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In this section we prove that many of the operations on sheaves generalises
from the usual setting. First we need to extend our notion of a continuous map:

Definition 3.31. Let (C′/𝑋′)𝛦′ and (C/𝑋)𝛦 be sites of schemes 𝑋 and 𝑋′, and
𝜋∶ 𝑋′→𝑋 a morphism of schemes. We say that 𝜋 is a continuous map of sites
if the following conditions hold:

(i) If 𝑌 ∈ C, then 𝑌(𝛸′) ..= 𝑌 ×𝛸𝑋
′ ∈ C′.

( ii) In the Cartesian diagram

𝑈(𝛸′) 𝑈

𝑋′ 𝑋

𝑓′ 𝑓

𝜋

(3.21)

if 𝑓 ∈ 𝐸, then the base change 𝑓′ is in 𝐸′.

Here (i) is an analogue of the property that preimages of open sets are open,
and by abuse of notation we write 𝜋−1(𝑌) ..= 𝑌(𝛸′) = 𝑌 ×𝛸 𝑋

′. On the other hand,
(ii) ensures that we don’t run into trouble when pulling back covers.

Note that since base change preserves surjectivity (see eg. [Sta21, Lemma
01S1]) a continuous map of sites takes coverings to coverings.

Example 3.32. Any morphism𝑋′→𝑋 induces a continuous map of sites𝑋′ét →
𝑋ét; this is a direct consequence of proposition 2.44.

Definition 3.33. Let 𝜋∶ 𝑋′𝛦′ →𝑋𝛦 be a continuous map of sites, andℱ′ a presheaf
on𝑋′𝛦′ . The direct image presheaf 𝜋𝑝ℱ

′ is the presheaf on𝑋𝛦 defined by 𝜋𝑝ℱ
′(𝑈) ..=

ℱ′(𝑈 ×𝛸𝑋
′).

Note that if ℱ′ is a sheaf, then so is 𝜋𝑝ℱ
′. In fact, the map 𝜋𝑝 is a functor

pSh(𝑋′𝛦′) → pSh(𝑋𝛦). While it is not hard to check that 𝜋𝑝 preserves exactness,
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it is not true for the restriction to the full subcategory of sheaves, 𝜋∗ ∶ Sh(𝑋′𝛦′) →
Sh(𝑋𝛦).

As in the case of sheaves on a topological space we can also pull a sheaf on 𝑋
back along 𝑋′→𝑋:

Definition 3.34. Let 𝜋 ∶ 𝑋′𝛦′ → 𝑋𝛦 be a continuous map of sites. The inverse
image functor is the functor 𝜋𝑝 ∶ pSh(𝑋𝛦) → pSh(𝑋′𝛦′) given by the left adjoint
of 𝜋𝑝.

The existence of such a functor follows from a general category-theoretical
argument, and more details can be found in [Mil80, II.2.2].

In the étale topology, we can give a more explicit construction of 𝜋𝑝: For
ℱ ∈ pSh(𝑋ét), let 𝜋

𝑝ℱ(𝑈′) ..= lim−−→(𝑔,𝑈)
ℱ(𝑈), where the colimit is taken over pairs

(𝑔,𝑈) fitting into a commuting diagram

𝑈′ 𝑈

𝑋′ 𝑋

𝑔

𝜋

(3.22)

These form a direct system with morphisms ℎ ∶ 𝑈1→𝑈2 fitting into the commu-
tative diagrams

𝑈′ 𝑈2

𝑈1

𝑋′ 𝑋

𝑔2

𝑔1 ℎ

𝜋

(3.23)

One can check by hand that this indeed defines a sheaf on 𝑋′ét, and that it is left
adjoint to 𝜋𝑝. Note that for general sites 𝑋𝛦 and 𝑋′𝛦′ the functor 𝜋𝑝 does not
preserve the sheaf condition. See [Mil80, §II.2] for further details.

Proposition 3.35. Let 𝜋∶ 𝑋′𝛦′ →𝑋𝛦 be a continuous map of sites.

(i) The functor 𝜋𝑝 ∶ pSh(𝑋′𝛦′) → pSh(𝑋𝛦) is exact;
(ii) the functor 𝜋𝑝 ∶ pSh(𝑋𝛦) → pSh(𝑋′𝛦′) is right exact;
(iii) the functor 𝜋𝑝 ∶ Sh(𝑋𝛦) → pSh(𝑋′𝛦′) is also left exact in the étale topology.

