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3.1 Sites and Grothendieck topologies

Speaker: Martin Ortiz Ramirez

Recall from section 1.3 that for the purpose of defining sheaves, we don’t need
a full topology but rather a notion of open covers. In the context of schemes, we
do this by viewing an open subset 𝑈 ⊂ 𝑋 as an open immersion 𝑈 ↪ 𝑋, 𝑈∩𝑉
as 𝑈 ×𝛸 𝑉, and so on. The axioms required to define a sheaf turn out to be the
following:

Definition 3.1. Let C be a category. AGrothendieck topology T on C consists
of collections of distinguished maps {𝑈𝑖→𝑈}𝑖∈ℐ, coverings of𝑈, for each 𝑈 ∈ C,
satisfying the following axioms:10

(i) If 𝑈𝑖→𝑈 and 𝑈𝑗→𝑈 are coverings, then 𝑈𝑖 ×𝑈𝑈𝑗→𝑈 is also a covering.
(ii) If {𝑈𝑖 → 𝑈}𝑖∈ℐ and {𝑈𝑖𝑗 → 𝑈𝑖}𝑗∈𝒥 are coverings of 𝑈 and 𝑈𝑖 respectively,

then {𝑈𝑖𝑗→𝑈}(𝑖,𝑗)∈ℐ×𝒥 is a covering of 𝑈.
( iii) The set consisting of the identity map {𝑈→𝑈} is a covering.

We call the pair (C,T) a site.

Example 3.2. If 𝑋 is any topological space, then the category U(𝑋) of open
subsets where arrows are given by inclusions forms a site, with coverings are

10Note: the name “Grothendieck pre-topology” is frequently found in the literature. See this
for an explanation of the differences.
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given by collections of open inclusions {𝜙𝑖 ∶ 𝑈𝑖→𝑈}𝑖∈ℐ such that⋃𝑖𝜙𝑖(𝑈𝑖) = 𝑈
(“surjective families”).

If 𝑋 is a scheme, then this is called the Zariski site, denoted by 𝑋Zar.

Example 3.3. The small étale site on a scheme 𝑋, 𝑋ét, is the category of étale
𝑋-schemes 𝑌 → 𝑋. Note that if 𝑌 → 𝑋 and 𝑍 → 𝑋 are étale 𝑋-schemes and
𝑌→ 𝑍 is a morphism of𝑋-schemes, that is, a morphism of schemes such that the
diagram

𝑌 𝑍

𝑋

(3.1)

commutes, then proposition 2.44 implies that 𝑌→ 𝑍 is also étale.

Since every open immersion is étale, there is a natural inclusion of 𝑋Zar into
𝑋ét.

Recall that a presheaf on a categoryCwith values inC′ is a contravariant func-
tor C → C′, and a morphisms of presheaves is simply a natural transformation
of functors.

Definition 3.4. A sheaf on a site T is a presheaf ℱ∶ C → C′ such that for all
coverings {𝑈𝑖→𝑈}𝑖∈ℐ, the diagram

ℱ(𝑈)→∏
𝑖∈ℐ
ℱ(𝑈𝑖) ⇉ ∏

(𝑖,𝑗)∈ℐ×ℐ
ℱ(𝑈𝑖 ×𝑈𝑈𝑗) (Sh)

is an equaliser diagram, which was defined after eq. (1.9) in the introduction. We
will refer to this as the sheaf condition.

Amorphism of sheaves on T is a morphism of presheaves, that is, a natural
transformation.

As with sheaves on a topological space, we refer to themapsℱ(𝜙) as restriction
maps, and the corresponding category is denoted by Sh(T). Unless specified, we
assume that C′ =Ab, the category of abelian groups.

Definition 3.5. A sheaf on the small étale site 𝑋étis called an étale sheaf.

