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Divisors
Let X be a regular, integral and quasi-compact scheme with function
field K . Let g : Spec(K )→ X be the inclusion of the generic point.
Denoting by R(U) the rational functions on some U → X étale, we have
Γ(U, g∗Gm,K ) = Γ(U ×X spec(K ),Gm) = R(U)∗. Hence the maps
Γ(U,O∗U)→ R(U)∗ induce an injection of sheaves Gm,X → g∗Gm,K .

Definition
The sheaf of Cartier divisors, DivX , is defined as the cokernel of the
injection Gm,X → g∗Gm,K .

Let X1 be the set of points on X of codimension 1, so all local rings OX ,x

are discrete valuation rings. For x ∈ X1, denote the inclusion ix : x → X .

Definition
The sheaf of Weil divisors, DX , is defined as

⊕
x∈X1

ix∗Z. Here Z denotes
the constant sheaf.

Proposition
The sheaves DX and DivX are isomorphic by sending a rational function
to its divisor (ordx(f ))x .
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Computing H1(Xet,Gm) (1/3)

We thus have an exact sequence

0→ Gm,X → g∗Gm,K → DX → 0.

This gives rise to a long exact sequence, so to compute H r (Xet,Gm,X ) we
must compute H r (Xet,DX ) and H r (Xet, g∗Gm,K ). The Leray spectral
sequence for ix : x → X and the constant sheaf Z is

Hp(Xet,R
q ix∗Z) =⇒ Hp+q(x ,Z).

I We know that H0(x ,Z) = Γ(x ,Z) = Z;

I Further; H1(x ,Z) = Homcts(Gx ,Z) = 0, since continuous
homomorphisms factor through a finite subgroup of
Gx = Gal(k(x)sep/k(x)), but Z has no finite subgroups;

I Lastly, H2(x ,Z) = Homcts(Gx ,Q/Z) by the exact sequence
0→ Z→ Q→ Q/Z→ 0 and the fact that H r (Gx ,Q) = 0 for all
r > 0 as Q is an injective abelian group.
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Computing H1(Xet,Gm) (2/3)

Hp(Xet,R
q ix∗Z) =⇒ Hp+q(x ,Z)

By the same reasoning we can show that R1ix∗Z = 0. So from the
spectral sequence:

I The bottom left entry remains unchanged, so H0(Xet, ix∗Z) = Z;

I The degree 1 part already has a zero, and must become zero:
H1(Xet, ix∗Z) = 0;

I From the filtration in degree 2 we get an inclusion
H2(Xet, ix∗Z) ↪−→ Homcts(Gx ,Q/Z).

Hence by summing over all x ∈ X1, we obtain that

I H0(Xet,DX ) =
⊕

x∈X1
Z

I H1(Xet,DX ) = 0;

I H2(Xet,DX ) ↪−→
⊕

x∈X1
Homcts(Gx ,Q/Z).

We will do a similar trick to compute H r (Xet, g∗Gm,K ).
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Computing H1(Xet,Gm) (3/3)
Now we have a Leray spectral sequence of the form

Hp(Xet,R
qg∗Gm,K ) =⇒ Hp+q(spec(K ),Gm).

Recall that the stalk of R1g∗Gm,K at a geometric point x̄ of X equals
H1(Kx̄ ,Gm) = 0, where Kx̄ = Frac(OX ,x̄) and we used Hilbert 90. Since
all stalks are zero, it follows that R1g∗Gm,K = 0. Using the same
reasoning as before, we find
I H0(Xet, g∗Gm,K ) = H0(K ,Gm,K ) = K∗;
I H1(Xet, g∗Gm,K ) = 0;
I H2(Xet, g∗Gm,K ) ↪−→ H2(K ,Gm,K ).

Then the long exact sequence becomes

0→ Γ(Xet,O∗X )→ K∗ →
⊕
x∈X1

Z→ H1(Xet,Gm)→ 0

0→ H2(Xet,Gm)→ H2(K ,Gm,K )

We conclude that

H1(Xet,Gm) = divisors/principal divisors = Pic(X ).
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Stronger results (1/2)

Suppose X has dimension 1 and that for all x ∈ X1, the field k(x) is
perfect. Then Kx̄ is the fraction field of a Henselian DVR with
algebraically closed residue field. Group cohomology shows that for such
fields, H2(Kx̄ ,Gm) = 0. These are the stalks of R2g∗Gm,K , and so this
sheaf vanishes.