Proof. (i) follows directly from definition; simply check every étale 𝑈→𝑋. ( ii)
follows from adjointness. Finally, (iii) follows from the fact that 𝜋𝑝ℱ(𝑈′) is a
cofiltered colimit in Ab, and these are exact by a general category-theoretic argu-
ment.
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Example 3.36 (The Kummer sequence). Recall that the étale sheaf 𝜇𝑛 from ex-
ample 3.7 is represented by

Spec ℤ[𝑡, 𝑡
−1]

(𝑡𝑛 − 1) ×Specℤ𝑋. (3.24)

This can equivalently be realised as the kernel sheaf of the map 𝔾𝑚→𝔾𝑚, where
𝔾𝑚 is the multiplicative group scheme represented by 𝔾𝑚,𝛸 ..= Specℤ[𝑡, 𝑡−1] × 𝑋;
explicitly we have 𝔾𝑚(𝑈) = 𝛤(𝒪𝑈,𝑈)

×. The corresponding sequence

0→ 𝜇𝑛→𝔾𝑚
𝑠↦𝑠𝑛−−−→𝔾𝑚→0 (3.25)

need not be exact in general. This is called the Kummer sequence.
Exercise. Suppose 𝑛 is invertible everywhere on 𝑋.

( i) Show that the Kummer sequence is not exact on Zariski sheaves.
(ii) Show that the Kummer sequence is not exact on Zariski presheaves.
(iii) Show that the Kummer sequence is exact in the category of étale sheaves.

Example 3.37 (The Artin-Schreier sequence). Let 𝑋 be a scheme over a field of
characteristic 𝑝, and let 𝔾𝑎 be the sheaf on 𝑋ét given by 𝔾𝑎(𝑈) = 𝛤(𝒪𝑈,𝑈). Then
we have a sequence

0→ ℤ/𝑝ℤ→𝔾𝑎
𝐹−Id−−−−→𝔾𝑎→0, (3.26)

where 𝐹 is the Frobenius map on 𝔾𝑎. This is called the Artin-Schreier sequence.
As with the Kummer sequence, this is not exact on the right in the categories
of Zariski sheaves or presheaves, but it is exact in the category of étale sheaves,
essentially because the polynomial 𝑇𝑝 −𝑇 is separable (exercise!).

Just like with topological spaces, there is a canonical way of producing a sheaf
on any site from a given presheaf.

Theorem 3.38. Let 𝑋𝛦 be a site. For any presheaf𝒫 ∈ pSh(𝑋𝛦), there exists a sheaf
𝒫𝑎 ∈ Sh(𝑋𝛦) such that for any sheaf ℱ ∈ Sh(𝑋𝛦) and morphism of presheaves𝒫→
ℱ, there exists a unique morphism of sheaves𝒫𝑎→ℱ so that the following diagram
commutes:

𝒫𝑎

𝒫 ℱ

∃!𝑎 (3.27)

For a proof, see [Mil80, Thm. II.2.11] or [Sta21, Section 00W1].

Since 𝑎 is defined by a universal property, the standard argument shows that
ℱ𝑎 is unique up to unique isomorphism. In fact, the construction is functorial.

Definition 3.39. The functor ℱ↦ℱ𝑎 is called the sheafification functor.
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One important fact about sheafification is that it preserves stalks: for any
geometric point 𝑥 on 𝑋, we have that (ℱ𝑎)𝑥 = ℱ𝑥.

Proposition 3.40. Let 𝑋𝛦 be a site.

(i) Sheafification is functorial, and the sheafification functor 𝑎 is left adjoint to the
inclusion functor Sh(𝑋𝛦) ↪ pSh(𝑋𝛦). Moreover, the functor 𝑎 is exact.

(ii) For a sequence of sheaves 0 → ℱ → 𝒢 → ℋ → 0, exactness on the left in
Sh(𝑋𝛦) is equivalent to left exactness as a sequence of presheaves. This is also
equivalent to left exactness on the level of sections; if 𝑋𝛦 = 𝑋ét, then this is also
equivalent to left exactness on stalks.

