classical language, these
are precisely the points of X with coordinates in IF,,..

Definition 3.1.1. The zeta function of X is the formal power series

Z(X 1) = exp (Z N"‘) c Ql (1)

reN

Here exp denotes the formal power series exp(#) = 1 + #/1! + #2/20 + £3/3! + ...
Weil conjectured, inspired by direct verification in a few special cases, that the zeta function
should obey certain properties analogous to those of the Riemann zeta function. Precisely:

Conjecture (W1). Z(X, ¢) is a rational function in .

Conjecture (W2). If E is the self-intersection number of the diagonal in X X X, then Z satisfies
1
2(x ) = g 2% ) 652)
qn
This is an analogue of the functional equation for the Riemann zeta function,

ir(3)e0 =75 )0
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The next is inspired by the Riemann hypothesis:

Conjecture (W3). Let n = dim X. Then Z can be written on the form

o Pl(t)]):;(l’)...Pgn_l(t)
2@t = = P Py

(33)

where Py = (1 =), Py, = (1 — ¢"t) and P; = [[ (1 — a;t) where a;; are algebraic integers
with |a;| = ¢'/>.

Assuming (W3), we define the Bett7 numbers B;(X) = deg P;. In the classical setting, if
X isasubvariety of C with the Euclidean subspace topology, we can define the Betti numbers
B:(X) as the dimensions of the vector spaces H” (X, Q). However, over arbitrary fields this
fails, and the Zariski topology proves inadequate:

Proposition 3.1.2. If a topological space X is irreducible, then H' (X, #) = 0 forall r > 0
and every constant sheaf F .

Since every integral scheme is irreducible, this shows that the Zariski topology is inade-
quate when we try to apply cohomological methods to Z-schemes. The niive way to fix this
problem is to refine the Zariski topology by adding more open sets. This turns out to be a
very fruitful approach; the difhiculty lies in choosing the correct ones.

Weil’s ingenious idea was that if we were to define the “correct” homology theory of
varieties over finite fields, then we might have a good chance at proving these result. In his
honour, a “good” homology theory, that is, one satisfying a list of axioms including those
needed for the resolution of the Weil conjectures, is called a Weil cobomology theory. Along
came Grothendieck, who with the apparatus of scheme theory was revolutionising algebraic
geometry. Equipped with the ézale topology, he and Michael Artin were able to provide the
necessary formalism to prove conjectures (W1) and (W2). However, the Riemann hypothesis
remained elusive until it was settled by Pierre Deligne in 1974 [Del74].

3.2 Etale morphisms
Recall from calculus the inverse function theorem:

Theorem 3.2.x (Inverse function theorem). Fixx € R™. Iff: R” — R” satisfies

det {afl
0,

J £ 0, (3-4)
154

then there exists a neighbourbood U of x such that f | is a diffeomorphism onto its image.
Proof. (See [MWo7], p.4). O

The idea is simple: to refine the Zariski topology, we add to our topology sets which are
the preimages of open sets under maps which satisfy a suitable analogue of the hypothesis of
the inverse function theorem. This turns out to be the maps which are étale, meaning “still”
or “slack”, by analogy with the sea. The first ingredient in the definition of étale maps is the
idea of an unramified morphism:
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Unramified maps

Informally, in complex analytic geometry we say that a map of Riemann surfaces is ramified
at a point if it “branches out” there. For example, the map ¢: z +— 2" in C is #-to-1 at an
arbitrary non-zero point p in C, with the # distinct #-th roots of p mapping to p. However,
0 has only a single preimage, and we say that ¢ is 7amified at 0, or that 0 is a branch point
of ¢. Topologically, we can think of 0 as having no neighbourhood on which ¢ is injective.
If our notion of étale morphisms are meant to mirror local homeomorphisms, the algebro-
geometric analogue of ramification certainly needs to be precluded.

® ¢---°
o <----

Figure 3.1: A triple cover with two ramified points. f is not alocal homeomorphism
near the first ramification point since by removing a single point we obtain six con-
nected components in the domain, but only two in the image.

As usual, we start off “locally”, in the world of rings: Recall that a morphism of local
rings ¢: R — S is unramified if S /¢(mp) is a finite separable field extension of R /mg.

Definition 3.2.2. A morphism locally of finite presentation f: X — Y is unramified at
x € X if the induced map of local rings Oy¢(,) — O, is unramified. If f is unramified at
all x € X, then we say that f is unramified.

This definition is not always the easiest to use in practice, but fortunately we have the
following:

Proposition 3.2.3. Let f: X — Y be a morphism locally of finite type. Then the following
are equivalent:

(i) f is unramified at x,
(ii) the stalk (Q}(/Y)x =0,
(i) there exists a neighbourhood U of x restricted to which the diagonal morphism Ay y : X —
X Xy X isan open immersion.

Proof. Unfortunately, we do not have space to develop the machinery required to prove this.
See [Mil8o], Prop. 1.3.5, or [Szao9], Prop. 5.2.7. [

Example 3.2.4. Proceeding as in example 2.4.2, consider the natural map f': Spec Z[i] —
Spec Z. In the setting of algebraic number theory one might recall that (1 + 7) ramifies over
Z, so we expect that the same holds for f.

