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1.1 Why study étale cohomology?

Fix a field 𝑘, and let 𝑓 ∈ 𝑘[𝑥0,… ,𝑥𝑛+1] be a homogeneous irreducible polynomial
with ( d𝑓

d𝑥0
,… d𝑓

d𝑥𝑛+1
) ≠ (0,… ,0). Then the zero-set of 𝑓 over 𝑘, 𝑋(𝑘), determines a

subset of ℙ𝑛+1𝑘 , and very loosely speaking, the goal of algebraic geometry is to
understand 𝑋(𝑘).

One powerful method of studying 𝑋(𝑘) is through its invariants. For exam-
ple, if 𝑘 = ℂ, then 𝑋(ℂ) ⊂ ℙ𝑛+1ℂ is naturally a complex manifold of real dimension
2𝑛, and we can define the singular cohomology groups𝐻𝑖(𝑋(ℂ);ℤ) for 𝑖 = 0,… ,2𝑛.
Then

𝐻𝑖(𝑋(ℂ);ℚ) ..= 𝐻𝑖(𝑋(ℂ);ℤ)⊗ℚ

form ℚ-vector spaces, and 𝑏𝑖 ..= dimℚ𝐻
𝑖(𝑋(ℂ);ℚ) is called the 𝑖-th Betti number

of 𝑋(ℂ). The Euler characteristic of 𝑋(ℂ) is defined to be 𝜒(𝑋) ..=∑2𝑛
𝑖=0(−1)

𝑖𝑏𝑖.

Example 1.1. If deg𝑓 = 1, then 𝑋(ℂ) ≅ ℙ𝑛ℂ, and one can compute that

𝑏𝑖 = {
1 𝑖 ≤ 2𝑛 is even,
0 otherwise,

so the Euler characteristic of 𝑋(ℂ) is 𝑛+ 1.

Example 1.2. If 𝑛 = 1 and 𝑑 ..= deg𝑓 ≥ 2, then the Riemann surface 𝑋(ℂ) has
genus 𝑔 = (𝑑−1)(𝑑−2)

2 , meaning 𝑋(ℂ) is homeomorphic to a donut with 𝑔 holes or
a sphere with 𝑔 handles. One can show that (𝑏0, 𝑏1, 𝑏2) = (1,2𝑔,1), so 𝜒(𝑋) = 2−2𝑔.
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For example, if 𝑑 = 3 then 𝑋 is an elliptic curve, with genus 𝑔 = 1 and Euler
characteristic 𝜒(𝑋) = 0.

These examples show that we can use topology to distinguish between differ-
ent 𝑋(𝑘) when 𝑘 = ℂ. However, if 𝑘 is a finite field there are no such topological
invariants. More precisely, if 𝑘 = 𝔽𝑞 where 𝑞 is a prime power, then 𝑋(𝑘) is a
finite set, and naively the only reasonable invariant we can define is the number
of points. Let 𝑁𝑟(𝑋) ..= #𝑋(𝔽𝑞𝑟) be the number of points of 𝑋 defined over 𝔽𝑞𝑟 .

Example 1.3. If 𝑋 = ℙ𝑛𝔽𝑞 , then it is straightforward (exercise!) to show that

𝑁𝑟(ℙ
𝑛
𝔽𝑞
) =

(𝑞𝑟)𝑛+1 − 1
𝑞𝑟 − 1 = (𝑞𝑟)𝑛 + (𝑞𝑟)𝑛−1…+𝑞𝑟 + 1 (1.1)

Example 1.4. Suppose 𝑋 is an elliptic curve over 𝔽𝑞𝑟 . Then Hasse’s theorem gives
a good estimate of each 𝑁𝑟:

|𝑁𝑟(𝑋) − 𝑞
𝑟 − 1| ≤ 2𝑞𝑟/2. (1.2)

Figure 1: The value of #𝑋(𝔽𝑝) − 𝑝−1 as 𝑝 ranges between 1 and 1000, where 𝑋 is
the elliptic curve 𝑦2 = 𝑥3 − 2619𝑥 + 54486, with Hasse’s bound ±2√𝑝 in purple.

