The Weil conjectures

Étale cohomology reading seminar
30/07/21

Outline

Statement of Weil conjectures

W1 and W2, "rationality" and "integrality"

W5: "Functoriality

W3: "Functional equation"

Summary of the étale cohomology seminar

Statement of Weil conjectures

Setup

- X / \mathbb{F}_{q} smooth projective variety of dim. $d ; q$ a power of p.

Setup

- X / \mathbb{F}_{q} smooth projective variety of dim. $d ; q$ a power of p.

$$
Z(X, t):=\exp \left(\sum_{n>0} N_{n}(X) \frac{t^{n}}{n}\right), \quad N_{n}(X):=\# X\left(\mathbb{F}_{q^{n}}\right)
$$

Setup

- X / \mathbb{F}_{q} smooth projective variety of dim. $d ; q$ a power of p.

$$
Z(X, t):=\exp \left(\sum_{n>0} N_{n}(X) \frac{t^{n}}{n}\right), \quad N_{n}(X):=\# X\left(\mathbb{F}_{q^{n}}\right)
$$

- From Martin's intro: $\frac{d}{d t} \log Z(X, t)=\sum N_{n+1}(X) T^{n}$.

Setup

- X / \mathbb{F}_{q} smooth projective variety of dim. $d ; q$ a power of p.

$$
Z(X, t):=\exp \left(\sum_{n>0} N_{n}(X) \frac{t^{n}}{n}\right), \quad N_{n}(X):=\# X\left(\mathbb{F}_{q^{n}}\right)
$$

- From Martin's intro: $\frac{d}{d t} \log Z(X, t)=\sum N_{n+1}(X) T^{n}$.
- eg. for $X=\mathbb{P}_{\mathbb{P}_{q}}^{n}$,

$$
Z(X, t)=\frac{1}{(1-t)(1-q t) \ldots\left(1-q^{n} t\right)}
$$

Weil conjectures

(W1) "Rationality":

$$
Z(X, t)=\frac{P_{1}(t) \ldots P_{2 d-1}(t)}{P_{0}(t) \ldots P_{2 d}(t)} .
$$

Weil conjectures

(W1) "Rationality":

$$
Z(X, t)=\frac{P_{1}(t) \ldots P_{2 d-1}(t)}{P_{0}(t) \ldots P_{2 d}(t)} .
$$

(W2) "Integrality":

$$
P_{0}(t)=1-t, \quad P_{2 d}(t)=1-q^{d} t, \quad P_{r}(t)=\prod\left(1-a_{i, r} t\right), \quad a_{i, r} \in \overline{\mathbb{Q}} .
$$

Weil conjectures

(W1) "Rationality":

$$
Z(X, t)=\frac{P_{1}(t) \ldots P_{2 d-1}(t)}{P_{0}(t) \ldots P_{2 d}(t)}
$$

(W2) "Integrality":

$$
P_{0}(t)=1-t, \quad P_{2 d}(t)=1-q^{d} t, \quad P_{r}(t)=\prod\left(1-a_{i, r} t\right), \quad a_{i, r} \in \overline{\mathbb{Q}} .
$$

(W3) "Functional equation":

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d \chi / 2} t^{\chi} Z(X, t)
$$

Weil conjectures

(W1) "Rationality":

$$
Z(X, t)=\frac{P_{1}(t) \ldots P_{2 d-1}(t)}{P_{0}(t) \ldots P_{2 d}(t)}
$$

(W2) "Integrality":

$$
P_{0}(t)=1-t, \quad P_{2 d}(t)=1-q^{d} t, \quad P_{r}(t)=\prod\left(1-a_{i, r} t\right), \quad a_{i, r} \in \overline{\mathbb{Q}} .
$$

(W3) "Functional equation":

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2} t^{x} Z(X, t)
$$

(W4) "Riemann hypothesis": The numbers $a_{i, r}$ are Weil numbers, i.e. all their conjugates have real absolute value $q^{r / 2}$.

Weil conjectures

(W1) "Rationality":

$$
Z(X, t)=\frac{P_{1}(t) \ldots P_{2 d-1}(t)}{P_{0}(t) \ldots P_{2 d}(t)}
$$

(W2) "Integrality":

$$
P_{0}(t)=1-t, \quad P_{2 d}(t)=1-q^{d} t, \quad P_{r}(t)=\prod\left(1-a_{i, r} t\right), \quad a_{i, r} \in \overline{\mathbb{Q}} .
$$

(W3) "Functional equation":

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2} t^{x} Z(X, t)
$$

(W4) "Riemann hypothesis": The numbers $a_{i, r}$ are Weil numbers, i.e. all their conjugates have real absolute value $q^{r / 2}$.
(W5) "Functoriality": if $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}$ for some X_{0} / k a nr. field, then

$$
\operatorname{deg} P_{i}=\beta_{i}\left(X_{0}\right):=\operatorname{dim} H^{i}\left(X_{0}(\mathbb{C}), \mathbb{C}\right)
$$

W1 and W2, "rationality" and "integrality"

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\bar{F}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\bar{F}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).
- Key observation: if $\bar{X}=X \times \operatorname{Spec} \overline{\mathbb{F}}_{q}$, then $X\left(\mathbb{F}_{q}\right)=\bar{X}^{\phi}$.