Note first that since Z[7] = Z[x|/(x* + 1) and 0 = d(x* + 1) = 2dx, we have

 Zlildx _ Zli]
Yoz = ghiedx - 2l

For any p € Zl[7], we find that (Z[7]/2Z[{]), = 0if 2 ¢ p, since it is a field containing a
nilpotent, 7 + 1. If2 € p, then 2 € (Z[z]/2Z[7]), # 0,50 (Qspecz[1)/specz)p 7 0. Of course,
the only prime ideal in Z[7] containing 2 is p = (1 + 7), which verifies our expectation.
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Flat morphisms

The second ingredient in the definition of étale is flatness. While many concepts in scheme
theory come from geometry, flatness is decidedly algebraic. As memorably put by Mumford,
“The concept of flatness is a riddle that comes out of algebra, but which technically is the
answer to many prayers” ([Mumis], p. 214). We say that a ring homomorphism ¢: R — §
is flar if the action defined by (7, 5) — ¢(7)s makes S a flat R-module, that is, a module for
which the functor — ®z S is exact. Globally, we take the following:

Definition 3.2.5. A morphism of schemes f: X — Y is flat if the corresponding local
homomorphisms Oyz() — Oy, are flat.

We are now set to define étale morphisms:

Definition 3.2.6. A morphism of schemes f': X — Y is étale if it is locally of finite pre-

sentation, flat and unramified. Similarly, we say that an S-scheme X Iy Sis étale whenever
7 is.!
We denote by Et/S the category of étale S-schemes along with arrows given by étale

morphisms of S-schemes.

Example 3.2.7. Any open immersion is étale, because it is an isomorphism at the level of
stalks.

Definition 3.2.8. An ¢tale cover is surjective étale morphism.

Example 3.2.9. Let S = Spec k. Then by unraveling the definitions, we find that an étale
cover X — S is simply a disjoint union of finite separable extensions of £.

Definition 3.2.10. We say that an étale cover f: X — S is trivial if X is isomorphic to a
disjoint union of copies of S, restricted to each of which £ is the identity.

Etale maps obey a few other useful properties:
Proposition 3.2.1x. Letf: X — Yandg: Y — Z be étale morphisms.

(i) gofisétale
(ii) /' X is an S-scheme and S' — S a morphism, then the induced map X xg S8 — Y is
also étale.

Proof. [Mil80], Prop. 1.3.3. [

In light of proposition 3.2.3, it seems reasonable that étale maps should have a straight-
forward characterisation in terms of the “differential properties” of a scheme.

Theorem 3.2.12. A morphism of schemes f: X — Y is étale if and only if for each x € X,
there exist open affine neighbourboods U = Spec R of x and V' = Spec S of y = [ (x) such
that for somen € N,

0P,
0T,

R=S[Ty,....,T,]/(Py,..., P,) and det[ ] € R™. (35)
y

Proof. [Mil8o], Cor. 3.16. O

"This is slightly more restrictive than more common definitions which require /" to be of finite presentation

instead of locally finite, but this sufficient for our purposes.
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3.3 Grothendieck Topologies

Grothendieck observed in his famous 7ohokx paper ([Gros7]) that all the axioms of a topol-
ogy were not necessary to define sheaves, and by extension, cohomology theories. In fact,
if we adjust the definition of a sheaf somewhat, it suffices to consider appropriately chosen
coverings of a given scheme. More precisely:

Definition 3.3.1. Let C be a category. A Grothendieck topology / consists of the following
data: for each object U € C, a collection /(U) of sets of maps {¢,: U; — U} where each
set if called a covering of U, satisfying the following conditions:

(i) For any morphism V7 — U in C, the fibre products U; X V' exist, and induces a
covering {U; Xy V' — V},of V.
(ii) Ifforeachz, {V; — Uy}, is a covering of U, then {V; — U},; is also a covering of
U.
(iii) The class consisting only of the identity map U — U is a covering of U.

A pair (C,]) is called a site, often abbreviated by C.»
Let us check that this indeed generalises the notion of an open cover:
Example 3.3.2. Any “classical” open cover {U; } on a topological space X is a covering.

Proof. LetU(X) be the poset category which has objects given by open sets of X, and arrows
given by inclusions. For any open V" C X, the fibre products U; X x V are given by U; N I/,
as seen by the pullback diagram

unyv —»7V

o

U —— 5 X

Since U; N V" are also open subsets of X, they are objects in U(X), and form an open cover
of V. To prove (ii), let { /;;} be a covering of Uj for each 7. Then V; is an open cover of U.
Finally, U is an open cover of itself, proving (iii). ]

Example 3.3.3. Let X be ascheme. The Zarisk: site on X, X,,,, is the site associated with the
(Zariski) topology on X.

Having defined coverings categorically, it is reasonable to do the same continuous maps.

Definition 3.3.4. Let C, C' be sites. A continuous map C — C’ is a functor which pre-
serves fibre products and coverings.

Example 3.3.5. If X and Y are topological spaces, and /: X — Y a continuous map, then
f induces a continuous map U(Y') — U(X), defined by pulling back coverings of ¥ via f.