Note that every étale sheaf is necessarily also a sheaf for the Zariski site, which
is the same as a sheaf in the traditional sense. While it is not always easy to check
if a presheaf is a sheaf, the following proposition gives a useful criterion:

Proposition 3.6. Let ℱ be a presheaf on the category of étale 𝑋-schemes. Then ℱ
is an étale sheaf if and only if it is a sheaf on the Zariski site and for any covering
𝑉→𝑈 of affine étale 𝑋-schemes, the following is an equaliser diagram:

ℱ(𝑈)→ℱ(𝑉)⇉ℱ(𝑉 ×𝑈 𝑉). (3.2)

In other words, we need only check on affine étale coverings consisting of a single map.
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Proof.

Example 3.7. Given an étale map 𝑈 → 𝑋, define 𝒪𝛸ét
(𝑈) = 𝛤(𝑈,𝒪𝑈). This is

a Zariski sheaf because it coincides with the structure sheaf when 𝑈 ↪ 𝑋 is an
open immersion, and we want to show that it is an étale sheaf by checking the
criterion above. If Spec𝐴→ Spec𝐵 is a morphism of 𝑋-schemes, then we need
to check that

𝐴→ 𝐵⇉𝐵⊗𝛢 𝐵 (3.3)

is an equaliser diagram. Here the double arrow corresponds to 𝑏 ↦ 𝑏 ⊗ 1 and
𝑏 ↦ 1⊗𝑏. Since the category of rings is additive, this is equivalent to exactness of

0→ 𝐴→𝐵 𝑏↦𝑏⊗1−1⊗𝑏−−−−−−−−−−→ 𝐵⊗𝛢 𝐵, (3.4)

which follows from the fact that Spec𝐴→ Spec𝐵 is faithfully flat.

Example 3.8. Let𝑍 be an𝑋-scheme, and consider the presheaf𝑈↦Hom𝛸(𝑈,𝑍).
It is not difficult to check that this is in fact a sheaf on 𝑋Zar, and we claim that it
is an étale sheaf. For affine 𝑍 ≅ Spec𝑅, the exactness of the equaliser diagram

𝑍(𝐴)→ 𝑍(𝐵) ⇉ 𝑍(𝐵⊗𝛢 𝐵) (3.5)

follows from exactness of eq. (3.4), since the associated diagram of rings is

Hom(𝑅,𝐴) →Hom(𝑅,𝐵) ⇉Hom(𝑅,𝐵⊗𝛢 𝐵). (3.6)

This extends to not necessarily affine 𝑍 through a standard patching argument.

For a concrete example, taking

𝑍 = Spec ℤ[𝑡, 𝑡
−1]

(𝑡𝑛 − 1) ×Specℤ𝑋

we obtain 𝜇𝑛, which is the usual group scheme with 𝜇𝑛(𝑈) = ker(𝛤(𝑈,𝒪𝑈)
𝑠↦𝑠𝑛−−−→

𝛤(𝑈,𝒪𝑈)) of 𝑛-th roots of unity.

Example 3.9. Let 𝑋 be a quasi-compact scheme, 𝐴 an abelian group, and let 𝐴
denote the presheaf which sends 𝑈 to the set of functions 𝑈→𝐴 which are con-
stant on each connected component. We recognise this as the sheafification of the
constant presheaf 𝑈 ↦ 𝐴.11 The sheaf 𝐴 is called the constant sheaf associated
to 𝐴.

Example 3.10. Anologously to the Zariski case, we can define a locally constant
sheaf ℱ for the étale topology by requiring that for some covering {𝑈𝑖→𝑈}𝑖∈ℐ,
ℱ|𝑈𝑖 is constant for all 𝑖 ∈ ℐ. We will see an example of a locally constant non-
constant étale sheaf in the next section.

11We have not proved this, but there is a sheafification functor on the category of étale sheaves.
See [Sta21, Section 00W1] for more details.
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3.2 Étale sheaves over a field

Let𝐺 be a group. By a𝐺-module, we mean a module of the associated group ring,
ℤ[𝐺] which consists of finite formal sums of elements of 𝑔, with multiplication
given by the group operation. If 𝐺 is a compact topological group, then we say a
𝐺-module𝑀 is discrete if the stabiliser of each element of𝑀 is an open subgroup
of 𝐺. This is equivalent to endowing𝑀 with the discrete topology and requiring
the action of 𝐺 to be continuous.