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).
- Key observation: if $\bar{X}=X \times \operatorname{Spec} \overline{\mathbb{F}}_{q}$, then $X\left(\mathbb{F}_{q}\right)=\bar{X}^{\phi}$.
- More generally, $X\left(\mathbb{F}_{q^{n}}\right)=\bar{X}^{\phi^{n}}$ (multiplicity 1 as $d \phi=0$).

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).
- Key observation: if $\bar{X}=X \times \operatorname{Spec} \overline{\mathbb{F}}_{q}$, then $X\left(\mathbb{F}_{q}\right)=\bar{X}^{\phi}$.
- More generally, $X\left(\mathbb{F}_{q^{n}}\right)=\bar{X}^{\phi^{n}}$ (multiplicity 1 as $d \phi=0$).
- By Lefschetz fixed point theorem,

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=\sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right)
$$

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).
- Key observation: if $\bar{X}=X \times \operatorname{Spec} \overline{\mathbb{F}}_{q}$, then $X\left(\mathbb{F}_{q}\right)=\bar{X}^{\phi}$.
- More generally, $X\left(\mathbb{F}_{q^{n}}\right)=\bar{X}^{\phi^{n}}$ (multiplicity 1 as $d \phi=0$).
- By Lefschetz fixed point theorem,

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=\sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right)
$$

- Lemma: Proof

Let $P_{r}(t)=\operatorname{det}\left(|d-\phi t|_{\mu^{r}}\right)=\prod_{i}\left(1-a_{i, r} t\right)$. Then $\operatorname{tr}\left(\phi^{n}\right)=\sum_{i} a_{i, r}^{n}$.

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).
- Key observation: if $\bar{X}=X \times \operatorname{Spec} \overline{\mathbb{F}}_{q}$, then $X\left(\mathbb{F}_{q}\right)=\bar{X}^{\phi}$.
- More generally, $X\left(\mathbb{F}_{q^{n}}\right)=\bar{X}^{\phi^{n}}$ (multiplicity 1 as $d \phi=0$).
- By Lefschetz fixed point theorem,

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=\sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right)
$$

- Lemma: Proof Let $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\left.\phi t\right|_{\mu^{r}}\right)=\prod_{i}\left(1-a_{i, r} t\right)$. Then $\operatorname{tr}\left(\phi^{n}\right)=\sum_{i} a_{i, r}^{n}$.
- Therefore,

$$
\log \left(P_{r}(t)\right)
$$

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).
- Key observation: if $\bar{X}=X \times \operatorname{Spec} \overline{\mathbb{F}}_{q}$, then $X\left(\mathbb{F}_{q}\right)=\bar{X}^{\phi}$.
- More generally, $X\left(\mathbb{F}_{q^{n}}\right)=\bar{X}^{\phi^{n}}$ (multiplicity 1 as $d \phi=0$).
- By Lefschetz fixed point theorem,

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=\sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right)
$$

- Lemma: Proof Let $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\left.\phi t\right|_{H^{r}}\right)=\prod_{i}\left(1-a_{i, r} t\right)$. Then $\operatorname{tr}\left(\phi^{n}\right)=\sum_{i} a_{i, r}^{n}$.
- Therefore,

$$
\log \left(P_{r}(t)\right)=\sum_{i} \log \left(1-a_{i, r} t\right)
$$

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).
- Key observation: if $\bar{X}=X \times \operatorname{Spec} \overline{\mathbb{F}}_{q}$, then $X\left(\mathbb{F}_{q}\right)=\bar{X}^{\phi}$.
- More generally, $X\left(\mathbb{F}_{q^{n}}\right)=\bar{X}^{\phi^{n}}$ (multiplicity 1 as $d \phi=0$).
- By Lefschetz fixed point theorem,

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=\sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right)
$$

- Lemma: Proof Let $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\left.\phi t\right|_{\mu^{r}}\right)=\prod_{i}\left(1-a_{i, r} t\right)$. Then $\operatorname{tr}\left(\phi^{n}\right)=\sum_{i} a_{i, r}^{n}$.
- Therefore,

$$
\log \left(P_{r}(t)\right)=\sum_{i} \log \left(1-a_{i, r} t\right) \stackrel{(*)}{=}-\sum_{i} \sum_{n>0} a_{i, r}^{n} \frac{t^{n}}{n}
$$