The key to generalising sheaves to this situation turns out to be the equaliser condition:

*The original definition is more general, since it does not require the existence of fibre products. However,
this is sufficient for our purposes. We follow Milne.[Mil80]
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Definition 3.3.6. A sheafonasite (C, /) isacontravariantfunctor.# : C°? — C'satisfying
the equaliser condition

H H F (U xy U (3.6)

In other words, .# (U) can be identified with the collection of (s;) € [[,.% (U;) satis-
fying s;|v;x v, = $jlvix v~ In light of example 3.3.2, we see that this reduces to the original
case when considering topological spaces.

The following will not be used later, but is nice to know:

Definition 3.3.7. A topos is a category equivalent the category of sheaves on a site.

Definition 3.3.8. The ¢tale site on X, X, has the underlying category Ft /X . A covering of
X is a surjective family of étale morphisms in Et /X, in other words a collection of X -schemes

{¢;: U; — X} maps such that | J, ¢;(U;) = X.
Proposition 3.3.9. The étale site is indeed a site on X.
Proof. This is an immediate consequence of proposition 3.2.11. O

This is the first step into developing C-adic cobomology, which is the key idea behind the
resolution of the Weil conjectures. However, instead of venturing into this vast and com-
plicated area, we will consider another application of étale maps, namely that of the étale
fundamental group.

3.4 The Galois theory of finite étale covers

In what follows, we shall see that finite étale covers have many features in common with finite
covers of topological space. We start off with a technical lemma:
Lemma3.4.x. Lety: Y — X and ¢: X — S be morphisms of schemes.

(i) If ¢ o ¥ is finite and § is separated, then  is finite.

(i) Ifin addition ¢ o  and ¢ are étale, then so is .

Proof (i) By definition of ¢ being separated, the diagonal morphism Ay /s: X — X xg X
is a closed immersion. Now define the graph of ¢, Iy, as the fibre product

Then Iy is finite by proposition 2.3.31. Similarly, pr, is a finite map since we can consider it
as the base change of ¢ o ¢ by ¢. Therefore pr, o Iy, = ¢ is finite as well.

(ii): Suppose ¢ is an étale cover. By proposition 3.2.3, Ay s is an isomorphism onto a clopen
subset of X' X ¢ X, hence finite étale. Since being finite étale is stable under base change by
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proposition 3.2.11 and proposition 2.3.31, S0 is F?- For the same reason, pryo F¢ =yis finite
étale. O

Proposition 3.4.2. Let [+ X — S be a finite étale cover, and let s: S — X be a section of f.
Then s is an isomorphism onto some clopen subscheme of X.

Proof. By the previous lemma, s is finite étale. Being a section, it is injective, and so an
isomorphism onto its image. The fact that the image is clopen is slightly more subtle, cf.
[Szao9], Remark 5.2.2(3), and we omit the proof for the sake of brevity. ]

Definition 3.4.3. A geometric point s of scheme §'is a map Spec {2 — S, where (2 is some
algebraically closed field. If X is an S-scheme, the geometric fibre of X over 5 is the fibre
product X Xg Spec (2.

Corollary 3.4.4. If Z — S is a connected S-scheme, f: Z — X and fo: Z — X are
morphisms satisfying f1 © z = f5 o z for some geometric point z: Spec ) — Z, then fi = fo.

Proof. Since being ¢étale is stable under base change, it suffices to prove this for § = Z. But
by the proposition above, two sections fi, f2 of X — .S are determined by their value at the
image of a geometric point, since the connected component of X containing the image of

the f; is uniquely specified by z. [

Definition 3.4.s. Given amorphismof /: X — S, let Aut(X /) be the group of automor-
phisms A: X — X satisfying f((x)) = f(x) forallx € X.

There is a natural group action of Aut(X/S) on X by A - x = A(x), and this induces an
action on any geometric fibre X; = X X Spec (2.

Lemma3.4.6. Letf: X — S bea connected finite étale cover, ands: Spec ) — S a geometric
point. Then non-trivial elements of Aut(X /S) act without fixed points on X:.

Proof. This is immediate from corollary 3.4.4 by taking /i = fandand fo = f o A. [
Since the underlying set of X5 is finite, we thus have:

Corollary 3.4.7. If X — S is a finite étale cover, then Aut(X /S) is a finite group.
Just as with sets, there is a natural notion of a quotient of a scheme by a group action.

Theorem 3.4.8. Let f: X — § be an affine, surjective map and G a finite subgroup of
Aut(X/S). Then there exists a scheme with underlying set the orbits of X under G, being
the unique scheme up to isomorphism satisfying the following universal property: there exists
a unique morphism of schemes ¢: X — G\X such that for any morphism g: X — Y where
Y is affine and surjective, subject o g(A(x)) = g(x) forall 1 € G, there exists a unique map

7: G\X — Y such that
X : > Y
X %
G\X

commautes.

Proof. [Szao9], Prop. 5.3.6. ]
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Lemma 3.4.9. Let f: X — S be a connected finite étale cover, and G C Aut(X/S). Then
the induced morphisms X — G\X and G\X — S are finite érale as well.

Definition 3.4.10. A connected finite étale cover X' — Sis called a Galois cover if Aut(X /)
acts transitively on X; for any geometric points: Spec {2 — S.

Theorem 3.4.0x. Let f: X — S be a Galois cover, let 2 Z — S be a morphism of schemes,
and suppose p o w =  forsomew: X — Z.

