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2.1 Finite and quasi-finite morphisms

Speaker: Andrés Ibánez Núñes

In what follows, all rings are assumed to be Noetherian, and all schemes lo-
cally Noetherian, meaning that they can be covered by spectra of Noetherian
rings. Readers unhappy with this restriction of generality might find de Jong a
more pleasing resource.

We begin by recalling the notion of a finite morphism (cf. [Har77, II.3]).

Definition 2.1. Let 𝑓∶ 𝑋→ 𝑌 be a morphism of schemes. Then 𝑓 is finite if for
any affine open 𝑉 = Spec𝐵 ⊂ 𝑌, the preimage 𝑓−1(𝑉) = Spec𝐴 is affine2 and the
induced map 𝐵→𝐴 makes 𝐴 into a finitely generated 𝐵-module.

Example 2.2. All closed immersions are finite, because they locally correspond to
maps of the underlying rings of the form𝐴→𝐴/𝐼, and𝐴/𝐼 is a finitely generated
𝐴-module.

It is frequently useful to have a slightly weaker notion of finiteness:

Definition 2.3. Amorphism of schemes 𝑓∶ 𝑋→ 𝑌 is quasi-finite if it is of finite
type3 and if for any 𝑦 ∈ 𝑌, the preimage 𝑓−1(𝑦) is a discrete topological space.

2That is, 𝑓 is an affine morphism.
3i.e. for any 𝑉 = Spec𝛣 ⊂ 𝑌, 𝑓−1(𝑉) has a finite open affine cover {𝑈𝑖 = Spec𝛢𝑖} such that

each 𝛢𝑖 is a finitely generated 𝛣-algebra.
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In particular, this implies that the fibres are finite.

For convenience, we introduce the notion of a stable class:

Definition 2.4. Let𝒫 be a family of morphisms of schemes. 𝒫 is a stable class
if the following hold:

(i) 𝒫 contains all isomorphisms;
(ii) 𝒫 is stable under composition, meaning that if 𝑓∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍

are members of𝒫, then so if 𝑔 ∘ 𝑓;
( iii) 𝒫 is stable under base change, meaning that for any 𝑓∶ 𝑋→ 𝑌 in𝒫, if we

have a Cartesian square of the form

𝑍 𝑆

𝑋 𝑌

𝑓′

𝑓

(2.1)

then the morphism 𝑓′ is also a member of𝒫.4

(iv) 𝒫 is local on the target, that is, for every cover {𝑉𝑖} of 𝑌, 𝑓∶ 𝑋→ 𝑌 is in𝒫
if and only if the restrictions 𝑓|𝑓−1(𝑉𝑖) ∶ 𝑓

−1(𝑉𝑖) → 𝑉𝑖 are in𝒫.

Example 2.5. The class ofmorphisms of finite type form a stable class, as does the
classes of separated, of proper and of affine morphisms. It is an excellent exercise
to list all the types of morphisms of schemes you know and decide which of the
above conditions they satisfy.

Proposition 2.6. The collection of all finite morphisms form a stable class, and so
does the collection of quasi-finite morphisms.

Proof. This is more or less routine, and omitted from the talk. Details can be
found in [Mil80, Prop. 1.3].

Finite and quasi-finite morphisms into the spectrum of a field have a particu-
larly nice interpretation.

Proposition 2.7. Let 𝑘 be a field, and 𝑓∶ 𝑋 → Spec𝑘 a morphism of finite type.
Then the following are equivalent:

(i) 𝑓 is finite;
(ii) 𝑓 is quasi-finite;
(iii) 𝑋 is affine, and 𝑋 ≅ Spec𝐴 where 𝐴 is a finite dimensional 𝑘-algebra.

4Normally we would simply say the “the base change 𝑓′ ∶ 𝛸 ×𝑌 𝑆 is in𝒫”, but the category of
locally Noetherian schemes is not closed under fibre products, see this SO post.
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Proof. (𝑖) ⇒ (𝑖𝑖𝑖) follows directly from definitions.

(𝑖𝑖𝑖) ⇒ (𝑖𝑖): Note that 𝐴 is Artinian5 because any ideal of 𝐴 is 𝑘-vector space
and so a strictly decreasing sequence of ideals (i.e. vector spaces) 𝐼0 ⊃ 𝐼1 ⊃ … sta-
bilises in at most dim𝐼0 steps. The structure theorem for Artinian rings (cf.
[AM94, Thm. 8.7]) then implies that 𝐴 = ∏𝑛

𝑖=1𝐴𝑖 where each 𝐴𝑖 is an Artinian
local ring. In particular, for each 𝑖, Spec𝐴𝑖 consists of a single point. Now
Spec𝐴 =∏𝑛

𝑖=1𝐴𝑖 ≅ ⊔
𝑛
𝑖=1Spec𝐴𝑖, so 𝑓 is indeed quasi-finite.