(iii) Amorphism in Sh(𝑋𝛦) is surjective if and only if it is surjective on sections. If
𝑋𝛦 = 𝑋ét, then this is equivalent to surjectivity on stalks.

(iv) Limits in Sh(𝑋𝛦) coincide with limits in pSh(𝑋𝛦); a colimit in Sh(𝑋𝛦) is the
sheafification of a colimit in pSh(𝑋𝛦)

(v) The category Sh(𝑋𝛦) is abelian and has arbitrary direct sums and products;
filtered colimits respect exactness.

With the axioms from Grothendieck’s Tohoku paper, (v) can be rephrased as
“Sh(𝑋𝛦) satisfies AB5, AB3* (but not AB4*)”.13

Let 𝜋∶ 𝑋′ → 𝑋 be a continuous map of sites. Recall that we defined the
functor 𝜋∗ as the restriction of 𝜋𝑝 to the category of sheaves. This fails for 𝜋𝑝

because 𝜋𝑝ℱ is generally not a sheaf even if ℱ is. However, we can mend this by
sheafifying:

Definition 3.41. Let 𝜋∶ 𝑋′→𝑋 be a continuous map of sites. The functor

𝜋∗ ∶ Sh(𝑋𝛦) → Sh(𝑋′𝛦′), ℱ ↦ 𝜋∗ℱ ..= (𝜋𝑝ℱ)𝑎 (3.28)

is called the pullback along 𝜋, or inverse image functor.

By the universal property of sheafification, it is easy to see that (𝜋∗,𝜋
∗) form

an adjoint pair. Since 𝜋∗ is not exact in general, neither is 𝜋∗. However, by
proposition 3.35 𝜋𝑝 is for the étale site, and so 𝜋∗ is as well, being a composition
of left exact functors, Sh↪ pSh 𝜋𝑝−−→ pSh 𝑎−→ Sh.

For the remainder of the section, we fix a scheme 𝑋 equipped with the étale
topology. Moreover, if 𝑗 ∶ 𝑈 ↪ 𝑋 is an open immersion, we tend to identify
𝑈 with its image in 𝑋. The following proposition tells us how pullbacks and
pushforwards interact with stalks.

Proposition 3.42 ( [Mil80, Cor. II.3.5]). Let 𝑋 and 𝑋′ be schemes.
13AB4* states that an arbitrary product of exact sequences is exact, which is false in general.

For some counterexamples, see here.
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(i) For any 𝜋∶ 𝑋′ → 𝑋, ℱ ∈ Sh(𝑋ét), and 𝑥
′ a geometric point on 𝑋′. Then

(𝜋∗ℱ)𝑥′ = ℱ𝜋(𝑥′).
(ii) If 𝑗 ∶ 𝑈 → 𝑋 is an open immersion, ℱ ∈ Sh(𝑈ét), and 𝑥 a geometric point on

𝑋 such that 𝑥 ∈ 𝑈, then (𝑗∗ℱ)𝑥 = ℱ𝑥.
(iii) If 𝑖 ∶ 𝑍 → 𝑋 is a closed immersion, ℱ ∈ Sh(𝑍ét), and 𝑥 a geometric point on

𝑋, then

(𝑖∗ℱ)𝑥 = {
ℱ𝑥 if 𝑥 ∈ 𝑍,
0 if 𝑥 ∉ 𝑍.

(3.29)

(iv) If 𝜋∶ 𝑋′→𝑋 is finite andℱ′ ∈ Sh(𝑋′), then (𝜋∗ℱ′)𝑥 =⨁𝑥′↦𝑥(ℱ
′
𝑥)
𝑑(𝑥′), where

𝑑(𝑥′) = [𝜅(𝑥′) ∶ 𝜅(𝑥)]sep, for any geometric point 𝑥 of 𝑋.

Definition 3.43. Let 𝑗 ∶ 𝑈 ↪ 𝑋 be an open immersion of schemes, and fix 𝒫 ∈
pSh(𝑈ét). Define

𝒫!(𝑉) ..= {
𝒫(𝑉) if 𝜙(𝑉) ⊂ 𝑈 for an étale morphism 𝜙∶ 𝑉→𝑋,
0 otherwise.

(3.30)

This is called “𝒫 lower shriek”.