(i) 7 is a finite érale cover, Z = H\X for some H < G := Aut(X/S), and there is a
bijection

{subgroups H < G} < {intermediate coversX — Z — S};
(i) y: Z — Sis Galois if and only if H Q G, in which case Aut(Z/S) = G/H.
Proof. [Szao9], Prop.s.3.8. [

The next lemma shows that in some cases, we need only check a single fibre to determine
if X — Sis Galois.

Lemma 3.4.12. Let X — S be a connected finite étale map. If Aut(X /S) acts transitively on
X; for somes: Spec§) — S, then X is Galois over S.

Proof. Consider Aut(X/S)\X. This is connected, and the fibre of 5 consists of a single ele-
ment. Therefore this is isomorphic to X. By the previous theorem, it follows that X — S'is
Galois. ]

The following can be seen as an analogue of the result in Galois theory that every field
extension has a normal closure.

Theorem 3.4.13. Letf: X — S bea connected finite étale cover. Then there exists a morphism

P — X such that P 25 X is a Galois cover, and every S-morphism Q — X where Q is a
Galois cover factors through P.

Proof. Fix geometric pointss: Spec () — Sand F = {x,...%,} where x;: Spec ) — X..
By choosing an ordering on I, we get a unique geometric point

x:Spec) - X" =X Xg... XgX.
—— ——

7 times

Now let P C X" be the connected component containing the image of ¥, andlet z: P — X
be the restriction of the projection X” — X onto the first component. Note that 7 is finite
étale by virtue of being the base change of £, by proposition 3.2.11 (ii).

We claim that any point of P can be represented as (X,(1), . . ., J_cg(n)) for some permuta-
tion s € §,. Indeed, since each point of X7 arises from an element of /7, it suffices to show
that points in P have distinct coordinates. Note that Ay /g: X — X X X is a clopen map
because f is separated, hence the preimage of A(X') under the projection z;; : X — X x X
is clopen as well. Now note that 7/ '(A(X)) N P = & since otherwise we would have
P C '(A(X)), which is impossible since then ¥ would have a repeated coordinate. This
proves our claim.
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Next we aim to show that P — X is Galois; note that each permutation ¢ of the x;
induces an automorphism A,0f X” by permuting components, and if A, o ¥ € P, then
A,(P) N P # @. Consequently, 4, € Aut(P/S), and so Aut(P/S) acts transitively on a
geometric fibre of P. By lemma 3.4.12, it follows that P is Galois.

Finally, to show the universality, note that for any S-morphism ¢g: Q — X where Q
is a Galois cover of S, we can choose a preimage y in Q of the geometric point x. By theo-
rem 3.4.11, ¢ is a surjective morphism which by composing with elements of Aut(Q/.S) gives
n morphisms g;: Q — X satisfying ¢, 0y = X;. These induce a morphism Q — X", and we
see that the image lies wholly in P since y — x. Thus g factors through P, as claimed. [

3.5 The étale fundamental group

In algebraic topology and homotopy theory, we are interested in studying the homotopy
groups of a given topological space. While we have a natural definition of 7y(X) for any
scheme X as the set of irreducible components, we quickly run into trouble when trying
to define the first fundamental group 71 (X, x). This was one of several problems occupying
Alexander Grothendieck in the mid-1950’s, as he himself writes in a letter to Jean-Pierre Serre:

»

“Obviously, I am looking for an algebraic definition of the fundamental group...” ([GCo4],
p- 55)-

Definition 3.5.1. Let 5: Spec{) — S be a geometric point, and let the fibre functor
Fib;: FEt/S — Set be the composition of the base change functor X — X x, Spec ()
and the forgetful functor Sch — Set sending a scheme to its underlying set.

Given a functor F: C — C/, let Aut(F) be the automorphism group of F, namely the
group of invertible natural transformations / — F under composition. Explicitly, each
¢ € Aut(F) consists of an automorphism ¢¢ of C for each C € C, and if C is set-valued,
we have a natural action of Aut(F) on each object C by ¢ - ¢ = ¢¢(c) forc € C.

Definition 3.5.2. Given ascheme §and a geometric points: Spec {2 — 5, the étale funda-

mental group with basepoint 5, 71 (S, 5), is the automorphism group of the fibre functor
Fib; on FEt/S.

Analogously to how the topological fundamental group acts on the covers of a topolog-
ical space via deck transformations, we have the following:

Theorem 3.5.3 (Grothendieck). Let S be a connected scheme and’s: Spec () — S a geometric
point.

(i) Thegroupm (S,5) is profinite with a continuous action on Fiby(X) forevery X € FEt/S;

(ii) The functor Fib; induces an equivalence of categories between FEt /S and the category of
finite sets with a continuous left 1 (S, 5)-action, where connected covers correspond to sets
with a transitive action of 7, (S, 5), and Galois covers to finite quotients of w1 (S, 3).

Example 3.5.4. From the picture in example 2.1.6, one might anticipate that 7 (Spec Z) =
0. Using Minkowski theory, one can prove the following:

Theorem 3.5.5. There are no unramified field extensions of Q.
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See for example [NS13], Thm. 2.2.18. for a proof. To apply this, we will state — but unfor-
tunately cannot prove, see [Leno8], cor. 6.17 — a key result on the covering theory of normal
integral schemes like Z:

Theorem 3.5.6. Let X be a normal integral scheme with function field k, fix an algebraic
closure k of k, and let U |k be the maximal unramified separable extension contained in k.
Then m (X,5) = Gal(U /k).