Rewriting the zeta function I

- Frobenius morphism $\phi: x \mapsto x^{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ on \mathbb{F}_{q} induces morphism $X \rightarrow X$ (on affines, $\Gamma\left(\mathscr{O}_{X}, U\right) \rightarrow \Gamma\left(\mathscr{O}_{X}, U\right)+$ glue).
- Key observation: if $\bar{X}=X \times \operatorname{Spec} \overline{\mathbb{F}}_{q}$, then $X\left(\mathbb{F}_{q}\right)=\bar{X}^{\phi}$.
- More generally, $X\left(\mathbb{F}_{q^{n}}\right)=\bar{X}^{\phi^{n}}$ (multiplicity 1 as $d \phi=0$).
- By Lefschetz fixed point theorem,

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=\sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right)
$$

- Lemma: Proof Let $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\left.\phi t\right|_{H^{r}}\right)=\prod_{i}\left(1-a_{i, r} t\right)$. Then $\operatorname{tr}\left(\phi^{n}\right)=\sum_{i} a_{i, r}^{n}$.
- Therefore,

$$
\log \left(P_{r}(t)\right)=\sum_{i} \log \left(1-a_{i, r} t\right) \stackrel{(*)}{=}-\sum_{i} \sum_{n>0} a_{i, r}^{n} \frac{t^{n}}{n} \stackrel{\text { lemma }}{=}-\sum_{n>0} \operatorname{tr}\left(\phi^{n}\right) \frac{t^{n}}{n}
$$

Rewriting the zeta function II

$$
\text { - } \log \left(P_{r}(t)\right)=-\sum_{n>0} \operatorname{tr}\left(\phi^{n}\right) \frac{t^{n}}{n} \text { so }
$$

Rewriting the zeta function II

$$
\begin{array}{r}
\circ \log \left(P_{r}(t)\right)=-\sum_{n>0} \operatorname{tr}\left(\phi^{n}\right) \frac{t^{n}}{n} \text { so } \\
Z(t)=\exp \sum_{n>0} N_{n} \frac{t^{n}}{n}
\end{array}
$$

Rewriting the zeta function II

$$
\begin{aligned}
& \circ \log \left(P_{r}(t)\right)=-\sum_{n>0} \operatorname{tr}\left(\phi^{n}\right) \frac{t^{n}}{n} \text { so } \\
& \qquad \begin{aligned}
Z(t) & =\exp \sum_{n>0} N_{n} \frac{t^{n}}{n} \\
& \stackrel{\text { LTF }}{=} \exp \sum_{n>0} \sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right) \frac{t^{n}}{n}
\end{aligned}
\end{aligned}
$$

Rewriting the zeta function II

$$
\begin{aligned}
& \circ \log \left(P_{r}(t)\right)=- \sum_{n>0} \operatorname{tr}\left(\phi^{n}\right) \frac{t^{n}}{n} \text { so } \\
& Z(t)=\exp \sum_{n>0} N_{n} \frac{t^{n}}{n} \\
&=\operatorname{LTF} \\
&=\exp \sum_{n>0} \sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right) \frac{t^{n}}{n} \\
&=\exp \sum_{r=0}^{2 d}(-1)^{r} \sum_{n>0} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right) \frac{t^{n}}{n}
\end{aligned}
$$

Rewriting the zeta function II

$$
\begin{aligned}
& \circ \log \left(P_{r}(t)\right)=-\sum_{n>0} \operatorname{tr}\left(\phi^{n}\right) \frac{t^{n}}{n} \text { so } \\
& \qquad \begin{aligned}
Z(t) & =\exp \sum_{n>0} N_{n} \frac{t^{n}}{n} \\
& \stackrel{\text { LTF }}{=} \exp \sum_{n>0} \sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right) \frac{t^{n}}{n} \\
& =\exp \sum_{r=0}^{2 d}(-1)^{r} \sum_{n>0} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right) \frac{t^{n}}{n} \\
& =\exp \sum_{r=0}^{2 d}(-1)^{r+1} \log \left(P_{r}(t)\right)
\end{aligned}
\end{aligned}
$$

Rewriting the zeta function II

$$
\begin{aligned}
\circ \log \left(P_{r}(t)\right)=- & \sum_{n>0} \operatorname{tr}\left(\phi^{n}\right) \frac{t^{n}}{n} \text { so } \\
Z(t) & =\exp \sum_{n>0} N_{n} \frac{t^{n}}{n} \\
& =\exp \sum_{n>0} \sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right) \frac{t^{n}}{n} \\
& =\exp \sum_{r=0}^{2 d}(-1)^{r} \sum_{n>0} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{Q}\right)\right) \frac{t^{n}}{n} \\
& =\exp \sum_{r=0}^{2 d}(-1)^{r+1} \log \left(P_{r}(t)\right) \\
& =\prod_{r=0}^{2 d} \operatorname{det}\left(l d-\phi t \mid H^{r}\right)^{(-1)^{r+1}} .
\end{aligned}
$$