Example 3.11. If 𝑘 is a field, then we can consider a separable closure 𝑘sep, which
by definition is the union of all finite separable extensions of 𝑘 inside a fixed
algebraic closure 𝑘alg. It is not difficult to show that 𝑘sep is a Galois extension,
and we let 𝐺 ..=Gal(𝑘sep/𝑘).

𝐺 is an example of a profinite group, a topological group isomorphic to an
inverse limit of finite groups viewed as discrete topological groups: a fundamental
result in Galois theory states that Gal(𝑘sep/𝑘) = lim←−−Gal(𝐿/𝑘), where 𝐿 runs over
finite Galois extensions of 𝑘. Moreover, any subextension of 𝑘sep is naturally a
discrete 𝐺-module.

In this section, the goal is to prove the following theorem:

Theorem 3.12 ( [Mil80, Thm. II.1.9] ). Let 𝑘 be a field, 𝑘sep a fixed separable closure,
and 𝐺 ..= Gal(𝑘sep/𝑘). There is an equivalence of categories between the category of
étale sheaves on Spec𝑘 and the category of discrete 𝐺-modules.

To prove this, it is convenient to introduce the notion of an étale algebra over
𝑘, which is a finite product of finite separable extensions of 𝑘. A ring 𝐴 is an étale
algebra if and only if the map Spec𝐴 → Spec𝑘 is étale. Étale 𝑘-algebras form a
category Algét(𝑘) with morphisms given by 𝑘-algebra maps.

If ℱ is a presheaf on 𝑋ét where 𝑋 = Spec𝑘, then by composing with the
functor Spec we can naturally identify ℱ with a covariant functor Algét(𝑘) →
Ab.

Lemma 3.13. With notation as above, a presheaf ℱ is an étale sheaf if and only if
the following two conditions hold:

(i) ℱ(∏𝐴𝑖) = ⨁ℱ(𝐴𝑖) for all finite sets of étale algebras {𝐴𝑖};
(ii) for all finite Galois extensions 𝐿′/𝐿 with 𝐿/𝑘 a finite separable extension, the

fixed set ofℱ(𝐿′) under the action of Gal(𝐿′/𝐿) equalsℱ(𝐿).

Explicitly, Gal(𝐿′/𝐿) acts on ℱ(𝐿) by (𝜎,𝑥) ↦ ℱ(𝜎)(𝑥) for 𝑥 ∈ ℱ(𝐿).

Proof. In light of proposition 3.6, ℱ is a Zariski sheaf if and only ℱ(∏𝐴𝑖) =
⨁ℱ(𝐴𝑖) for all étale algebras 𝐴𝑖 because any𝑈→ Spec𝑘 is discrete. If this holds,
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then by passing to restrictions we see that ℱ is étale if and only if for any pair
𝐿′/𝐿 of finite separable extensions of 𝑘, the diagram

ℱ(𝐿) →ℱ(𝐿′) ⇉ℱ(𝐿′ ⊗𝐿 𝐿
′) (3.7)

is an equaliser. If 𝐿′/𝐿 is Galois, it is easy to deduce the equalityℱ(𝐿) = ℱ(𝐿′)Gal(𝐿′/𝐿)

from eq. (3.7), hence proving necessity.

Conversely, we first prove thatℱ(𝐿) = ℱ(𝐿′)Gal(𝐿′/𝐿) is equivalent to exactness
of eq. (3.7) for Galois extensions.

(⇐) We have natural maps

𝐿′ 𝐿′ ⊗𝐿 𝐿
′ 𝐿′

𝑥↦1⊗𝑥

𝑥↦𝑥⊗1

𝜓𝜎 (3.8)

where 𝜓𝜎 ∶ 𝑥⊗𝑦 ↦ 𝑥𝜎(𝑦) for fixed 𝜎 ∈Gal(𝐿′/𝐿). If 𝑧 ∈ ℱ(𝐿′) is in the equaliser of
eq. (3.7), then ℱ(𝜎)(𝑧) = 𝑧, as required.