Now, by Minkowski’s theorem the maximal unramified extension is simply @, which

we recall is also the function field of Z. Therefore, 71(Z, 5) = 0 for any geometric points.

Finite étale algebras

To see how this relates to classical Galois theory, let us first consider its reformulation due to
Grothendieck. The main reference is [Szao9], chapter 1.

Definition 3.5.7. A finite-dimensional £-algebra 4 is étale over £if it is isomorphic to a finite
direct sum of separable extensions of k. If all the separable extensions have finite degree over
k, then A is said to be a finite étale algebra.

Example 3.5.8. Any separable extension of & can be viewed as a finite étale algebra.
Example 3.5.9. The spectrum of a finite étale algebra 4 over a field £ is a finite étale k-scheme.

Definition 3.s5.10. Fix aseparable closure &, of k. The group Gal(k) = Gal(k,/k) consisting
of automorphisms of &, fixing k is called the absolute Galois group of &.

In general, this is a very mystical object, but we can prove the following theorem:

Theorem 3.5.1x (Grothendieck’s reformulation of the Galois correspondence). Let k be a
freld with a separable closure k,. Then the correspondence

{Finite étale k-algebras} <> {Left Gal(k,/k)-sets}
A Hom/e(A, k;)

is an anti-equivalence of categories between the category of finite étale k-algebras and the cate-

gory of Gal(k,/k)-sets.

To see how this ties in with classical Galois theory, we need the following lemma, which

is easily checked:

Lemma 3.5.12. Let G be a group. Then there is a one-to-one correspondence between subgroups
of G and guotients of G as a G-set, given by H — G /H.

Under this correspondence, we see that Grothendieck’s reformulation reduces to:

Corollary 3.5.13 (The classical Galois correspondence). Ler Gal(k) be the absolute Galois
group of k. Then there is a one-to-one correspondence

{finite separable extensions of k} < {open subgroups of Gal(k)},

where a subfield K corresponds to the subgroup of automorphisms which fix K.
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Of course, we can also look at a fixed (Galois) subfield and consider its subextensions
with corresponding subgroups of the Galois group. For a direct proof, see for example
[Nag77], Chapter 7. We are content to show how it follows from Grothendieck’s 7, -theorem.

Proof of theorem 3.5.11. In theorem 3.5.3, take S = Spec , and recall from example 3.2.9 ,
since the map X — § is surjective, any finite étale scheme is the spectrum of some finite
étale k-algebra. In this case a geometric point Spec {2 — § corresponds to a field extension
€1/, and the fibre functor sends Spec A4 to the underlying set of Spec 4 ®; (2, by definition of
the fibre product. In the special case where 4 = L is some finite separable extension of £, we
claim that this set bijectively corresponds to the set Homy (Z, €2). Recall from Galois theory
that a finite separable extension of degree 7 has exactly 7 distinct £-algebra morphisms into
an algebraic closure {2 (eg. [Szao9], Lemma1.1.6). Butsince L breaks into linear factors when
tensored with €2, Spec L ® 2 = II”_, €2, whose spectrum has precisely # points. The image
of these morphisms lie in £, so we obtain that Fib;(X) = Homy (L, &), and so 71 (S, s) =
Gal(k). [

Representable and pro-representable functors

Recall that a functor F: C — Set is representable if there exists some object C € C such
that F is naturally isomorphic to Hom(C, —).

From the proof of theorem 3.5.11 one might suspect that Fib; is representable for § =
Spec k since we can identify Fib; with the functor X' +— Hom(Spec ,, X'). However, Spec &,
is not finite étale over Spec k. On the other hand, it 7s represented by something that looks
like a limit of elements of FEt/S, which inspires the following definition:

Definition 3.5.14. Let Cbeacategory,and ': C — Setafunctor. Then F'is pro-representable
if there exists an inverse system (C), $,) e such that

F(X) = limy Hom(C, X).
IS

Example 3.5.15. Every representable functor is evidently pro-representable.

Example 3.5.16. Consider forgetful functor F': FinGrp — Set sending a finite group to
its underlying set. This is not representable since for any finite group G we can find some
finite A such that Hom(G, H) = 0; taking any A with order coprime to that of G suffices.
However, one can show that G = Hom(Z G) as sets, where Z is the profinite comple-
tion of the integers lim Z /mZ where the limit system is given by the natural projection map
Z/mZ — Z/nZ whenever n|m. This is an example of a pro-representable functor which is
not representable.

Theorem 3.5.x7. Fix a scheme S and a geometric points: Spec§) — S. Then the functor
Fib;: FEt/S — Set is pro-representable.

Proof. Define the inverse system A in FEt/S by taking objects to be Galois covers P, — S,
with P, < Py if there existsa morphism P — P,. Note that this forms a directed set because
forany P,, Py € A, we can apply theorem 3.4.13 to a connected component Z of P, X s P to
obtaina P, and maps P, —+ Z — P,and P, — Z — Pj.

However, this morphism is generally not unique, and we require unique arrows to form
adirected system. To remedy this, consider the additional data of an arbitrary p, € Fib;(P,)
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for every 2. Then by corollary 3.4.4 there exists a unique S-automorphism A of P such that
¢ o A sends pg to p,. We can now define ¢,5 := ¢ o A, and by construction, this is the unique
map Py — P, such that Fib;(¢,s(ps)) = pa.