(𝑖𝑖) ⇒ (𝑖) If 𝑓 is quasi-finite, then since 𝑋 is the preimage of the unique point
of Spec𝑘, the underlying topological space of 𝑋 is finite and discrete, and we
can write 𝑋 = ⊔𝑛𝑖=1Spec𝐴𝑖 where each 𝐴𝑖 is a finitely generated 𝑘-algebra and
a local ring. As before, 𝐴𝑖 is Artinian and Spec𝐴𝑖 consists of a single point,
so 𝑋 = Spec∏𝑛

𝑖=1𝐴𝑖 is the spectrum of a finite-dimensional 𝑘-algebra, so 𝑓 is
finite.

The following result explains the name “quasi-finite”.

Proposition 2.8. Finite morphisms are quasi-finite.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be finite. We know that 𝑓 is of finite type, and it remains
to show that the fibres are discrete. By definition of the fibre over 𝑦 ∈ 𝑌, we have
a Cartesian diagram

𝑓−1(𝑦) Spec𝜅(𝑦)

𝑋 𝑌

𝑓′

𝑓

(2.2)

where 𝜅(𝑦) = 𝒪𝑌,𝑦/𝔪𝑦 denotes the residue field of 𝑌 at 𝑦. The base change 𝑓′ of 𝑓
is finite by stability of finiteness under base change, and applying proposition 2.7
it is quasi-finite, hence has discrete fibres.

It is not difficult to see that the converse is false. For example, exercise 1 of the
exercise sheet ( [Mil80, Ex. I.1.6b]) shows that Dedekind domains with finitely
many primes are quasi-finite but never finite. Another example is the following:

Example 2.9. Fix a ring 𝐴, pick 𝑃 = 𝑎𝑛𝑇
𝑛 +… + 𝑎0 ∈ 𝐴[𝑇], set 𝐵 = 𝐴[𝑇]/(𝑃(𝑇))

and let 𝑓∶ Spec𝐵→ Spec𝐴 be the natural map. Then 𝑓 is finite if and only if 𝐵
is a finite 𝐴-module, which one checks is equivalent to 𝑇 being integral over 𝐴.
But this is true if and only if the leading coefficient 𝑎𝑛 of 𝑃 is a unit.

On the other hand, 𝑓 is quasi-finite if and only if for any 𝔭 ∈ Spec𝐴, 𝐵 ⊗𝛢
𝜅(𝔭) ≅ 𝜅(𝔭)[𝑇]/(𝑃(𝑇)) is a finite-dimensional over 𝜅(𝔭). This is equivalent to
requiring 𝑃 ≢ 0 (mod 𝔭) for all primes 𝔭 of 𝐴, i.e. that (𝑎0,…𝑎𝑛) = 𝐴. This shows
that being quasi-finite is weaker than being finite, in general.

5Meaning any descending chain of ideals stabilises in finitely many steps.

9



2.2 Normalisations

Definition 2.10. A scheme𝑋 is normal if every stalk 𝒪𝛸,𝑥 is integrally closed (in
its field of fractions)6.

The notion of being normal seems to have its origins in arithmetic, and one
sees that Specℤ[√5] is not normal while Spec 12ℤ[√5] is. One nice property of
normal schemes is that every scheme naturally admits a “normalisation”:

Proposition 2.11. Let𝑋 be an integral scheme,𝐾 the function field of𝑋 and let 𝐿/𝐾
be a field extension. Then there exists a morphism of schemes 𝑓∶ 𝑋→𝑋 characterised
uniquely by the following properties:

(i) 𝑋 is normal,
(ii) 𝑓 is affine,
(iii) for any open affine set 𝑈 ⊂ 𝑋, 𝒪𝛸(𝑓

−1(𝑈)) is the integral closure of 𝒪𝛸(𝑈) in
𝐿.

Definition 2.12. The scheme 𝑋 is called the normalisation of 𝑋 in 𝐿, or simply
the normalisation of 𝑋 if 𝐿 = 𝐾.

Normalisations give rise to a large class of finite morphisms:

Proposition 2.13 ( [Mil80, Prop. I.1.1], EGA IV.7.8). Let 𝑋 be a normal scheme,
and 𝑓∶ 𝑋 → 𝑋 the normalisation of 𝑋 in 𝐿. If 𝐿/𝐾 is separable, or if 𝑋 is of finite
type over a field 𝑘, then 𝑓 is finite.

Proposition 2.14. Let 𝑋/𝑘 be an integral scheme of finite type over a field 𝑘, with
function field 𝐾. Then the normalisation 𝑋→𝑋 of 𝑋 in 𝐾 is finite.

Proof. We may assume 𝑋 is affine, 𝑋 ≅ Spec𝐴, where 𝐴 is an integral finite-
dimensional 𝑘-algebra. By theNoether normalisation theorem ( [AM94, Ex. 5.16]),
there exists a finite injective homomorphism 𝑘[𝑇1,… ,𝑇𝑛] → 𝐴, which extends to
𝑘[𝑇1,… ,𝑇𝑛] → 𝐴, where 𝐴 is the integral closure of 𝐴 in 𝐾. Since Spec𝑘[𝑇1,… ,𝑇𝑛]
is normal and 𝐾 is a finite extension of 𝑘(𝑇1,… ,𝑇𝑛), we have that 𝑘[𝑇1,… ,𝑇𝑛] → 𝐴
is finite by proposition 2.13, and so 𝐴→𝐴 is as well.