(⇒) If 𝑧 ∈ ℱ(𝐿′)Gal(𝐿′/𝐿), then 𝜓𝜎 is an isomorphism, so ℱ(𝜓𝜎) is injective,
which proves the exactness of eq. (3.7).

Finally, to show that exactness of eq. (3.7) for Galois extensions implies ex-
actness for general extensions, consider the diagram

ℱ(𝐿) ℱ(𝐿′) ℱ(𝐿′ ⊗𝐿 𝐿
′)

ℱ(𝐿) ℱ(𝐿″) ℱ(𝐿″ ⊗𝐿 𝐿
″)

Id (3.9)

where 𝐿″/𝐿′ is the Galois closure of an arbitrary finite separable extension 𝐿′ over
𝐿. By assumption the bottom line is exact, andℱ(𝐿) →ℱ(𝐿″) andℱ(𝐿) →ℱ(𝐿′)
are easily seen be injective. A standard diagram chase then gives exactness of the
top row.

We now turn to the construction of the functors of theorem 3.12. Supposeℱ
is an étale sheaf and let 𝐺 ..=Gal(𝑘sep/𝑘). Let𝑀ℱ

..= lim−−→ℱ(𝑘
′) where 𝑘′ runs over

finite separable extensions of 𝑘. It is straightforward to check that the images
of the inclusions ℱ(𝑘 ↪ 𝑘′) assemble to an injective system of abelian groups.
Moreover, this is compatible with the action of 𝐺 on eachℱ(𝑘′), giving rise to an
action of 𝐺 on𝑀ℱ. Thus𝑀ℱ is a 𝐺-module, and it is a good exercise to convince
oneself that it is discrete.

Conversely, given𝑀∈Mod(𝐺), define a presheaf

ℱ𝛭 ∶ Algét(𝑘) →Ab by ℱ𝛭(𝐴) =HomMod(𝐺)(ℱ(𝐴),𝑀). (3.10)

Here ℱ(𝐴) ..= HomAlg(𝑘)(𝐴,𝑘
sep). By the fundamental theorem of Galois the-

ory, for a finite separable extension 𝑘′/𝑘 we have ℱ(𝑘′) ≅ 𝐺/Gal(𝑘sep/𝑘) as 𝐺-
modules. It follows that 𝐹𝛭(𝑘

′) ≅𝑀Gal(𝑘sep/𝑘′). Note thatℱ𝛭 satisfies the criteria
in lemma 3.13 for being an étale sheaf:
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(i) ℱ𝛭(∏𝑘𝑖) = ⨁ℱ𝛭(𝑘𝑖) for finite collections of separable extensions 𝑘𝑖/𝑘 by
the standard properties of Hom;

( ii) For 𝑘″/𝑘′ finite Galois, ℱ𝛭(𝑘
″)Gal(𝑘″/𝑘′) = ℱ𝑚(𝑘

′) by the discussion above.

Exercise. Show that𝑀↦𝐹𝛭 is fully faithful and essentially surjective.

This proves theorem 3.12.

3.3 Henselian rings & étale stalks of the structure sheaf

Speaker: Jay Swar

When we first meet sheaves on topological spaces, a fundamental feature is
that isomorphisms can be detected on the level of stalks. It is natural to ask
whether the same holds for sheaves on sites, and in particular on the small étale
site. First we need to extend the notion of points in a way which is compatible
with our idea of coverings as distinguished 𝑋-schemes.

Definition 3.14. Let𝑋 be a scheme. A geometric point 𝑥 is a map 𝑥 ∶ Spec𝛺→
𝑋, where 𝛺 is some separably closed field.

By definition, a geometric point 𝑥 specifies a point 𝑥 ∈ 𝑋 along with an em-
bedding 𝜅(𝑥) ↪ 𝛺. Note that for any étale covering 𝑈 whose image contains 𝑥,
the diagram

Spec𝛺 𝑈

𝑋
𝑥

(3.11)

commutes. Such a 𝑈 is called an étale neighbourhood, and by abuse of notation
we write 𝑥 ∈ 𝑈. We can now take the injective limit of sections over such étale
neighbourhoods, giving the following definition:

Definition 3.15. The étale stalk of 𝑋 at a geometric point 𝑥 is given by

𝒪𝛸,𝑥 ..= lim−−→
𝑈∋𝑥
𝒪𝑈(𝑈). (3.12)

Example 3.16. If 𝑋 = Spec𝑘 for some field 𝑘 and 𝑥 ∶ Spec𝛺→𝑋 is a geometric
point, then 𝒪𝛸,𝑥 ≅ 𝛺.