As in the classical case, we have for each X € FEt/S, P, € A, a map Hom(P, X) —
Fib;(X) given by ¢ +— Fib;(¢)(p,). This respects the inverse system in the sense that a map
$up: Py — P, induces a map Hom(Pp, X) — Hom(£,, X) by precomposition. Therefore
we obtain a functorial map

lig Hom(P,, X) — Fiby(X). (3.7)
PeA

We aim to construct an inverse to this map. Without loss of generality, we can assume that
X is connected; recall from theorem 3.4.13 that we can choose a Galois closure 7: P — X.
Note that P = P, for some a, so for any X € Fib;(XX) there exists a unique S-automorphism
A such that Fibs(7 0 1) : p, + . The map sending ¥ to the element corresponding to 7 o A
in the left hand side of (3.7) gives the required inverse. ]

Corollary 3.5.18. The automorphism groups Aut(P,)” form an inverse system whose limit is
isomorphic to w1 (S, 5).

Proof. We claim that every automorphism of Fib; arises from an automorphism of the in-
verse system (P, ),c A, meaning a collection of automorphisms 4, € Aut(P,/S) compatible
with the transition maps. Indeed, any automorphism of Fib; sends the collection (p,) of dis-
tinguished elements to a corresponding system (p,), and since P, are all Galois, each assign-
ment p, — p/, gives rise to an automorphism A, of P,. The 4, respect the transition maps
precisely because (p,) and (p/,) are compatible systems.

Now by theorem 3.4.11, for P, < Ppwe have natural surjections Aut(Pz/S) — Aut(P,/S).
Thus we have an inverse system (Aut(2,/S)).ca, and by the above, the automorphisms of
Fib; correspond bijectively to automorphisms of the system (2,), which are precisely the el-
ements of the inverse limit. O

Covering spaces

Theorem 3.5.19 (Generalised Riemann existence theorem). Let X be a smooth variety over
C. Then every finite finite covering space of X has the structure of a smooth variety.

Proof. Proving this islong and hard, and we point the reader to the corresponding references
in [Szaog], Thm. 5.7.4, along with Serre’s seminal ‘GAGA’ paper [Serss]. O

In light of this and theorem 3.2.12, it is reasonable to suspect that our purely algebraic
definition of 71 might contain as a special case the theory of covering spaces. That is indeed
the case.

Example 3.5.20. Recall (a special case of) the Riemann-Hurwitz formula: given a holomor-
phic map f: X — Y between Riemann surfaces, we have 2 — 2¢y = degf - (2 — 2¢x),
where gy is the genus of X.> Because of this, we know there are no non-constant holomor-
phic maps IP’(%: — Y with gy > 0, since otherwise we would have 0 < deg /- (2 — 2¢x) = 0.

3See for example [Szaog] Cor 3.6.12fF. or [Donii] section 7.2.1.
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Since any étale covering induces such a map, any such covering of IP’}C is trivial. Thus all Ga-
lois covers of P are isomorphic to P, and so in the limit we obtain 71 (P, x) = 0 for any
x € IP’(lc, which agrees with our topological intuition.

We finally prove our main result, Grothendieck’s 7 -theorem.

Proof of theorem 3.5.3. (i) Fix an inverse system (P,),ca which pro-represents Fib;. Since the
groups Autg(P,) are finite by corollary 3.4.7, 71 (S, 5) is profinite. An action of 7(S,5) on
Fib;(XX) is induced by a corresponding automorphism of the inverse system, and this left
action is continuous because if ¥ € Fib;(X) comes from Hom(2,, X) for some Galois cover
P,, then the automorphism factors through Aut(2,/S), which has the discrete topology.

(ii) Recall that proving that a functor is an equivalence of categories is tantamount to
showing that it is essentially surjective, meaning that any object in the codomain is the im-
age of some element of the domain, and that it is fully faithful, that the functor induces a
bijection of corresponding Hom-sets.

Let X be a finite continuous 71 (S, 5)-set. By considering each orbit separately, we may
assume that the group action is transitive. Fix a pointx € 3, and note that by lemma A 3.7,
Stab, is an open subgroup of 7 (S, 5). Let 7, : 71(S,5) — Aut(P,/S)°P be the natural pro-
jection maps, and note that (N, = ker,),ea form a basis of open neighbourhoods of 1
in 71(S,5). Then Stab, contains some N,, and we can consider the image H of Stab, in
Aut(P,/S)°. By lemma 3.4.9, we obtain an action of H°P on P,, and define X to be the
quotient set. Then X = Fib;(X), so Fib; is essentially surjective.

Finally, we prove fully faithfulness. Fix finite étale S-schemes X and Y, and ®: Fib;(X) —
Fib;(Y) be a7 (S, 5)-equivariant map. Up to considering orbits separately, this is determined
by the action at some x € Fib;(X). Since @ is 7 (S, 5)-equivariant, we have a natural in-
clusion Stabg(,) C Stab, C 71(X,5), and by theorem 3.4.11 these determine a unique map
X — Y — S. Thus we have a bijection Homgg (X, ¥) — Hom(Fib; X, Fib; Y), as re-
quired. ]

Proposition 3.5.21. Let S be a connected scheme. Given geometric pointss: Spec ) — S and
52 Spec QY — S, there exists a natural isomorphism of functors Fib; = Fiby.