Example 2.15. Let 𝑘 be a field and

𝐴 =
𝑘[𝑥,𝑦]

𝑦2 − 𝑥3 − 𝑥2
, 𝑋 = Spec𝐴, (2.3)

a nodal cubic, singular at 𝑥 = 0.

6Recall that this means every element of Frac(𝒪𝛸,𝑥) which is a root of a monic polynomial
with coefficients in 𝒪𝛸,𝑥 must lie in 𝒪𝛸,𝑥.
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Figure 2: The nodal cubic given by 𝑦2 = 𝑥3 + 𝑥2

Consider the map 𝐴 → 𝑘[𝑧] defined by 𝑥 ↦ 𝑧2 − 1 and 𝑦 ↦ 𝑧3 − 𝑧 (check by
hand that this factors through quotient!). The formal computation 𝑧2 = 𝑦2/𝑥2 =
(𝑥3+𝑥2)/𝑥2 = 𝑥+1 shows that 𝑘[𝑧] is integral over𝐴. In fact, it holds that Spec𝑘[𝑧]
is the normalisation of 𝑋.

Removing a single point on𝑋 corresponds to localising 𝑘[𝑧] at (𝑧−𝑎), and we
have a natural morphism 𝐴 → 𝑘[𝑧](𝑧−𝑎). The corresponding map of schemes is
not finite, but quasi-finite, and factors as an open immersion followed by a finite
morphism. This is no coincidence:

Theorem 2.16 (Zariski’s main theorem). Let 𝑌 be quasi-compact, and 𝑓∶ 𝑋 → 𝑌
a separated and quasi-finite morphism. Then 𝑓 factors as 𝑋 𝑖−→ 𝑋′

𝑔
−→ 𝑌, where 𝑖 is an

open immersion and 𝑔 a finite morphism.

Remark. The condition that 𝑓 be separated is necessary, since a finite morphism
is affine, hence separated.

Proof. See [Mil80, Thm. I.1.8]. If we additionally assume that 𝑓 is projective,
then it is possible to deduce this from the Zariski main theorem in Hartshorne’s
book, [Har77, Cor. III.11.4].

This is a different version of Zariski’s main theorem from say, the one in
[Har77]. For a nice overview of results going by the name “Zariski’s main theo-
rem”, see [Mum67, Sec. III.9].

We end this section with a useful characterisation of finite morphisms:

Proposition 2.17. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The following are
equivalent:

(i) 𝑓 is finite,
(ii) 𝑓 is proper and quasi-finite,
(iii) 𝑓 is proper and affine.
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Proof. We first prove the equivalence (𝑖) ⇔ (𝑖𝑖):

(𝑖) ⇒ (𝑖𝑖)We already know finite morphisms are quasi-finite, so it remains to
prove properness. Recall that being proper means being separated, of finite type
and universally closed7. Finite morphisms are affine, hence separated ( [Har77,
Ex. II.5.17b]) and of finite type, so it remains to show that they are universally
closed. Since being finite is stable under base change, it suffices to show that 𝑓 is
closed. We reduce further to requiring 𝑓(𝑋) to be closed as follows:

If we know that 𝑓(𝑋) is closed for all finite morphisms 𝑓, then for any closed
set 𝑍 ⊂ 𝑋 we have a closed immersion 𝑍 → 𝑋, the composition 𝑍 → 𝑋

𝑓
−→ 𝑌 is

finite, so 𝑓(𝑍) is closed.

In this case we can reduce to the case where 𝑌 (and hence 𝑋) is affine, since
closedness can be checked locally. Then 𝑓 factors as 𝑋 = Spec𝐴 𝑢−→ Spec𝐵/𝐼 𝑣−→
Spec𝐵 = 𝑌, where 𝑢 is surjective by the lying-above theorem [AM94, Thm. 5.10],
and 𝑣 is a closed immersion. It follows that 𝑓(𝑋) is closed.

(𝑖𝑖) ⇒ (𝑖) Since finiteness is local on the target, we can assume that 𝑌 is quasi-
compact, so by Zariski’s main theorem we can factor 𝑓 as𝑋 𝑢−→𝑋′

𝑔
−→ 𝑌where 𝑢 is

an open immersion. We claim that 𝑢 is proper; from this it will follow that 𝑢 is a
closed immersion, so 𝑓 is a composition of finite morphisms, hence itself finite.

Indeed, let’s write 𝑢 as the composition 𝑋
(Id𝛸,𝑢)−−−−−→ 𝑋×𝑌 𝑋

′ pr2−−→ 𝑋′, where the
fibre product is taken over 𝑓. Then pr2 is proper, being the base change of 𝑓, and
we claim that (Id𝛸, 𝑢) is also proper. Indeed, we have a Cartesian diagram

𝑋 𝑋×𝑌𝑋
′

𝑋′ 𝑋′ ×𝑌𝑋
′

(Id𝛸,𝑢)

𝛥𝑔

(2.4)

which shows that (Id𝛸, 𝑢) is the base change of the diagonal morphism 𝛥𝑔, which
is a closed immersion since 𝑔 is separated. Being a closed immersion is stable
under base change, so we conclude that (Id𝛸, 𝑢) is indeed a closed immersion,
and this proves (𝑖).