Rewriting the zeta function II

$$
\begin{aligned}
& \circ \log \left(P_{r}(t)\right)=-\sum_{n>0} \operatorname{tr}\left(\phi^{n}\right) \frac{t^{n}}{n} \text { so } \\
& \begin{aligned}
Z(t) & =\exp \sum_{n>0} N_{n} \frac{t^{n}}{n} \\
& =\exp \sum_{n>0} \sum_{r=0}^{2 d}(-1)^{r} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{\ell}\right)\right) \frac{t^{n}}{n} \\
& =\exp \sum_{r=0}^{2 d}(-1)^{r} \sum_{n>0} \operatorname{tr}\left(\phi^{n} \mid H^{r}\left(X, \mathbb{Q}_{Q}\right)\right) \frac{t^{n}}{n} \\
& =\exp \sum_{r=0}^{2 d}(-1)^{r+1} \log \left(P_{r}(t)\right) \\
& =\prod_{r=0}^{2 d} \operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)^{(-1)^{1+1}} .
\end{aligned} .
\end{aligned}
$$

- We have proved (W1)! Link .

W2: "Integrality"

- What is $P_{r}(t)=\operatorname{det}\left(I d-\phi t \mid H^{r}\right)$?

W2: "Integrality"

- What is $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$? A priori, $P_{r} \in \mathbb{Q}_{\ell}[t]$.

W2: "Integrality"

- What is $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$? A priori, $P_{r} \in \mathbb{Q}_{\ell}[t]$.
- e.g. $\phi \mid H^{0}$ is the identity, so $P_{0}(t)=\operatorname{det}(\operatorname{ld}-\operatorname{ld} t)=1-t \in \mathbb{Z}[t]$.

W2: "Integrality"

- What is $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$? A priori, $P_{r} \in \mathbb{Q}_{\ell}[t]$.
- e.g. $\phi \mid H^{0}$ is the identity, so $P_{0}(t)=\operatorname{det}(\operatorname{ld}-\operatorname{ld} t)=1-t \in \mathbb{Z}[t]$.
- Similarly, $\phi \mid H^{2 d}$ acts like mult. by q^{d}, so $P_{2 d}(t)=1-q^{d} t \in \mathbb{Z}[t]$.

W2: "Integrality"

- What is $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$? A priori, $P_{r} \in \mathbb{Q}_{\ell}[t]$.
- e.g. $\phi \mid H^{0}$ is the identity, so $P_{0}(t)=\operatorname{det}(\operatorname{ld}-\operatorname{ld} t)=1-t \in \mathbb{Z}[t]$.
- Similarly, $\phi \mid H^{2 d}$ acts like mult. by q^{d}, so $P_{2 d}(t)=1-q^{d} t \in \mathbb{Z}[t]$.
- Claim: $Z(t) \in \mathbb{Q}(t)$.

W2: "Integrality"

- What is $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$? A priori, $P_{r} \in \mathbb{Q}_{e}[t]$.
- e.g. $\phi \mid H^{0}$ is the identity, so $P_{0}(t)=\operatorname{det}(\operatorname{ld}-\operatorname{ld} t)=1-t \in \mathbb{Z}[t]$.
- Similarly, $\phi \mid H^{2 d}$ acts like mult. by q^{d}, so $P_{2 d}(t)=1-q^{d} t \in \mathbb{Z}[t]$.
- Claim: $Z(t) \in \mathbb{Q}(t)$.

Pf. $Z(t) \in \mathbb{Q} \llbracket t \rrbracket \cap \mathbb{Q}_{\ell}(t)$, so a lemma of Fatou implies $Z(t) \in \mathbb{Q}(t)$.

W2: "Integrality"

- What is $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$? A priori, $P_{r} \in \mathbb{Q}_{\ell}[t]$.
- e.g. $\phi \mid H^{0}$ is the identity, so $P_{0}(t)=\operatorname{det}(\operatorname{ld}-\operatorname{Id} t)=1-t \in \mathbb{Z}[t]$.
- Similarly, $\phi \mid H^{2 d}$ acts like mult. by q^{d}, so $P_{2 d}(t)=1-q^{d} t \in \mathbb{Z}[t]$.
- Claim: $Z(t) \in \mathbb{Q}(t)$.

Pf. $Z(t) \in \mathbb{Q} \llbracket t \rrbracket \cap \mathbb{Q}_{\ell}(t)$, so a lemma of Fatou implies $Z(t) \in \mathbb{Q}(t)$.

- (Purely algebraic, "Hankel determinants", exercise in Milne/Bourbaki.)

W2: "Integrality"

- What is $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$? A priori, $P_{r} \in \mathbb{Q}_{e}[t]$.
- e.g. $\phi \mid H^{0}$ is the identity, so $P_{0}(t)=\operatorname{det}(\operatorname{ld}-\operatorname{ld} t)=1-t \in \mathbb{Z}[t]$.
- Similarly, $\phi \mid H^{2 d}$ acts like mult. by q^{d}, so $P_{2 d}(t)=1-q^{d} t \in \mathbb{Z}[t]$.
- Claim: $Z(t) \in \mathbb{Q}(t)$.

Pf. $Z(t) \in \mathbb{Q} \llbracket t \rrbracket \cap \mathbb{Q}_{\ell}(t)$, so a lemma of Fatou implies $Z(t) \in \mathbb{Q}(t)$.