Proof. From the proof above, it is clear that the inverse systems have the same objects, but
the morphisms might differ. So, let (P, ¢4s) and (2., ¥,z) be inverse systems defining Fib;
and Fiby, respectively. Associated with (P,, ¢,5) we have distinguished points p, € Fibs(2,).
Fix A; € Aut(Ps/S). Now define 4, to be the unique isomorphism sending p, to pl, ==
Fibj(gba[g)(pﬂ). By corollary 3.4.4 applied to 2 = p,, fi = ¥4 0 Agand fo = 4, 0 ¢,5 we have

a commutative diagram
P p,
l%/z l%ﬁ
p,—p,

and defining maps p,s: Aut(Pz/S) — Aut(P,/S) by As — A, we obtain an inverse system
(Aut(P,/S), pas) of non-empty finite sets. Itis straightforward to verify that the inverse limit
of such a system has a non-empty limit, so in particular there exists an element 1 in the limit
which defines an isomorphism (2, $.5) — (Pa Vi) O

By considering the isomorphism ¢ — 17! 0 ¢ o A, we obtain the following:
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Corollary 3.5.22. IfS is connected ands: Q0 — S ands : Q' — S are geometric points, then
1 (S, }) = 1 (S, }/).
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Appendix A

Commutative Algebra

Aa  The Zariski topology

Definition A.r.x. Let R be aring. The (prime) spectrum of R is the set of prime ideals in
R, denoted by Spec R.

Example A.r.2. Let £ be a field. Then Spec £ consists of a single point, corresponding to
the unique prime ideal (0).

Example A.1r.3. For R = Z, we have that Spec Z = {(p) : pis prime} U 0.

Example A.r.4. Let £ be a field, and R = k[x]. Then every point of Spec R is uniquely
identified with a polynomial irreducible over £, as k[x] is a PID.

Example A.1s. As a special case of the previous example, consider A{. := Spec C|x]. Since
the irreducible polynomials over C are all monomials, we see that there is a correspondence
Spec Clx] <+ C U * determined by (x — 2) — 4. However, 0 is also prime, so we treat this
as corresponding with * above. Note that 0 unlike the other elements p € Spec C[x] does
not correspond to a maximal ideal.

Definition A.r.6. Let R be a ring. The set V' (f) = {p € SpecR: f € p}iscalled a
principal closed set in Spec R, and its complement, denoted by D(f) = V' (f)¢, is called a
principal open set.

We will promptly justify the name:
Proposition A.v.7. The collection of principal closed sets V (f°) generate a topology on Spec R.

Proof. In order for {D(f) : f € R} to be a basis of open sets on Spec R, we need to check
that intersection of two principal sets contains a principal open set, and that the collection
covers Spec R; the latter is evident since Spec R = D(1). By definition, D(f') N D(g) is the
set of prime ideals containing neither / nor g. But by definition of being prime, this implies

that fg & D(f) N D(g),so D(fg) C D(f) N D(g). N
Definition A.1.8. The topology so defined is called the Zariski topology on Spec R.

Proposition A.1.9. Every ring homomorphism ¢: R — S induces a map ¢: SpecS —
Spec R which is continuous with respect to the Zariski topology. Morover, this is functorial in

the sense that if R 585 dare ring morphisms, then m =gdot.
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Proof. Let us first check that ¢: SpecS — Spec R is well-defined: if p € Spec S, define
¢(p) = ¢~ (p). Suppose ab € ¢~ (p). Then ¢(ab) = ¢(a)p(b) € p,so ¢(a) or ¢(b) € p,
and so either z or bisin ¢! (p), so p*(p) is indeed a prime ideal.

To show continuity, it suffices to show that for any /* € R, there exists ¢ € .S such that
¢ 1 (D(f)) C D(g). But taking ¢ = #(F), we see that $~1(p) contains £ if and only if p
contains ¢(f) = g. Finally, the functoriality condition is easily verified. O

Corollary A.x.xo. We can regard Spec as a functor Spec : Ring — Top.

In algebraic geometry, there is an unfortunate convention of meaning “compact Haus-
dorft” when one says “compact”; the replacement for “compact” is the following:

Definition A.r.1x. A topological space is quasi-compact if every open covering has a finite
subcovering.

Proposition A.x.x2. The topological space Spec R is quasi-compact for any ring R.

Proof. Let {U,} be an open covering of Spec R where R is Noetherian, and write U, =
U; D(f5). Then D(1) = Spec R = |, D(f;),s0 1 € (f;;) ;> and by definition there exists
afinite subcollection, say fi, .. ., f,, so that 1 = firy +... + f,7,, hence {D(f;) }7_, is a finite
subcover. O

A.2 Localisation

Definition A.2.1. Let R be a commutative ring, and let § C R be a multiplicative set,
that is, a set containing 1 and is closed under multiplication. The localisation of R at S,
written (7, S _1R), is the solution to the following universal mapping problem: for any ring
T,if f: R — T maps every element of S to a unit of 7', then there exists a unique ring
homomorphism g: § ~1R — T such that the following diagram commutes.

Remark. While it’s hardly obvious from the definition, an informal description of the lo-
calisation of R at S is a ring consisting of elements of R where those in S are treated as units.
For example, if R is an integral domain, then we want the localisation of R at.§ = R . 0 to
be the field of fractions of R. The unique map g is then defined by ¢(r/5) = £(r)f(s) .