Weil found the following generalisation of Hasse’s result:

Theorem 1.5 (Weil). Let 𝑋 be a non-singular projective curve of genus 𝑔 defined
over 𝔽𝑞. Then there exist algebraic integers 𝑎1,… ,𝑎2𝑔 such that:

(i) For every 𝑟 ≥ 1,
𝑁𝑟(𝑋) = 𝑞

𝑟/2 + 2− (𝑎𝑟1 +…+ 𝑎𝑟2𝑔), (1.3)

(ii) the numbers {𝑎𝑖} are 𝑞-Weil numbers of weight 1, that is, |𝑎𝑖| = 𝑞1/2 for
1 ≤ 𝑖 ≤ 2𝑔.
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One easily checks that this implies the Hasse-Weil theorem. Note that the
property of being a 𝑞-Weil number is quite restrictive; 𝑎𝑖 = 3±2𝑖√2 is an example
of such a number, when 𝑞 = 17.

Taking 𝑘 = ℚ, let’s assume furthermore that 𝑓 ∈ ℤ[𝑥0,… ,𝑥𝑛+1] and is primitive,
and suppose the reductionmod 𝑞, 𝑓 defines an irreducible and smooth𝑋(𝔽𝑞). For
convenience, we will denote such a model of 𝑋 by 𝒳. Then we have an informal
diagram

𝒳/ℤ

𝒳(𝔽𝑞)/𝔽𝑞 𝒳(ℂ)/ℂ?

(1.4)

It is natural to ask whether there is any interaction between the structures of
𝑋 over 𝔽𝑞 and ℂ, as indicated by the arrow marked “?”. For example, we might
hope that there is a connection between the invariants 𝑁𝑟 and 𝑏𝑖 or 𝜒. Note
that the structure on the left is fundamentally arithmetic, being defined mod 𝑞,
whereas the right hand side is topological.

1.2 The Weil conjectures

A satisfactory answer to this question was conjectured by Weil, and is one of the
most stunning applications of étale cohomology. First we need to describe the
setup:

Definition 1.6. Let 𝑋/𝔽𝑞 be as in the previous section. The zeta function of 𝑋 is
the formal power series 𝜁(𝑋,𝑇) ∈ ℚ[[𝑇]] defined by

𝜁(𝑋,𝑇) = exp(∑
𝑟≥1

𝑁𝑟(𝑋)
𝑟 𝑇𝑟), (1.5)

where exp(𝑥) = ∑𝑛≥0 𝑥
𝑛/𝑛! is the formal exponential series.

Thismight look like an arbitrary definition at first, but note that 𝑑
𝑑𝛵 log𝜁(𝑋,𝑇) =

∑𝑁𝑟+1𝑇
𝑟, which is the generating function of 𝑁𝑟(𝑋).

Example 1.7. When 𝑋 = ℙ𝑛𝔽𝑞 , it is a fun exercise to show that

𝜁(ℙ𝑛,𝑇) = 1
(1 −𝑇)(1 − 𝑞𝑇)…(1 − 𝑞𝑛𝑇), (1.6)

(Hint: use eq. (1.1) and expand the resulting exponentials.)
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Example 1.8. With a similar argument using Weil’s theorem 1.5, one can check
that if 𝑋 is a curve of genus 𝑔, then

𝜁(𝑋,𝑇) =
(1 − 𝑎1𝑇)…(1 − 𝑎2𝑔𝑇)

(1 −𝑇)(1 − 𝑞𝑇) . (1.7)

In both of the examples, we see that while 𝜁(𝑋,𝑇) is originally defined as
a power series, it is actually a rational function in 𝑇 defined over some finite
extension of ℚ. We also see that the degree of the numerator is the sum of the
odd Betti numbers, while the denominator has degree the sum of the even.

Theorem 1.9 (Weil conjectures). Let𝑋/𝔽𝑞 be a smooth projective variety of dimen-
sion 𝑛.

(I) 𝜁(𝑋,𝑇) is a rational function; in fact

𝜁(𝑋,𝑇) =
𝑄1𝑄3…𝑄2𝑛−1
𝑄0𝑄2…𝑄2𝑛

, (1.8)

where 𝑄𝑖 ∈ ℤ[𝑇] are given by 𝑄𝑖 ..= ∏
𝑏𝑖
𝑗=1(1 − 𝑎𝑖𝑗𝑇) for some 𝑏𝑖 ∈ ℕ and alge-

braic integers 𝑎𝑖𝑗.
(II) 𝜁(𝑋,𝑇) satisfies the functional equation 𝜁(𝑋,1/𝑞𝑛𝑇) = ±𝑞𝜒𝑛/2𝑇𝜒𝜁(𝑋,𝑇) and

𝜒 ..=∑(−1)𝑖𝑏𝑖.
(III) The numbers 𝑎𝑖𝑗 are 𝑞-Weil numbers of weight 𝑖, meaning |𝑎𝑖𝑗| = 𝑞𝑖/2 for all

1 ≤ 𝑖,𝑗 ≤ 2𝑛.
(IV) If𝑋 has a “nice” model𝒳 defined over ℤ, then 𝑏𝑖 are precisely the Betti numbers

of 𝒳(ℂ).