- (Purely algebraic, "Hankel determinants", exercise in Milne/Bourbaki.)
- Cor. $a_{i, r} \in \overline{\mathbb{Q}}$, and we have proved (W2):

$$
P_{0}(t)=1-t, \quad P_{2 d}(t)=1-q^{d} t, \quad P_{r}(t)=\prod\left(1-a_{i, r} t\right), \quad a_{i, r} \in \overline{\mathbb{Q}} .
$$

W5: "Functoriality

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$.

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} P_{r}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} P_{r}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} P_{r}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$. Pf:

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} P_{r}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$. Pf:
$\diamond \mathbb{F}_{q} \cong \mathscr{O}_{k} / \mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k, p}}$ has generic fibre $X_{\eta}:=X_{0} \times \operatorname{Spec}\left(\mathbb{Q}_{p} \otimes k\right)$ and special fibre X_{0}.

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} P_{r}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$. Pf:
$\diamond \mathbb{F}_{q} \cong \mathscr{O}_{k} / \mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k, p}}$ has generic fibre $X_{\eta}:=X_{0} \times \operatorname{Spec}\left(\mathbb{Q}_{p} \otimes k\right)$ and special fibre X_{0}.
\diamond By cor. of smooth base change, ($\bar{\eta}$ geom. pt. over η)

$$
H_{\text {ét }}^{\bullet}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong H_{\text {ét }}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right)
$$

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} P_{r}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {et }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$. Pf:
$\diamond \mathbb{F}_{q} \cong \mathscr{O}_{k} / \mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k, p}}$ has generic fibre $X_{\eta}:=X_{0} \times \operatorname{Spec}\left(\mathbb{Q}_{p} \otimes k\right)$ and special fibre X_{0}.
\diamond By cor. of smooth base change, ($\bar{\eta}$ geom. pt. over η)

$$
\begin{gathered}
H_{\text {ét }}^{\bullet}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong H_{\text {et }}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \\
H_{\text {ét }}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \stackrel{(1)}{\cong} H_{\text {ét }}^{\bullet}\left(X_{\bar{\eta}}(\mathbb{C}) ; \mathbb{Q}_{\ell}\right) \stackrel{(2)}{\cong} H^{\bullet}\left(X_{0}(\mathbb{C}) ; \mathbb{Q}_{\ell}\right)
\end{gathered}
$$

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} \operatorname{Pr}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$. Pf:
$\diamond \mathbb{F}_{q} \cong \mathscr{O}_{k} / \mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k, p}}$ has generic fibre $X_{\eta}:=X_{0} \times \operatorname{Spec}\left(\mathbb{Q}_{p} \otimes k\right)$ and special fibre X_{0}.
\diamond By cor. of smooth base change, ($\bar{\eta}$ geom. pt. over η)

$$
\begin{gathered}
H_{\text {ét }}^{\bullet}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong H_{\text {et }}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \\
H_{\text {ét }}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \stackrel{(1)}{\cong} H_{\text {ét }}^{\bullet}\left(X_{\bar{\eta}}(\mathbb{C}) ; \mathbb{Q}_{\ell}\right) \stackrel{(2)}{\cong} H^{\bullet}\left(X_{0}(\mathbb{C}) ; \mathbb{Q}_{\ell}\right)
\end{gathered}
$$

(1) Cor of SBC: if $K_{1} \hookrightarrow K_{2}$ separably closed, then cohom. equal.

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} \operatorname{Pr}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$. Pf:
$\diamond \mathbb{F}_{q} \cong \mathscr{O}_{k} / \mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k, p}}$ has generic fibre $X_{\eta}:=X_{0} \times \operatorname{Spec}\left(\mathbb{Q}_{p} \otimes k\right)$ and special fibre X_{0}.
\diamond By cor. of smooth base change, ($\bar{\eta}$ geom. pt. over η)

$$
\begin{aligned}
& H_{\text {ett }}^{\bullet}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong H_{\stackrel{\bullet}{t}(}^{\bullet}\left(X_{\bar{\pi}} ; \mathbb{Q}_{\ell}\right) . \\
& H_{e t t}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \stackrel{(1)}{=} H_{\text {ett }}^{\bullet}\left(X_{\bar{\eta}}(\mathbb{C}) ; \mathbb{Q}_{\ell} \stackrel{(2)}{=} H^{\bullet}\left(X_{0}(\mathbb{C}) ; \mathbb{Q}_{\ell}\right)\right.
\end{aligned}
$$

(1) Cor of SBC : if $K_{1} \hookrightarrow K_{2}$ separably closed, then cohom. equal.
(2) $X_{0}(\mathbb{C}) \cong X_{\bar{\eta}}(\mathbb{C})+$ comparison $c p l X \leftrightarrow$ étale from Mike's talk