(𝑖) ⇒ (𝑖𝑖𝑖) is now clear using (𝑖𝑖), and the converse follows from finiteness-
theorems of proper morphisms, see for example EGA II, 6.7.1.

2.3 Flat morphisms

Mumford eloquently describes flatness as “a riddle that comes out of algebra, but
which technically is the answer to many prayers” [Mum67, Sec. III.10]. One of
the solutions he offers is that a flat morphism “preserves linear structure”, and in

7Any base change of 𝑓 is closed.
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a continuously varying family of schemes we can recognise it by the statement
that the dimension of fibres remains constant as the parameter varies.

In the following, we adopt the convention of denoting a short exact sequence
of 𝐴-modules 0 →𝑀′→𝑀→𝑀″→ 0 by 𝛴, and if 𝑁 is another 𝐴-module, let
𝛴⊗𝛢𝑁 denote the sequence

0→𝑀′ ⊗𝛢𝑁→𝑀⊗𝛢𝑁→𝑀″ ⊗𝛢𝑁→ 0. (2.5)

Definition 2.18. Amap of rings 𝜙 ∶ 𝐴→ 𝐵 is flat if for every short exact sequence
𝛴 of 𝐴-modules, 𝛴⊗𝛢 𝐵 is exact. A morphism of schemes 𝑓∶ 𝑋→ 𝑌 is flat if for
every 𝑥 ∈ 𝑋, the corresponding map of local rings 𝒪𝑌,𝑓(𝑥)→𝒪𝛸,𝑥 is flat.

Of course, one should check that these notions are compatible if 𝑋 and 𝑌 are
affine:

Proposition 2.19. A morphism of rings 𝜙 ∶ 𝐴 → 𝐵 is flat if and only if the corre-
sponding map Spec𝐵→ Spec𝐴 is flat.

Proof. This can be rephrased as saying that being flat is a local property, and this
is the content of [AM94, Prop. 2.19].

Proposition 2.20. Flat morphisms form a stable class.

Proof. This is mostly straightforward checking.

Example 2.21. Open immersions are flat, since each map of stalks is simply the
identity.

Another class of morphisms that shows up frequently in scheme theory is the
following:

Definition 2.22. A morphism 𝑓 ∶ 𝑋→ 𝑌 is faithfully flat if it is flat and surjec-
tive.

Proposition 2.23. For a flat morphism of rings 𝜙 ∶ 𝐴→ 𝐵, the following are equiv-
alent:

(i) For every 𝐴-module𝑀, if𝑀≠ 0 then𝑀⊗𝛢 𝐵 ≠ 0,
(ii) for every sequence𝛴 = 0→𝑀′→𝑀→𝑀″ of𝐴-modules, exactness of𝛴⊗𝛢𝐵

implies the exactness of 𝛴.
(iii) the associated morphism Spec𝐵→ Spec𝐴 is faithfully flat,
(iv) for every maximal ideal 𝔪 ⊂ 𝐴, 𝜙(𝔪)𝐵 is a strict subset of 𝐵.

Checking condition (iv) immediately gives the following:

Corollary 2.24. A local homomorphism of local rings is faithfully flat.
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Corollary 2.25. If 𝑓 ∶ 𝑋 → 𝑌 is a flat morphism, then 𝑓(𝑋) is “closed under gen-
eralisation”. In other words, if 𝑓(𝑥) ∈ {𝑦} for some 𝑥 ∈ 𝑋, then 𝑦 = 𝑓(𝑥′) for some
𝑥′ ∈ 𝑋.

Proof. We have a commutative diagram

Spec𝒪𝛸,𝑥 Spec𝒪𝑌,𝑓(𝑥)

𝑋 𝑌

ℓ

𝑓

(2.6)

We can identify Spec𝒪𝑌,𝑓(𝑥) with the set of generalisations of 𝑓(𝑥). By corol-
lary 2.24, the map ℓ is faithfully flat hence surjective, so if 𝑓(𝑥) is in the closure
of 𝑦, then we can find 𝑥′ ∈ Spec𝒪𝛸,𝑥, which we can identify with a generalisation
of 𝑥. Commutativity of the diagram then implies 𝑓(𝑥′) = 𝑦.

The goal of setting up this machinery is to prove the following important
theorem:

Theorem 2.26 ( [Mil80],Thm. 1.1.8). If a morphism 𝑓 ∶ 𝑋 → 𝑌 of schemes is flat
and locally of finite type, then it is open.

Proof. To prove this, we will require Chevalley’s theorem:

Theorem (Chevalley). Let 𝑓∶ 𝑋→ 𝑌 be a morphism of finite type between Noethe-
rian schemes. If 𝐸 ⊂ 𝑋 is constructible8, then 𝑓(𝑋) ⊂ 𝑌 is also constructible.

We will not prove this here, but one reference is EGA IV, Thm. 1.8.4.