If we drop the assumption of R being an integral domain, the condition § = 4 ift 2c —

bd = 0 cannot possibly hold. For example, if R = Z/6Z and S = {1, 2, 4}, then we would

obtain % = g = % which would seem to imply that 0 = 3. This corresponds to the fact

that the map ; is not injective in general.

We ought to prove the existence of such an object:

Proposition A.2.2. The localisation of R at S exists.
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Proof. Define an equivalence relation on R X S by (71,51) ~ (r9,s2) if there existsaz € §
such that #(r1s5 — 7251) = 0,and let ST'R := R x S/ ~. Letj: R — R X S be defined by
(r1),andletg: (s) = F(r)f(s)™'. Thengoj: r — £(r),s0 (j, R X S/ ~) satisfies the

universal property. ]
Lemma A.2.3. The localisation S™' R is trivial if and only if 0 € S.

Proof. 1If0 € S, then (,5) ~ (0,1) forany (r,s) € R x S. If0 & S, then (0,1) €
R7LS. ]

Example A.2.4. Let p be a prime ideal in R, and take S = R \ p. Then S~'R is called the
localisation of R at p.

Recall that a Jocal ring is a ring with a unique maximal ideal.
Proposition A.2.s. The localisation R, is a local ring.

Proof. If I < R is not contained in p, then ;(7) is a unit for any 7 € 7, and so j(I) = R,.
Thus any ideal in R, is contained in 7 (), so this is the maximal ideal. ]

Example A.2.6. Fixf € R,andlet S = {1,£f%...}. Then S is a multiplicative set, and
Rp =S ~!R is called the localisation of R at . By Lemma A.2.3, Ry is trivial if and only if £
is nilpotent.

Example A.2.7. LetS consist of the elements of R thatare not zero-divisors. Then Q(R) :=
SR is called the total ring of fractions of R.

Lemma A.2.8. Let R be a ring, w a maximal ideal in R, and letj: R — Ry, be the localisa-
tion map. Then Ry [j(m) = R/m.

Proof. Let R — Ry, be the natural map, and by composing with the quotient map we have
a ring morphism ¢: R — Ry, /j(m). Since Im ¢ is an ideal in Ry, /j(m) and ¢ is not the
zero-map, ¢ is surjective. Now we see that m < ker ¢, which by maximality implies that
m = ker ¢. We thus have an isomorphism R, /j(m) = R/m, as required. O

Proposition A.2.9. Let D(f) C D(g) forsomef, g € R. Then thereexistsr € Randn € N
such that f* = gr.

Proof. [LEo6], Lemma 2.1.6b) ]

A.3 Topological groups

Definition A.3.1. A topological group is a group element in the category of topological
spaces. In other words, it is a topological space G along with continuous maps m: G X G —
Gandi: G — G, and a distinguished element ¢ € G, such that m(g ¢) = m(e,g) = g,

m(g i(g)) = e,and m(m(g ¢'), &) = m(g m(¢, ¢")), forallg, ¢, ¢" € G.

Of course, 7 and 7 are just multiplication and inversion, respectively, and we tend to
write g¢' = m(g ¢’) and ¢~! = 7(g). Alternatively, we can define a topological group as a
group where the underlying set has a topology, with respect to which the group operations
are continuous.
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Example A.3.2. Let G be any finite group equipped with the discrete topology. Then m

and 7 are automatically continuous, and so G can be regarded as a topological group.

Example A.3.3. Let G = C with the standard topology. Then it is easy to verify that
(%y) = x + yand x — —x are continuous, so C is also a topological group. Similarly,
we can show that C* with operations (x, y) + xy and x — 1/x is a topological group.

When considering topological groups, we can often reduce local problems to considering
neighbourhoods of the identity. More precisely, if N is a neighbourhood of g, then g‘lN is
a neighbourhood of ¢, open if and only if N is open.

Definition A.3.4. A profinite group is a topological group for which the underlying space
is compact Hausdorft and totally disconnected.

Proposition A.3.5. Let G be a Hausdor(f group. Then the following are equivalent:

(i) G isprofinite,
(ii) G iscompact and G admits a basis of neighbourhoods of the identity consisting of clopen
normal subgroups,
(iii) G is a topological inverse limit of finite discrete groups.

Proof. [Neuo8], Prop. 1.1.3. O

Definition A.3.6. Let G be a group. Then a G-set S is a set S along with a group action
G CS. A G-equivariant map is a set map f: S — ' for which g - f((s) = f(g - s) for all
g€ G sel.

The category of G-sets with morphisms given by G-equivariant maps, denoted by Setg,
is a full subcategory of Set. If a group G acts on a topological space X, we say that the action
is continuous if the associated map G X X — X is.

Lemma A.3.7. Let X be a topological space equipped with the discrete topology, and suppose a
topological group G acts continuonsly on X. Then Stab, = {g € G: gx = x forallx € X} is
an open subgroup of G.

Proof. Fixx € X,letm: G x X — X denote the multiplication map, and let7,: G —
G X X be the inclusion ¢ +— (g x). Then m o 7, is continuous, and since {x} is open,
Stab, = (m o 7,) ! (x) is open. O]
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