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} P_{r}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$. Pf:
$\diamond \mathbb{F}_{q} \cong \mathscr{O}_{k} / \mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k, p}}$ has generic fibre $X_{\eta}:=X_{0} \times \operatorname{Spec}\left(\mathbb{Q}_{p} \otimes k\right)$ and special fibre X_{0}.
\diamond By cor. of smooth base change, ($\bar{\eta}$ geom. pt. over η)

$$
\begin{aligned}
& H_{\text {ett }}^{\bullet}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong H_{\stackrel{\rightharpoonup}{e t}}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \text {. } \\
& H_{e t t}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \stackrel{(1)}{=} H_{\text {ett }}^{\bullet}\left(X_{\bar{\eta}}(\mathbb{C}) ; \mathbb{Q}_{\ell} \stackrel{(2)}{=} H^{\bullet}\left(X_{0}(\mathbb{C}) ; \mathbb{Q}_{\ell}\right)\right.
\end{aligned}
$$

(1) Cor of SBC : if $K_{1} \hookrightarrow K_{2}$ separably closed, then cohom. equal.
(2) $X_{0}(\mathbb{C}) \cong X_{\bar{\eta}}(\mathbb{C})+$ comparison $c p l x \leftrightarrow$ étale from Mike's talk
\diamond By Lefschetz principle, since we are in characteristic 0, changing coefficients to \mathbb{C} doesn't alter dimension.

W5: "Functoriality"

Assume $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}, X_{0} / k$. Wts: $\operatorname{deg} P_{r}=\operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$.

- Note: $\operatorname{deg} P_{r}(t)=\operatorname{deg} \operatorname{det}\left(1-\phi t \mid H_{e ́ t}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right)$.
- Claim: $\operatorname{dim} H_{\text {ét }}^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong \operatorname{dim} H^{r}\left(X_{0}(\mathbb{C}) ; \mathbb{C}\right)$. Pf:
$\diamond \mathbb{F}_{q} \cong \mathscr{O}_{k} / \mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k, p}}$ has generic fibre $X_{\eta}:=X_{0} \times \operatorname{Spec}\left(\mathbb{Q}_{p} \otimes k\right)$ and special fibre X_{0}.
\diamond By cor. of smooth base change, ($\bar{\eta}$ geom. pt. over η)

$$
\begin{aligned}
& H_{\text {ett }}^{\bullet}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \cong H_{\stackrel{\rightharpoonup}{e t}}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \text {. } \\
& H_{e t t}^{\bullet}\left(X_{\bar{\eta}} ; \mathbb{Q}_{\ell}\right) \stackrel{(1)}{=} H_{\text {ett }}^{\bullet}\left(X_{\bar{\eta}}(\mathbb{C}) ; \mathbb{Q}_{\ell} \stackrel{(2)}{=} H^{\bullet}\left(X_{0}(\mathbb{C}) ; \mathbb{Q}_{\ell}\right)\right.
\end{aligned}
$$

(1) Cor of SBC : if $K_{1} \hookrightarrow K_{2}$ separably closed, then cohom. equal.
(2) $X_{0}(\mathbb{C}) \cong X_{\bar{\eta}}(\mathbb{C})+$ comparison $c p l x \leftrightarrow$ étale from Mike's talk
\diamond By Lefschetz principle, since we are in characteristic 0 , changing coefficients to \mathbb{C} doesn't alter dimension.

W3: "Functional equation"

W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d \chi / 2} t^{\chi} Z(X, t)
$$

W3: "Functional equation" I

$$
z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2}+x Z(X, t) .
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2}{ }^{2} x Z(X, t) .
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

- Note: $1 / \lambda_{i, r}$ is a root of $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$, iff $\lambda_{i, r}$ is an eigenvalue of ϕ.

W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2}{ }^{2} x Z(X, t) .
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

- Note: $1 / \lambda_{i, r}$ is a root of $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$, iff $\lambda_{i, r}$ is an eigenvalue of ϕ.
- Ex. ${ }^{1} \phi_{*} \phi^{*}=q^{d}$;

W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2} t^{\chi} Z(X, t)
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

- Note: $1 / \lambda_{i, r}$ is a root of $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$, iff $\lambda_{i, r}$ is an eigenvalue of ϕ.
- Ex. ${ }^{1} \phi_{*} \phi^{*}=q^{d}$; so if $\phi_{r}^{*} x=\lambda_{i, r} x$ and $\phi_{2 d-r}^{*} y=\lambda_{i, 2 d-r} y$, then

$$
\lambda_{i, r} \lambda_{i, 2 d-r} \eta(x \smile y)
$$

W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2} t^{\chi} Z(X, t)
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

- Note: $1 / \lambda_{i, r}$ is a root of $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$, iff $\lambda_{i, r}$ is an eigenvalue of ϕ.
- Ex. ${ }^{1} \phi_{*} \phi^{*}=q^{d}$; so if $\phi_{r}^{*} x=\lambda_{i, r} x$ and $\phi_{2 d-r}^{*} y=\lambda_{i, 2 d-r} y$, then

$$
\lambda_{i, r} \lambda_{i, 2 d-r} \eta(x \smile y)=\eta\left(\phi_{r}^{*} x \smile \phi_{2 d-r}^{*} y\right)
$$