Since X has dimension 1, the points x ∈ X1 are closed, and so ix∗ is
exact, and so Rq ix∗ = 0 for all q > 0. So as before, from the spectral
sequences we get isomorphisms Hq(Xet, ix∗Z) = Hq(x ,Z) for all q > 0
and H2(Xet, g∗Gm,K ) = H2(spec(K ),Gm).
We thus obtain the exact sequence

0→ H2(Xet,Gm)→ H2(K ,Gm,K )→
⊕
x∈X1

Homcts(Gx ,Q/Z)→

→ H3(Xet,Gm)→ H3(K ,Gm,K )

Note that we cannot yet extend the exact sequence further.
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Stronger results (2/2)

If X is in addition excellent (e.g. char(K ) = 0) then one can show that
Kx̄ is a C1-field, i.e. quasi-algebraically closed, i.e. every non-constant
homogeneous polynomial has a non-trivial zero provided the number of
its variables is greater than its degree.

For such fields, H r (Kx̄ ,Gm) = 0
for all r > 0, so Rqg∗Gm = 0 for all q > 0. Hence we get an infinite
exact sequence of the form

→ H r (Xet,Gm)→ H r (K ,Gm,K )→
⊕
x∈X1

H r−1(k(x),Q/Z)→ H r+1(Xet,Gm)→

If X is a smooth algebraic curve over an algebraically closed field k, then
K must be C1, and so H r (K ,Gm) = 0 for all r > 0. Since k is
algebraically closed, we also have H r (k(x),Q/Z) = 0 for all r ≥ 1. Hence
the above exact sequence shows that for all r > 1,

H r (X ,Gm) = 0.
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Intermezzo on changing sites (1/2)

Proposition
Let C/X be a subcategory of C ′/X and let f : (C ′/X )E → (C/X )E be
the morphism of sites defined by the inclusion functor C → C ′. Then

H i (X , f∗F
′)→ H i (X ,F ′) and H i (X ,F )→ H i (X , f ∗F )

are isomorphisms for all i ≥ 0 and all sheaves F ′ on (C ′/X )E and F on
(C/X )E . Thus, cohomology on the small and big E -sites is the same.

Proposition
Now suppose that E1 ⊃ E2 are nice classes of morphisms and that
C1 ⊃ C2 are categories. Let f : (C1/X )E1 → (C2/X )E2 be as above.
Suppose that for every covering in the E1-topology there exists a covering
in the E2-topology that refines it. Then H i (XE2 , f∗F ) ∼= H i (XE1 ,F ) for
any sheaf F on XE1 .

We can use this to restrict from all étale morphisms to the sites (ét), and
even to the class of all separated étale morphisms or affine étale
morphisms. Also, we can restrict from all smooth morphisms to (ét), etc.
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Intermezzo on changing sites (2/2)

Proposition
Suppose (C/X )E is a site where every covering has a finite subcovering.
Let Ef be the class of finite coverings in E . Then the categories of
(pre)sheaves on XEf

and XE are canonically equivalent, so also
cohomology agrees. In particular, Xet,f gives the same cohomology as the
small and big étale sites.

For a comparision between flat cohomology and Zariski cohomology for
quasi-coherent modules, see Milne Prop. 3.7.

Theorem
If G is a smooth, quasi-projective, commutative group scheme over X ,
then the canonical maps H i (Xet,G )→ H i (Xfl,G ) are isomorphisms.

The proof is long and technical, see Milne Thm. 3.9. We will instead
focus on étale cohomology versus complex cohomology.
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Étale versus complex (1/5)

Let H i (X (C),−) denote the classical complex cohomology theory.

Theorem
Let X be a smooth scheme over C. Then for any finite abelian group M,
we have that H i (X (C),M) ∼= H i (Xet,M) for all i ≥ 0.

For i = 0, this just says that X and X (C) have the same number of
connected components. We reason as follows. Suppose X is a connected
non-singular curve. By adding a finite number of points, we may assume
that X is projective. Suppose X is disconnected in the complex topology,
say X = X1 t X2.
By using Riemann-Roch, we can find a non-constant rational function f
on X with poles only on X1. But then f is holomorphic on the compact
space X2, hence locally constant. But then for some a ∈ C, the complex
function f (z)− a has infinitely many zeroes. But then f (z) = a
everywhere, a contradiction. The general case can be deduced from this
by induction on the dimension. (Shafarevich, Basic Algebraic Geometry,
VII.2).
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Étale versus complex (2/5)
For i = 1, one can show that both H1-groups are in bijection with Galois
coverings with automorphism group M of X (C) and X respectively, see
Milne Lecture Notes Prop 11.1 and Example 11.3.

Riemann Existence Theorem
Let X be locally of finite type over C and let X an be the associated
complex analytic space. Then mapping Y → Y an defines an equivalence
of categories of finite étale coverings Y /X and similar coverings on X an.

I The functor Y → Y an defines an equivalence between the category
of finite coverings of a projective nonsingular algebraic variety X to
the category of finite coverings over X an. The proof is by observing
that to give a finite covering of X is to give a coherent OX -module
with an OX -algebra structure on both sides.