The étale stalk satisfies many of the same properties as the usual stalk:

Proposition 3.17. Let 𝑋 be a scheme, 𝑥 a geometric point and let 𝜅(𝑥) denote the
residue field of 𝒪𝛸,𝑥.

(i) 𝒪𝛸,𝑥 is a local ring.
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(ii) 𝒪𝛸,𝑥 is Noetherian.
(iii) dim𝒪𝛸,𝑥 = dim𝒪𝛸,𝑥, that is, the Krull dimension of the étale stalk is the same

as that of the usual stalk.
(iv) every monic coprime factorisation in 𝜅(𝑥) lifts to a factorisation in 𝒪𝛸,𝑥.
(v) 𝜅(𝑥) is separably closed.

The last two properties do not hold for Zariski stalks, but are useful features
of étale stalks.

Definition 3.18. A local ring which satisfies (iv) is said to be Henselian, and is
strictly Henselian if it additionally obeys (v).

The Zariski stalks are not Henselian in general, so this is really a feature of the
étale stalks. This is ample motivation to study Henselian local rings in general.

Proposition 3.19. A local ring𝐴withmaximal ideal𝔪 and residue field 𝜅 isHenselian

if and only if for all 𝑓1,… ,𝑓𝑛 ∈ 𝑅[𝑥1…,𝑥𝑛] with det(
𝜕𝑓𝑖
𝜕𝑥𝑗
) ≠ 0, every common root of

the reductions 𝑓1,… ,𝑓𝑛 ∈ 𝜅[𝑥1,… ,𝑥𝑛] lifts to a common root in 𝑅.

This is reminiscent of Newton’s method, or Hensel’s lemma from which
Henselian rings get their name.

Given any local ring, there is a canonical way to construct an associated
Henselian ring, its Henselisation.

Proposition 3.20 ( [Sta21, Lemma 04GN]). Let 𝐴 be a local ring. There exists a
Henselian local ring 𝐴ℎ and 𝐴→ 𝐴ℎ a local homomorphism such that for any local
homomorphism 𝜙∶ 𝐴 → 𝐵 where 𝐵 is a Henselian local ring, there exists a unique
local homomorphism 𝐴ℎ→𝐵 such that the diagram commutes:

𝐴ℎ

𝐴 𝐵

∃! (3.13)

Recognising this as a universal property, the usual argument shows that 𝐴ℎ is
unique up to unique isomorphism.

Proof. The idea here is to define a category consisting of pairs (𝑆,𝔮), where 𝑆 is
a ring equipped with an étale ring map 𝑆 → 𝐴, and 𝔮 ⊂ 𝑆 is a prime lying above
𝔪, the maximal ideal of 𝐴. Morphisms in this category are given by 𝐴-algebra
morphisms 𝜙 ∶ 𝑆 → 𝑆′ such that 𝜙−1(𝔮′) = 𝔮. Then we can set 𝐴ℎ ..= lim−−→(𝑆,𝔮)

𝑆,
which exists because colimits exist in the category of rings. One also checks that
this is Henselian; details are provided in the link above.
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Definition 3.21. The ring 𝐴ℎ is called the Henselisation of 𝐴.

With suitable modification to the argument in proposition 3.20, namely by
considering instead triples (𝑆,𝔮,𝛼) where 𝛼 is a fixed map 𝜅(𝔮) → 𝜅sep, we get a
strictly Henselian ring 𝐴𝑠ℎ, called the strict Henselisation of 𝐴.

Example 3.22 (Exercise). If 𝐴 = ℤ(𝑝), then the strict Henselisation of 𝐴 equals
the integral closure of ℤ(𝑝) in ℤ𝑝.