Assume that 𝑌 is quasi-compact (hence Noetherian), and that 𝑓 is of finite
type. Flatness being local on the source (exercise!), it suffices to show that 𝑓(𝑋)
is open, and Chevalley’s theorem then implies 𝑓(𝑋) is open. The result will then
follow from corollary 2.25 and the following lemma:

Lemma 2.27. Let 𝑌 be a Noetherian scheme and let 𝑆 ⊂ 𝑌 be a subset. Then 𝑆 is open
if and only if 𝑆 is constructible and stable under generalisation.

Details to be filled out.

2.4 Unramified morphisms

Speaker: Håvard Damm-Johnsen

8Recall that 𝛦 is constructible if it is a finite union of locally closed subsets.
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Recall that we are trying to find a nice notion of local isomorphism for
schemes. By local, we mean that it should be defined in terms of stalks, and
it is desirable to find a notion that holds over arbitrary rings, not just fields.

Example 2.28. Consider the affine scheme 𝑋 = Spec𝐴 where 𝐴 = 𝑘[𝑥,𝑦]/(𝑥𝑦),
regarded as a scheme over Spec𝑘[𝑥], and we denote by 𝑓 ∶ 𝑋→𝔸1𝑘 the associated
morphism. Geometrically, this is a cross along with the projection onto the 𝑥-
axis.

Heuristically, 𝑓 is not flat because of the “jump in dimension” of the fibre at
0 compared to the nearby fibres. In formal terms, note that 𝐴 is a PID, so flatness
is equivalent to being torsion-free [LE06, Cor. 1.2.5]. But the localisation 𝐴(𝑥,𝑦)
viewed as a 𝑘[𝑥](𝑥)-module has torsion because 𝑥𝑦 = 0. This demonstrates that
flatness should be a necessary condition for being étale. On the other hand, the
fibre of (𝑥) is the only place of non-flatness for 𝑓, so it should be étale elsewhere.

Example 2.29. Let’s return to the nodal cubic in example 2.15, this time with a
projection 𝑓 onto the 𝑥-axis.

This corresponds to the natural map 𝑘[𝑥] → 𝑘[𝑥,𝑦]/(𝑦2 − 𝑥3 − 𝑥2), and in-
tuitively 𝑓 should not be a local isomorphism at the singularity (0,0), because
locally there are “four branches” coming out of the point. Readers familiar with
Riemann surfaces might recognise this as a ramification point, in the context of
which 𝑓 locally looks like 𝑧 ↦ 𝑧2 near (0,0).
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For9 amap 𝑔 ∶ 𝑋→ 𝑌 of Riemann surfaces we have an associatedmapℳ(𝑌)→
ℳ(𝑋) of meromorphic function fields, and we can look at the subrings 𝒪𝑥 ⊂
ℳ(𝑋), 𝒪𝑔(𝑥) ⊂ ℳ(𝑌) of functions holomorphic at 𝑥 and 𝑔(𝑥), respectively, and 𝑔
induces a map 𝒪𝑔(𝑥) → 𝒪𝑥. Here 𝔪𝑔(𝑥) ⊂ 𝒪𝑔(𝑥), the ideal of functions vanishing
at 𝑥, is mapped into the corresponding ideal 𝔪𝑥 ⊂ 𝒪𝑥. We see that this is a map
of local rings, completely analogous to the map of stalks for 𝑓. Identifying the
ideal with its image, we see that 𝔪𝑔(𝑥)𝒪𝑥 = 𝔪

𝑒𝑥
𝑥 , where 𝑒𝑥 is the ramification index,

and corresponds to the “number of branches of 𝑔”. In this setting, 𝑔 is said to
be unramified at 𝑥 if 𝑒𝑥 = 1. This transfers almost verbatim to schemes, with the
additional requirement of separability.

Definition 2.30. A morphism 𝑓∶ 𝑋 → 𝑌 of schemes locally of finite type is
unramified at 𝑥 ∈ 𝑋 if the following two conditions hold:

(i) 𝔪𝑓(𝑥) generates the maximal ideal of 𝒪𝛸,𝑥, that is, 𝔪𝑓(𝑥)𝒪𝛸,𝑥 = 𝔪𝑥.
( ii) The corresponding field extension 𝜅(𝑥)/𝜅(𝑓(𝑥)), where 𝜅(𝑥) ..= 𝒪𝛸,𝑥/𝔪𝑥 and

𝜅(𝑓(𝑥)) ..= 𝒪𝑌,𝑓(𝑥)/𝔪𝑓(𝑥), is separable.

If 𝑓 is unramified at all 𝑥 ∈ 𝑋, we simply say it is unramified.

This definition is sometimes a bit unwieldy; fortunately the following makes
computations easier in practice.

Proposition 2.31. Let 𝑓 ∶ 𝑋→ 𝑌 be a morphism locally of finite type. The following
are equivalent:

(i) 𝑓 is unramified at 𝑥;
(ii) (𝛺𝛸/𝑌)𝑥 = 0;
(iii) The diagonal morphism 𝛥𝛸/𝑌 is an open immersion.

Proof. (𝑖𝑖𝑖) ⇒ (𝑖) is somewhat tedious, and we refer the eager reader to [Mil80,
Prop. I.3.5].