If 𝑓∶ 𝒫 → 𝒫′ is a morphism of presheaves, then we obtain an associated
morphism 𝒫! →𝒫′

! by “extending 𝑓 by 0 outside 𝑈”; thus 𝒫↦𝒫! is a functor.
We can upgrade this to a functor of sheaves by precomposing with the inclusion
Sh↪ pSh and postcomposing with sheafification.

Definition 3.44. Let 𝑈↪𝑋 be an open immersion of schemes. The extension
by 0-functor 𝑗! ∶ Sh(𝑈ét) → Sh(𝑋ét) is given by ℱ↦ 𝑗!ℱ ..= (ℱ!)

𝑎.

It is a straightforward exercise using the universal property of sheafification
to show that (𝑗!, 𝑗

∗) form an adjoint pair.

Proposition 3.45. If 𝑗 ∶ 𝑈 ↪ 𝑋 is an open immersion, ℱ ∈ Sh(𝑈ét) and 𝑥 a geo-
metric point of 𝑋, then (𝑗!ℱ)𝑥 = ℱ𝑥 if 𝑥 ∈ 𝑈, and 0 otherwise.

Definition 3.46. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion and 𝑗 ∶ 𝑈 = 𝑋 ⧵ 𝑍 → 𝑋
an open immersion. We define a category 𝑇(𝑋) consisting of triples (ℱ1,ℱ2,𝜙)
where ℱ1 ∈ Sh(𝑍ét),ℱ2 ∈ Sh(𝑈ét) and 𝜙∶ ℱ1→ 𝑖∗𝑗∗ℱ2 is a morphism in Sh(𝑍ét).

Theorem 3.47 ( [Mil80, Thm. II.3.10]). Fix 𝑖 ∶ 𝑍 → 𝑋 a closed immersion and
𝑗 ∶ 𝑈 = 𝑋⧵𝑍→𝑋 an open immersion. There is an equivalence of categories

Sh(𝑋ét) → 𝑇(𝑋)
ℱ↦ (𝑖∗ℱ,𝑗∗ℱ,𝜙ℱ)

𝜓 ↦ (𝑖∗𝜓,𝑗∗𝜓).
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Definition 3.48. Let 𝑋 be a scheme, 𝑌 ↪ 𝑋 a subscheme and ℱ ∈ Sh(𝑋ét). We
say that ℱ has support in 𝑌 if ℱ𝑥 = 0 for every geometric point 𝑥 with image in
𝑋⧵𝑌.

From the previous theorem we deduce the following:

Corollary 3.49 ( [Mil80, Cor. II.3.11]). With notation as above, there is an equiv-
alence of categories between Sh(𝑍ét) and the full subcategory of sheaves on 𝑋 with
support in 𝑍.

Proof (sketch). The main idea here is to show that sheaves with support in 𝑍 are
equivalent to the subcategory of 𝑇(𝑋) given by (𝑖∗ℱ,0,0).

Definition 3.50. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion and 𝑗 ∶ 𝑈 = 𝑋 ⧵𝑍→𝑋 an
open immersion. Then we have functors

Sh(𝑍ét) Sh(𝑋ét) Sh(𝑈ét)
𝑖∗

𝑖∗

𝑖!

𝑗∗

𝑗∗

𝑗!

(3.31)

which using the equivalence in corollary 3.49 are given explicitly as follows:

𝑖∗ ∶ ℱ1 ↤ (ℱ1,ℱ2,𝜙), 𝑗! ∶ (0,ℱ2, 0) ↤ ℱ2,
𝑖∗ ∶ ℱ1 ↦ (ℱ1, 0,0), 𝑗∗ ∶ (ℱ1,ℱ2,𝜙) ↦ ℱ2, (3.32)

𝑖! ∶ ker𝜙 ↤ (ℱ1,ℱ2,𝜙), 𝑗∗ ∶ (𝑖
∗𝑗∗ℱ2,ℱ2, Id) ↤ ℱ2.

Proposition 3.51 ( [Mil80, Prop. II.3.14]). Keeping the notation from the previous
definition, we have the following:

(i) For the top four functors in eq. (3.32), each forms an adjoint pair with the one
immediately below.

(ii) The functors 𝑖∗, 𝑖∗, 𝑗
∗ and 𝑗∗ are exact.

(iii) The functors 𝑖∗, 𝑗∗ and 𝑗! are fully faithful.
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