Example 3.23 (Exercise). Let 𝑘 be algebraically closed, and 𝐴 = 𝒪𝔸𝑘,𝑥 where 𝑥 is
the origin, corresponding to the prime ideal (𝑥1,… ,𝑥𝑛). Then 𝐴

ℎ = 𝑘[[𝑥1,… ,𝑥𝑛]] ∩
𝑘(𝑥1,… ,𝑥𝑛)

alg.

Exercise (“You should probably google this”). Let 𝑋 be a variety over an alge-
braically closed field 𝑘, 𝑃 ∈ 𝑋 a non-singular point, and 𝑈 some Zariski open
neighbourhood of 𝑃. Then there exists an étale map 𝜙∶ 𝑈→𝔸𝑛𝑘 sending 𝑃 to 0.

Lemma 3.24. Let 𝑘 be algebraically closed, and let 𝑋 and 𝑌 be 𝑘-varieties. If 𝑋→𝑌
is an étale map, then the induced map 𝒪𝑌,𝑓(𝑥)→𝒪𝛸,𝑥 is an isomorphism.

Combining this with the previous, we get the following:

Corollary 3.25. Étale stalks at non-singular points of 𝑘-varieties are isomorphic to
the ring in example 3.23.

This is explained by the following proposition:

Proposition 3.26. Let𝑋 be a scheme, and 𝑥 a geometric point of𝑋 with underlying
point 𝑥 ∈ 𝑋. Then 𝒪𝛸,𝑥 ≅ (𝒪𝛸,𝑥)

𝑠ℎ.

Example 3.27 (“Henselisation does not commute with fibre products”). Let 𝐿
be a field of characteristic 0. Then 𝒪𝛸,𝑥 = 𝐿, which contains more arithmetic
information than just 𝐿 ≅ 𝒪𝛸,𝑥. On the other hand, if 𝐿/𝑘 is Galois, then

(𝒪𝛸,𝑥)
ℎ ⊗𝑘 𝑘 =∏

𝑖
𝑘, (3.14)

so in particular is not the strict Henselisation of 𝑘.

Theorem 3.28 (Artin approximation). Let {𝑓𝑖(𝑥1,… ,𝑥𝑛, 𝑦1,… ,𝑦𝑛)}𝑖 ⊂ 𝑘[𝑥1,… ,𝑥𝑛, 𝑦1,… ,𝑦𝑛]
be a collection of polynomials, and let 𝑦̂𝑖 be power series in 𝑥𝑖, i.e. 𝑦̂𝑖 ∈ 𝑘[[[]]𝑥1,… ,𝑥𝑛],
for 𝑖 = 1,… ,𝑛. If 𝑓𝑖(𝑥1,… ,𝑥𝑛, 𝑦̂1,… , 𝑦̂𝑛) = 0 for all 𝑖, then there is a collection of poly-
nomials 𝑦1,… ,𝑦𝑛 ∈ 𝑘[𝑥1,… ,𝑥𝑛] such that

𝑓(𝑥1,… ,𝑥𝑛, 𝑦1,… ,𝑦𝑛) = 0 and 𝑦𝑖 ≡ 𝑦̂𝑖 (mod (𝑥1,… ,𝑥𝑛)𝑛), (3.15)

for all 𝑖 = 1,… ,𝑛.
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3.4 Stalks of étale sheaves

Speaker: Martin Gallauer

Let𝑋 be a locally Noetherian scheme,ℱ a Zariski sheaf on𝑋, and fix a point
𝑥 ∈ 𝑋. The usual stalk ofℱ at 𝑥 can be described as the colimit lim−−→𝑈

ℱ(𝑈), where
𝑈 runs over Zariski covers 𝑈 𝜄−→𝑋 such that

𝑈

Spec𝜅(𝑥) 𝑋

𝜄

𝑥

(3.16)

commutes. If we identify 𝑈 with an open subset of 𝑋, then this reduces to the
requirement that 𝑥 ∈ 𝑈. However, eq. (3.16) is much more amenable to generali-
sation in the relative setting.