(𝑖) ⇒ (𝑖𝑖): The question is local, so assume that 𝑋 = Spec𝐴 and 𝑌 = Spec𝐵.
Let 𝔭 = 𝑥, 𝔮 = 𝑓(𝑥). Then we have a map 𝜙∶ 𝐵𝔮→𝐴𝔭 which by hypothesis satisfies
𝜙(𝔮)𝐴𝔭 = 𝔭. It follows that 𝐴𝔭 ⊗𝛣𝔮 𝜅(𝔮) ≅ 𝜅(𝔭), so we have a Cartesian diagram

Spec𝜅(𝔭) Spec𝐴𝔭

Spec𝜅(𝔮) Spec𝐵𝔮

(2.7)

Now [Har77, Prop. II.8.2A] implies that 𝛺𝛢𝔭/𝛣𝔮 ⊗𝛢𝔭 𝜅(𝔭) = 𝛺𝜅(𝔭)/𝜅(𝔮), which van-
ishes identically by the hypothesis (see [Mum67, p.283] for a hint). Therefore,

9Thanks to George for bringing up this analogy!
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by Nakayama’s lemma, 𝛺𝛢𝔭/𝛣𝔮 = 0 since it is finitely generated over 𝐴𝔭. Next we
have “the first exact sequence”

𝛺𝛣𝔮/𝛣 ⊗𝐵𝔮𝐴𝔭→𝛺𝛢𝔭/𝛣→𝛺𝛢𝔭/𝛣𝔮 = 0→ 0, (2.8)

by [Har77, Prop. II.8.3A], which implies that 0 = 𝛺𝛢𝔭/𝛣 = (𝛺𝛸/𝑌)𝑥, which proves
our claim.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) As in the previous part we assume that 𝑋 and 𝑌 are affine, and
in this case 𝛥𝛸/𝑌 is the map of schemes associated to 𝑚∶ 𝐴⊗𝛣 𝐴→𝐴, defined by
𝑚(𝑎 ⊗ 𝑎′) = 𝑎𝑎′. Note that 𝑚 is surjective since 𝛥𝛸/𝑌 is a closed immersion, as
we are in an affine setting. Note that [Har77, Prop. II.8.1A], 𝛺𝛸/𝑌 = 𝐼/𝐼

2 where
𝐼 = ker𝑚, so by hypothesis 0 = (𝛺𝛸/𝑌)𝑥 = (𝐼/𝐼

2)𝛥(𝔭) ≅ 𝐼𝛥(𝔭)/𝐼
2
𝛥(𝔭). Since 𝑓 is of

finite type, we can apply Nakayama’s lemma to deduce that 𝐼𝛥(𝔭) = 0. Now by
exercise 13.7.E in Vakil’s notes, 𝐼 vanishes in a neighbourhood of 𝑈 of 𝛥(𝑥), so
𝛥|𝛥−1(𝑈) ∶ 𝛥

−1(𝑈) →𝑈 is an isomorphism and in particular an open immersion.

Returning to the cubic in example 2.29, we compute the sheaf of relative
differentials

𝛺𝛢/𝑘[𝑥] =
𝐴𝑑𝑥+𝐴𝑑𝑦

(2𝑦𝑑𝑦 − (3𝑥2 + 2𝑥)𝑑𝑥)𝐴
, (2.9)

and one easily checks that the localisation at a prime 𝔭 ∈ Spec𝐴 is identically 0 if
and only if 𝔭 ≠ (𝑥,𝑦).

An easy consequence of the above criteria for being unramified is the follow-
ing:

Proposition 2.32. Unramified morphisms form a stable class.

The notion of ramification of schemes also extends the corresponding notion
in number theory, as the following example indicates:

Example 2.33. Recall that the prime elements of ℤ[𝑖] are given by

(i) primes 𝑝 ∈ ℤ where 𝑝 ≡ 3 (mod 4),
( ii) 𝑛+𝑚𝑖 if 𝑝 ..= 𝑛2 +𝑚2 is a prime with 𝑝 ≡ 1 (mod 4),
( iii) 1 + 𝑖.

(see e.g. [NS13, Thm. 1.4.]) To study the geometry of Specℤ[𝑖], let us consider
the fibres under the canonical map 𝑓 into Specℤ. Fix a prime (𝑝) ∈ Specℤ. Then

Specℤ[𝑖] ×Specℤ Spec𝜅(𝑝) = Spec(ℤ[𝑖] ⊗ℤ 𝔽𝑝) = Spec𝔽𝑝[𝑖],

and consider first the case where 𝑝 = 2. Since 𝔽𝑝[𝑖] ≅ 𝔽𝑝[𝑥]/(𝑥
2 + 1), this ring has

four elements. But via the automorphism 𝑥 ↦ 𝑥+ 1, we see that 𝔽2[𝑖] ≅ 𝔽[𝑥]/𝑥
2,
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so the fibre of 2, which consists of only the point (1 + 𝑖), is a fat point, since the
fibre is not a field.