(III) is referred to as the “Riemann hypothesis” for 𝜁(𝑋,𝑇), since it tells pre-
cisely where its zeroes and poles lie. Historically, the first progress on the Weil
conjectures was made by Dwork who proved (I) using 𝑝-adic analytic methods.
Another proof of this came with the full proof of the Weil conjectures through
the work of Grothendieck and Artin, and Deligne.

While it is astonishing that information about the topology of 𝒳(ℂ) deter-
mines the number of points when reducing modulo a prime, it is also possible to
obtain information the other way, through so-called “point counting”. In a sense,
this is a local-to-global principle; the “global” information about the topology of
𝒳(ℂ) is determined by “local data”.

Exercise. Let 𝐺(𝑙,𝑑) denote the complex Grassmannian (definition). Using theo-
rem 1.9, show that 𝑏𝑖(𝐺(𝑙,𝑑)) equals the number of paths on a grid from (0,0) to
(𝑙,𝑑 − 𝑙) with area 𝑖 (where we can only move right or up).
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(0,0)

(𝑙,𝑑 − 𝑙)

Of course, these Betti numbers were known before the Weil conjectures were
established. However, for more complicated varieties the point-counting method
is sometimes one of the easiest ways of determining the topological structure.

1.3 You could have invented étale cohomology1

In the previous section we saw that several topological invariants of varieties over
ℂ defined in terms of cohomology were related to invariants over 𝔽𝑞. Weil sug-
gested that this could be possible using a “good” cohomology theory for varieties
over 𝔽𝑞.

Fix a topological space 𝑇 and an abelian group𝐴. We want to find a definition
of cohomology groups 𝐻•(𝑇,𝐴) which gives a meaningful answer in the context
of algebraic geometry.

Example 1.10 (Singular cohomology). Choosing 𝐻•(𝑇,𝐴) to be singular coho-
mology doesn’t work in general, because there are too few continuous maps in
the Zariski topology.

Example 1.11 (Sheaf cohomology). Let 𝑋 be an irreducible scheme and 𝐴 the
locally constant sheaf 𝑋 ⊃ 𝑈↦ 𝐴. Then for any pair of open sets 𝑈,𝑉 ⊂ 𝑋 with
𝑈 ⊂ 𝑉 we have 𝐴(𝑉) ≅ 𝐴 ∼→𝐴(𝑈), and so in particular 𝐴 is flabby, which implies
that the sheaf cohomology groups 𝐻𝑖(𝑋,𝐴) vanish for 𝑖 > 0 (see [Har77, Ex. III
2.3]).

To remedy this, we first recall some sheaf theory: given a topological space 𝑇,
letOp/𝑇 be the category where the objects are open subsets of 𝑇, andmorphisms
are given by inclusions 𝑈 ↪ 𝑉 whenever 𝑈 ⊂ 𝑉 for 𝑈,𝑉 ∈ Op/𝑇. A presheaf
is a contravariant functor ℱ∶ Op/𝑇 → Ab, where Ab denotes the category of
abelian groups. A presheaf ℱ is a sheaf if it satisfies the sheaf condition: for any
𝑈 ∈ Op/𝑇 and any covering ⋃𝑖𝑈𝑖 of 𝑈 with 𝑈𝑖 ∈ Op/𝑇, we have an equaliser
diagram:

ℱ(𝑈)→∏
𝑖
ℱ(𝑈𝑖) ⇉∏

𝑖,𝑗
ℱ(𝑈𝑖 ∩𝑈𝑗). (1.9)

Since 𝑈𝑖 ↪ 𝑈, we have maps 𝜌𝑖 ∶ ℱ(𝑈) → ℱ(𝑈𝑖) which assemble to the first
map of the diagram: 𝑢 ↦ (𝜌𝑖(𝑢))𝑖. The double arrows are (𝑢𝑖)𝑖 ↦ (𝜌𝑖,𝑗(𝑢𝑖)) and

1The title is a reference to Timothy Chow’s paper “You could have invented spectral se-
quences”, see here [Cho06].
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(𝑢𝑖)𝑖 ↦ (𝜌𝑖,𝑗(𝑢𝑗)), respectively, where 𝜌𝑖,𝑗 ∶ 𝑈𝑖 → 𝑈𝑖 ∩ 𝑈𝑗. Equation (1.9) being
an equaliser diagram in this case simply means that ℱ(𝑈) is the kernel of the
difference of the two maps on the right.