Definition 3.29. Let 𝑋 be a scheme,ℱ a presheaf on 𝑋ét, and 𝑥 ∶ Spec𝜅(𝑥) → 𝑋
a geometric point of 𝑋. The stalk of ℱ at 𝑥 is the object

ℱ𝑥 ..= lim−−→
(𝑈,𝑢)

ℱ(𝑈), (3.17)

where 𝑈 ranges over étale schemes 𝑈 → 𝑋 along with geometric points 𝑢 of 𝑈
such that the associated diagrams

𝑈

Spec𝜅(𝑥) 𝑋𝑥

𝑢 (3.18)

commute.

A pair (𝑈,𝑢) is frequently referred to as an étale neighbourhood of 𝑥.
Remark. (i) If ℱ is a presheaf valued in C, where C is the category of abelian

groups, rings or modules, then ℱ𝑥 is an object of C; this is equivalent to n
the statement that (⋅)𝑥 ∶ ℱ ↦ ℱ𝑥 is a map Sh(𝑋ét) → C. In fact, (exercise!)
it naturally determines a functor.

(ii) In the situation above, the colimit eq. (3.17) is filtered12, and it follows
(exercise!) that (⋅)𝑥 is an exact functor.

(iii) The stalk ℱ𝑥 only depends on the choice of separable closure 𝜅(𝑥) up to
isomorphism.

Proposition 3.30. A sequence of étale sheaves ℱ → 𝒢 → ℋ is exact if and only if
for every geometric point 𝑥 of 𝑋, the associated sequenceℱ𝑥→𝒢𝑥→ℋ𝑥 is exact.

12i.e. the colimit over a filtered category, see here.
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Proof sketch. This is mostly a formal verification. The key point is to reduce to
the following statement: If 𝑈→𝑋 is étale, 𝒫 ∈ Sh(𝑋ét), 𝑠 ∈ 𝒫(𝑈) and 𝑠𝑥 = 0 for
all geometric points 𝑥 of 𝑋, then 𝑠 = 0. Let’s prove this:

Since 𝑠𝑥 = 0, by definition there exists some étale neighbourhood 𝑉𝑢 →𝑈 of
𝑢 such that 𝑠|𝑉𝑢 = 0.

𝑉𝑢

𝑈

Spec𝜅(𝑥) 𝑋

𝑢

𝑣

(3.19)

But then the collection (𝑉𝑢→𝑈)𝑢 is an étale covering, and so 𝑠 = 0 by the sheaf
condition.

Recall that if ℱ = 𝒪𝛸 and 𝑥 is any geometric point of 𝑋 with image 𝑥, then
𝒪𝛸,𝑥 = (𝒪𝛸,𝑥)

𝑠ℎ. These fit into a diagram

𝒪𝛸,𝑥 𝒪ℎ𝛸,𝑥 𝒪𝑠ℎ𝛸,𝑥 ≅ 𝒪𝛸,𝑥

𝒪𝛸,𝑥

(3.20)

Another important feature of stalks in the étale topology is that they admit a nat-
ural Galois action. More precisely, if 𝜅(𝑥)/𝜅(𝑥) is the separably closed field exten-
sion associated to a geometric point 𝑥 andℱ an étale sheaf, then𝐺 ..=Gal(𝜅(𝑥)/𝜅(𝑥))
acts onℱ𝑥 as follows: for any 𝜎 ∈ 𝐺, a triple (𝑈,𝑢, 𝑠)where (𝑈,𝑢) is an étale neigh-
bourhood of 𝑥 and 𝑠 ∈ ℱ(𝑈) is sent to the triple (𝑈,𝑢 ∘ 𝜎, 𝑠).
Exercise. Check that this induces an action on the stalk ℱ𝑥 = lim−−→(𝑈,𝑢)

ℱ(𝑈).

As a consequence, the functor (⋅)𝑥 is actually a functor Sh(𝑋ét) → Mod(𝐺),
the category of 𝐺-modules; it is easy to verify that morphisms are automatically
𝐺-equivariant.
Exercise. Prove that this is in fact an equivalence of categories, by showing that
(⋅)𝑥 coincides with the functor of theorem 3.12.
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