Taking 𝑝 ≡ 3 (mod 4), we claim that the fibre of (𝑝) is a field. Indeed, 𝑥2 + 1
is irreducible in 𝔽𝑝[𝑥], hence generates a maximal ideal, so 𝔽𝑝[𝑥]/(𝑥

2 + 1) ≅ 𝔽𝑝2 .
On the other hand, if 𝑝 ≡ 1 (mod 4), then 𝑥2 + 1 is not irreducible over 𝔽𝑝, but
decomposes as the product of two linear factors 𝑃1(𝑥) and 𝑃2(𝑥). Then we have a
corresponding decomposition of the fibre, as 𝔽𝑝[𝑥]/𝑃1(𝑥) × 𝔽𝑝[𝑥]/𝑃2(𝑥) ≅ 𝔽𝑝 × 𝔽𝑝.

We can draw the picture as follows:

(2) (3) (5) (7)
(0)

(1 + 𝑖) (3)

(2 − 𝑖)

(2 + 𝑖)
(7)

(0)

Looking at the local rings, we see that ℤ(2)→ ℤ[𝑖](𝑖+1) sends (2) to (1 + 𝑖)
2, so 𝑓

is ramified at 2.

Exercise. Using the fact that ℤ[√𝑑] is ramified precisely at primes dividing the
discriminant 4𝑑, try to draw pictures of Specℤ[√𝑑] for some squarefree 𝑑 ∈ ℤ,
including composite numbers.

2.5 Étale morphisms

The previous section hopefully convinced you that being flat and unramified are
necessary conditions for being a local isomorphism. It turns out that they are
also sufficient!

Proposition 2.34 (EGA IV 17.6.3). Let 𝑓 ∶ 𝑋→ 𝑌 be locally of finite type. Suppose
𝑥 ∈ 𝑋 satisfies 𝜅(𝑥) ≅ 𝜅(𝑓(𝑥)). Then 𝑓 is flat at 𝑥 and unramified at 𝑥 if and only if
the induced map 𝒪𝑌,𝑓(𝑥)→𝒪𝛸,𝑥 is an isomorphism.

Definition 2.35. A morphism 𝑓 ∶ 𝑋→ 𝑌 locally of finite type is étale at 𝑥 ∈ 𝑋 if
it is flat at 𝑥 and unramified at 𝑥. If it is étale at every 𝑥 ∈ 𝑋, we simply say that 𝑓
is étale.

An immediate consequence of proposition 2.20 and proposition 2.32 is the
following:

Proposition 2.36. Étale morphisms form a stable class.

Example 2.37. The nodal cubic and cross of examples 2.28 and 2.29 respectively,
are étale on the complements of the problematic points.
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Example 2.38. Fix a Noetherian ring 𝐴 and 𝑃(𝑥) ∈ 𝐴[𝑥]. It is natural to ask
when the morphism Spec𝐴[𝑥]/(𝑃(𝑥)) → Spec𝐴 is étale. It is easy to see that a
sufficient condition for flatness is that 𝑃 be monic, and in general, it turns out
that flatness is equivalent to the statement that the ideal of 𝐴 generated by the
coefficients of 𝑃 is generated by an idempotent.

To be unramified, we recall fromGalois theory that a necessary and sufficient
condition is that 𝑃(𝑥) is separable, that is, has no repeated roots. This is equiva-
lent to the statement that (𝑃(𝑥),𝑃′(𝑥)) = 1, where 𝑃′(𝑥) is the formal derivative
of 𝑃, and we can rephrase this as saying that 𝑃′(𝑥) ∈ (𝐴[𝑥]/𝑃(𝑥))×. Here the
map Spec𝐴[𝑥]/(𝑃(𝑥)) → Spec𝐴 is a special case of what we call a standard étale
morphism.

Definition 2.39. Let 𝐴 be a Noetherian ring, 𝑃(𝑥) ∈ 𝐴[𝑥] be a monic polyno-
mial, 𝐵 ..= 𝐴[𝑥]/(𝑃(𝑥)) and fix 𝑏 ∈ 𝐵 such that 𝑃′(𝑥) ∈ 𝐵[𝑏−1]×. A standard étale
morphism is a morphism of the form Spec𝐵[𝑏−1] → Spec𝐴.

The reason for the name is that all étale morphisms locally look like standard
étale morphisms.

Theorem 2.40. Let 𝑓∶ 𝑋 → 𝑌 be a morphism locally of finite type. Then 𝑓 is étale
at 𝑥 ∈ 𝑋 if and only if there exist affine open neighbourhoods 𝑈 containing 𝑥 and 𝑉
containing 𝑓(𝑥) such that 𝑓|𝑈 ∶ 𝑈→ 𝑉 is a standard étale morphism.

Proof. See [Mil80, Thm. 1.3.14], or [Sta21, Section 02GH] for a slightly more
modern treatment.