W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2} t^{\chi} Z(X, t)
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

- Note: $1 / \lambda_{i, r}$ is a root of $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$, iff $\lambda_{i, r}$ is an eigenvalue of ϕ.
- Ex. ${ }^{1} \phi_{*} \phi^{*}=q^{d}$; so if $\phi_{r}^{*} x=\lambda_{i, r}$ and $\phi_{2 d-r}^{*} y=\lambda_{i, 2 d-r} y$, then

$$
\lambda_{i, r} \lambda_{i, 2 d-r} \eta(x \smile y)=\eta\left(\phi_{r}^{*} x \smile \phi_{2 d-r}^{*} y\right)=\eta\left(x \smile \phi_{*, 2 d-r} \phi_{2 d-r}^{*} y\right)
$$

[^0]
W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2} t^{\chi} Z(X, t)
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

- Note: $1 / \lambda_{i, r}$ is a root of $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$, iff $\lambda_{i, r}$ is an eigenvalue of ϕ.
- Ex. ${ }^{1} \phi_{*} \phi^{*}=q^{d}$; so if $\phi_{r}^{*} x=\lambda_{i, r}$ and $\phi_{2 d-r}^{*} y=\lambda_{i, 2 d-r} y$, then

$$
\begin{aligned}
& \lambda_{i, r} \lambda_{i, 2 d-r} \eta(x \smile y)=\eta\left(\phi_{r}^{*} x \smile \phi_{2 d-r}^{*} y\right)=\eta\left(x \smile \phi_{*, 2 d-r} \phi_{2 d-r}^{*} y\right) \\
= & q^{d} \eta(x \smile y),
\end{aligned}
$$

[^1]
W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2} t^{\chi} Z(X, t)
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

- Note: $1 / \lambda_{i, r}$ is a root of $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$, iff $\lambda_{i, r}$ is an eigenvalue of ϕ.
- Ex. ${ }^{1} \phi_{*} \phi^{*}=q^{d}$; so if $\phi_{r}^{*} x=\lambda_{i, r}$ and $\phi_{2 d-r}^{*} y=\lambda_{i, 2 d-r} y$, then

$$
\begin{aligned}
& \lambda_{i, r} \lambda_{i, 2 d-r} \eta(x \smile y)=\eta\left(\phi_{r}^{*} x \smile \phi_{2 d-r}^{*} y\right)=\eta\left(x \smile \phi_{*, 2 d-r} \phi_{2 d-r}^{*} y\right) \\
= & q^{d} \eta(x \smile y), \text { so } \lambda_{i, 2 d-r}=q^{d} / \lambda_{i, r}
\end{aligned}
$$

W3: "Functional equation" I

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d x / 2} t^{\chi} Z(X, t)
$$

- Poincaré duality: perfect pairing

$$
H^{r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \times H^{2 d-r}\left(\bar{X} ; \mathbb{Q}_{\ell}\right) \rightarrow H^{2 d}\left(\bar{X} ; \mathbb{Q}_{\ell}(d)\right) \xrightarrow{\eta} \mathbb{Q}_{\ell},
$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

- Note: $1 / \lambda_{i, r}$ is a root of $P_{r}(t)=\operatorname{det}\left(\operatorname{ld}-\phi t \mid H^{r}\right)$, iff $\lambda_{i, r}$ is an eigenvalue of ϕ.
- Ex. ${ }^{1} \phi_{*} \phi^{*}=q^{d}$; so if $\phi_{r}^{*} x=\lambda_{i, r} x$ and $\phi_{2 d-r}^{*} y=\lambda_{i, 2 d-r} y$, then

$$
\lambda_{i, r} \lambda_{i, 2 d-r} \eta(x \smile y)=\eta\left(\phi_{r}^{*} x \smile \phi_{2 d-r}^{*} y\right)=\eta\left(x \smile \phi_{*, 2 d-r} \phi_{2 d-r}^{*} y\right)
$$

$=q^{d} \eta(x \smile y)$, so $\lambda_{i, 2 d-r}=q^{d} / \lambda_{i, r}$ (up to conjugation, since η is defined over $\left.\mathbb{Q}_{\ell}\right)$.