The crucial idea is that to define sheaves, we actually don’t need the full power
of a topology, but rather just the notion of coverings. Regarding 𝑈𝑖 ∩ 𝑈𝑗 as the
categorical fibre product 𝑈𝑖 ×𝛵 𝑈𝑗, we can replace Op/𝑇 with the category of
whose objects are topological spaces 𝑈 equipped with a local homeomorphism
𝑈→𝑇, and where morphisms are continuous maps which factor through these.
Let us denote this by Ét/𝑇. As before, a sheaf is any presheaf that satisfies the
equaliser condition, eq. (1.9).

Proposition 1.12. There is an equivalence of categories Sh(Op/𝑇) ∼−→ Sh(Ét/𝑇).

Proof.

We can summarise this by saying that the main conceptual leap required to
define étale cohomology was to replace open subsets and inclusions by coverings
and local homeomorphisms.

Of course, it remains to find a good notion of a “local homeomorphism”
between schemes.

Attempt 1:

Let 𝑓∶ 𝑋→ 𝑌 be a morphism of schemes, and suppose wemimic the definition of
a local homeomorphism and require that for any 𝑥 ∈ 𝑋we can find a Zariski-open
neighbourhood 𝑈 such that 𝑓|𝑈 ∶ 𝑈 → 𝑓(𝑈) is an isomorphism onto an open
subscheme of 𝑌. This is too rigid; by analogy with covering spaces of Riemann
surfaces we would like the map 𝔾𝑚 →𝔾𝑚 defined by 𝑡 ↦ 𝑡𝑛 (this corresponds to
the map 𝑧 ↦ 𝑧𝑛 from ℂ× to itself) to be a “covering map” in a suitable sense.

However, an open set in 𝔾𝑚 is given by the complement of finitely many
closed points, and such an open set upstairs does not look like an open downstairs.

This example also rules out the requirement that 𝑓 should be an isomorphism
at the stalks. Indeed, looking at the stalk at 1, we easily see that the induced map
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𝑘[𝑡, 𝑡−1](𝑡−1) → 𝑘[𝑡, 𝑡−1](𝑡−1) given by 𝑡 ↦ 𝑡𝑛 is not surjective. The slogan here is
that “stalks know too much about the global structure”. However, since we are
looking for a local condition, it makes sense to look for something defined in
terms of stalks.

Attempt 2:

Suppose that for all closed points 𝑥 ∈ 𝑋, we require the induced maps on com-
pletions 𝒪𝑌,𝑓(𝑥) →𝒪𝛸,𝑥 to be isomorphisms. One motivation behind this that the
completion 𝒪𝛸,𝑥 “knows less than 𝒪𝛸,𝑥” in some sense.

Exercise. Let 𝑘 be an algebraically closed field, and let 𝑓 ∶ 𝑋 → 𝑌 be a morphism
of smooth 𝑘-varieties (smooth separated integral finite-type 𝑘-schemes). Then the
following are equivalent:

(i) For all closed points 𝑥 in 𝑋, the map of local rings 𝒪𝑌,𝑓(𝑥) → 𝒪𝛸,𝑥 induces
an isomorphism 𝒪𝑌,𝑓(𝑥) →𝒪𝛸,𝑥 on the completions.

(ii) For all closed points 𝑥 in 𝑋, the morphism 𝑇𝑓 ∶ 𝑇𝑥𝑋→ 𝑇𝑓(𝑥)𝑌 on tangent
spaces is an isomorphism.

(iii) If 𝑘 = ℂ, 𝑓 ∶ 𝑋(ℂ) → 𝑌(ℂ) is a local isomorphism of smooth manifolds.

This gives rise to the notion of a morphism being formally étale, first coined
by Grothendieck. The roadmap for developing étale cohomology is now:

(i) Develop a good theory of étale morphisms.
(ii) Develop sheaf theory in terms of covers, not opens.
(iii) Apply the two former to compute things.

Time permitting, we can look at other interesting applications.
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