Corollary 2.41. A morphism 𝑓∶ 𝑋 → 𝑌 locally of finite type is étale at 𝑥 ∈ 𝑋 if
and only if there exist affine open neighbourhoods 𝑈 ≅ Spec𝑅 containing 𝑥 and 𝑉 ≅
Spec𝑆 containing 𝑓(𝑥) such that

𝑅 ≅
𝑆[𝑇1,… ,𝑇𝑛]
(𝑃1,… ,𝑃𝑛)

and det(
𝜕𝑃𝑖(𝑇1,… ,𝑇𝑛)

𝜕𝑇𝑗
)
𝑖,𝑗

∈ 𝑅× (2.10)

This is frequently referred to as the “Jacobian criterion” for étale morphisms,
and should be seen as an analogue of the implicit function theorem from differ-
ential geometry.

Proof. ⇐ To show that 𝑓 is unramified at 𝑥, it suffices to show that (𝛺𝑅/𝑆)𝑥 = 0.
By definition,

𝛺𝑅/𝑆 =
⟨𝑑𝑇1,… ,𝑑𝑇𝑛⟩𝑅

⟨ 𝜕𝛲𝑖𝜕𝛵1𝑑𝑇1 +…+
𝜕𝛲𝑖
𝜕𝛵𝑛
𝑑𝑇𝑛 ∶ 𝑖 = 1,… ,𝑛⟩𝑅

, (2.11)

and since det( 𝜕𝛲𝑖(𝛵1,…,𝛵𝑛)𝜕𝛵𝑗
)
𝑖,𝑗
∈ 𝑅×, the quotient is related to 𝑑𝑇1,… ,𝑑𝑇𝑛 by the linear

transformation corresponding to the Jacobian matrix. Since this is invertible, we
are quotienting by everything, and in particular the stalk at 𝑥 vanishes identically.
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Flatness at 𝑥 follows from an argument similar to (but slightly more involved
than) the example above, see [Mum67, Thm. III.10.3’] for more details.

⇒ By theorem 2.40, we can find affine open neighbourhoods 𝑈 ≅ Spec𝑅 and
𝑉 ≅ Spec𝑆 such that 𝑅 ≅ ( 𝑆[𝛵]𝛲(𝛵))[𝑏

−1] for some 𝑏 ∈ 𝑆[𝛵]
𝛲(𝛵) such that 𝑃′(𝑇) ∈ 𝑅×. Now

note that 𝑏−1 is a zero of the polynomial 𝑏𝑈− 1 ∈ 𝑆[𝛵]
𝛲(𝛵) [𝑈], and so

𝑅 = 𝑆[𝑇,𝑈]
(𝑃(𝑇),𝑏𝑈− 1) . (2.12)

It remains to check that the corresponding Jacobian matrix is invertible. But

det(
𝜕𝛲(𝛵)
𝜕𝛵

𝜕𝛲(𝛵)
𝜕𝑈 = 0

𝜕(𝑏𝑈−1)
𝜕𝛵

𝜕(𝑏𝑈−1)
𝜕𝑈

) = 𝑃′(𝑇) ⋅ 𝑏, (2.13)

which is in𝑅× by assumption. This actually proves the slightly stronger statement
that we can take 𝑛 = 2.

An easy consequence of this is the following:

Corollary 2.42. Let 𝑓 ∶ 𝑋→ 𝑌 be étale. Then

(i) dim𝒪𝛸,𝑥 = dim𝒪𝑌,𝑓(𝑥) for all 𝑥 ∈ 𝑋;
(ii) if 𝑌 is normal, then 𝑋 is normal;
(iii) if 𝑌 is regular, then 𝑋 is regular.

Recall from the guiding examples in the beginning of this section that on the
complement of a closed set, 𝑓 was étale. This is no accident; the “problematic
points” always form a closed set, as the following proposition shows.

Proposition 2.43. Let 𝑓∶ 𝑋→ 𝑌 be locally of finite type. Then the étale locus, mean-
ing the set of points 𝑥 ∈ 𝑋 at which 𝑓 is étale, is an open set.

Proof. Evidently the étale locus is the intersection of the set of flat points and the
set of unramified points. The flat locus is open by commutative algebra (see EGA
IV Thm. 11.3.1 or [MR89, §24]), and the unramified locus is open since it is cut
out by the different ideal sheaf, as explained in the exercises for this week.

A useful result for later is the following:

Proposition 2.44. Let 𝑓∶ 𝑋→ 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of schemes such that
𝑔𝑓 is étale and 𝑔 is unramified. Then 𝑓 is étale.
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Proof. We apply the trick of factoring 𝑓 as pr2𝛤𝑓 from proposition 2.17. Recall
that the graph morphism 𝛤𝑓 is defined as the base change of the diagonal mor-
phism 𝛥𝑔,

𝑋 𝑋×𝑍 𝑌 𝑌

𝑌 𝑌 ×𝑍 𝑌

𝛤𝑓

𝑓

pr2

𝛥𝑔

and since 𝑔 is unramified, proposition 2.31 implies that 𝛥𝑔 is an open immersion,
hence étale. Now 𝛤𝑓 is étale, since étale is stable under base change.

Similarly, the morphism pr2 arises from the usual Cartesian diagram

𝑋×𝑍 𝑌 𝑌

𝑋 𝑍

pr2

𝑔

𝑔𝑓

and since the composition 𝑔𝑓 is étale, so is its base change pr2. Since being étale
is stable under composition, this proves our result.
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