I The same functor on finite étale coverings is fully faithful. Namely,
to give a map Y → Y ′ over X is to give a section Y → Y ×X Y ′.
For étale morphisms, this is to give an isomorphism Γ→ X for some
connected component Γ of Y ×X Y ′. We know these agree.

I For essentially surjective, reduce to the affine case and resolve all
singularities. Then one can show it by hand (SGA 1, XII 5.3).
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Étale versus complex (3/5)
We may thus assume that i > 1 from now on. Let Xcx be the site on X an

with morphisms all local isomorphisms of complex analytic spaces. Since
for any open U, the map U ↪−→ X (C) is a local isomorphism, we obtain a
morphism of sites Xcx → X (C). Since every complex étale cover can be
refined to an open cover (inverse function theorem), as in the intermezzo,
we find that H i (Xcx,M) ∼= H i (X (C),M).

Since for U → X étale, the map Uan → X an is a local isomorphism, we
also obtain a morphism of sites f : Xcx → Xet. There is a Leray spectral
sequence

H i (Xet,R
j f∗F ) =⇒ H i+j(Xcx,F ).

We will show that R j f∗F = 0 for all j > 0. Then the spectral sequence
immediately degenerates and gives us our desired result. Recall R j f∗F is
the sheafification of U 7→ H j(Ucx,F ). We prove the following.

Lemma
Let U be a connected nonsingular variety and F a locally constant sheaf
on Ucx with finite stalks. Then for any t ∈ H j(Ucx,F ) where j > 0, there
exists an étale covering Ui → U such that t vanishes in each H j(Ui,cx,F ).
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Étale versus complex (4/5)

Definition
An elementary fibration is a regular map of varieties f : U → S that fits
into a commutative diagram as below, where

I j is an open immersion with image dense in every fibre of h, and
Y = i(Z ) t j(U);

I h is smooth and projective with geometrically irreducible fibers of
dimension 1;

I g is finite and étale with non-empty fibers.

U Y Z

S

j

f
h

g

i

Lemma
Let X be a non-singular variety over k = k̄ . For any x ∈ X closed, there
is an elementary fibration U → S with U an open neighbourhood of x
and S non-singular.

Milne is very vague about this, so we will just assume it.
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Étale versus complex (5/5)
Lemma
Let U be a connected nonsingular variety and F a locally constant sheaf
on Ucx with finite stalks. Then for any t ∈ H j(Ucx,F ) where j > 0, there
exists an étale covering Ui → U such that t vanishes in each H j(Ui,cx,F ).

Proof: Because the statement is local for the étale topology, we may
assume that F = M is constant and that U admits an elementary
fibration f : U → S .

By Cohomological Purity (Milne VI.5.1), the fact
that f is proper and Smooth Specialisation of Cohomology Groups (Milne
VI.4.2), one can show that f∗F is also a constant sheaf, R1f∗F is a locally
constant torsion sheaf with finite fibers and R i f∗F = 0 for i > 1. Using
those theorems requires that F is torsion. The Leray spectral sequence

H i (Scx,R
j f∗F ) =⇒ H i+j(Ucx,F )

thus only has two non-zero rows. It thus induces a long exact sequence

. . .→ H i (Scx, f∗F )→ H i (Ucx,F )→ H i−1(Scx,R
1f∗F )→ . . .

Use induction on dim(U) and apply the result of the lemma to S with
dim(S) < dim(U). We find V → S étale such that for any
t ′ ∈ H i−1(Scx,R

1f∗F ) and t ∈ H i (Scx, f∗F ), their restriction to V is zero.
Now consider V × U → U to complete the proof.
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Wrapping up

Theorem
Let X be a smooth scheme over C. Then for any finite abelian group M,
we have that H i (X (C),M) ∼= H i (Xet,M) for all i ≥ 0.

Question: What can we say about more general abelian groups M?
Answer: The theorem need not necessarily be true. For example, let X
be an elliptic curve over C. Then H1(X (C),Z) = Z2, whereas

H1(Xet,Z) = Homcts(π1(X ),Z) = 0.

Recall that the functor F : fin. et./X → Set sending (Y , π) to
HomX (x̄ ,Y ) for some fixed x̄ ∈ X is pro-representable, i.e. there exists a
projective system X̃ = (Xi )i∈I of finite étale coverings such that
F (Y ) = lim−→HomX (Xi ,Y ), with each Xi → X a Galois covering. Then

π1(X , x̄) := lim←−AutX (Xi ).

This is a profinite group, and thus has no non-trivial continuous
homomorphisms to Z. Then H1(Xet,Z) = Homcts(π1(X ),Z) follows from
the Riemann Existence Theorem and the analogous result for X (C).
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Fin

Thanks for listening!

Figure: Étale is a mountain of Savoie and Haute-Savoie, France. It lies in the
Aravis Range of the French Prealps and reaches 2,484 metres above sea level.