[^2]
W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}_{r}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before,

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

- Relabelling, $a_{i, r}=q^{d} / a_{i, 2 d-r}$ for all i, then

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

- Relabelling, $a_{i, r}=q^{d} / a_{i, 2 d-r}$ for all i, then

$$
\left(1-t a_{i, r}\right)=\left(1-\frac{t q^{d}}{a_{i, 2 d-r}}\right)
$$

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

- Relabelling, $a_{i, r}=q^{d} / a_{i, 2 d-r}$ for all i, then

$$
\left(1-t a_{i, r}\right)=\left(1-\frac{t q^{d}}{a_{i, 2 d-r}}\right)=-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)
$$

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

- Relabelling, $a_{i, r}=q^{d} / a_{i, 2 d-r}$ for all i, then

$$
\left(1-t a_{i, r}\right)=\left(1-\frac{t q^{d}}{a_{i, 2 d-r}}\right)=-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)
$$

- Now

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

- Relabelling, $a_{i, r}=q^{d} / a_{i, 2 d-r}$ for all i, then

$$
\left(1-t a_{i, r}\right)=\left(1-\frac{t q^{d}}{a_{i, 2 d-r}}\right)=-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)
$$

- Now

$$
\begin{aligned}
Z(t) & =\prod_{r, i}\left(1-t a_{i, r}\right)^{(-1)^{i+1}}=\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)\right)^{(-1)^{i+1}} \\
& =\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}} \prod_{r, i}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)^{(-1)^{i+1}} \\
& =\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}} \cdot Z\left(1 /\left(q^{d} t\right)\right) .
\end{aligned}
$$

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

- Relabelling, $a_{i, r}=q^{d} / a_{i, 2 d-r}$ for all i, then

$$
\left(1-t a_{i, r}\right)=\left(1-\frac{t q^{d}}{a_{i, 2 d-r}}\right)=-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)
$$

- Now

$$
Z(t)=\prod_{r, i}\left(1-t a_{i, r}\right)^{(-1)^{i+1}}=\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)\right)^{(-1)^{i+1}}
$$

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

- Relabelling, $a_{i, r}=q^{d} / a_{i, 2 d-r}$ for all i, then

$$
\left(1-t a_{i, r}\right)=\left(1-\frac{t q^{d}}{a_{i, 2 d-r}}\right)=-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)
$$

- Now

$$
\begin{aligned}
Z(t) & =\prod_{r, i}\left(1-t a_{i, r}\right)^{(-1)^{i+1}}=\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)\right)^{(-1)^{i+1}} \\
& =\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}} \prod_{r, i}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)^{(-1)^{i+1}}
\end{aligned}
$$

W3: "Functional equation" II

- For each r, if $a_{i, r}:=1 / \lambda_{i, r}$, then $\operatorname{Pr}(t)=\prod_{i}\left(1-a_{i, r} t\right)$ as before, and

$$
\left\{a_{i, r}: 1 \leq i \leq \operatorname{deg} P_{i, r}\right\}=\left\{\frac{q^{d}}{a_{i, 2 d-r}}: 1 \leq i \leq \operatorname{deg} P_{r}=\operatorname{deg} P_{2 d-r}\right\} .
$$

- Relabelling, $a_{i, r}=q^{d} / a_{i, 2 d-r}$ for all i, then

$$
\left(1-t a_{i, r}\right)=\left(1-\frac{t q^{d}}{a_{i, 2 d-r}}\right)=-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)
$$

- Now

$$
\begin{aligned}
Z(t) & =\prod_{r, i}\left(1-t a_{i, r}\right)^{(-1)^{i+1}}=\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)\right)^{(-1)^{i+1}} \\
& =\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}} \prod_{r, i}\left(1-\frac{a_{i, 2 d-r}}{t q^{d}}\right)^{(-1)^{i+1}} \\
& =\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}} \cdot Z\left(1 /\left(q^{d} t\right)\right) .
\end{aligned}
$$

W3: "Functional equation" III

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d \chi / 2} t^{x} Z(X, t)
$$

W3: "Functional equation" III

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d \chi / 2} t^{\chi} Z(X, t) .
$$

- Exercise: show that

$$
\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}}= \pm q^{-d \chi / 2} t^{-\chi}
$$

W3: "Functional equation" III

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d \chi / 2} t^{\chi} Z(X, t) .
$$

- Exercise: show that

$$
\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}}= \pm q^{-d \chi / 2} t^{-\chi}
$$

(Hint: $\chi=\sum_{r}(-1)^{r} \operatorname{deg} P_{r}$ and $\prod_{i} a_{i, r}=1$)

W3: "Functional equation" III

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d \chi / 2} t^{\chi} Z(X, t) .
$$

- Exercise: show that

$$
\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}}= \pm q^{-d \chi / 2} t^{-\chi}
$$

(Hint: $\chi=\sum_{r}(-1)^{r} \operatorname{deg} P_{r}$ and $\prod_{i} a_{i, r}=1$)

- Let $N:=\operatorname{mult}_{q^{d / 2}} \phi \mid H^{d}$.

W3: "Functional equation" III

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d \chi / 2} t^{\chi} Z(X, t) .
$$

- Exercise: show that

$$
\prod_{r, i}\left(-\frac{t q^{d}}{a_{i, 2 d-r}}\right)^{(-1)^{i+1}}= \pm q^{-d \chi / 2} t^{-\chi}
$$

(Hint: $\chi=\sum_{r}(-1)^{r} \operatorname{deg} P_{r}$ and $\prod_{i} a_{i, r}=1$)

- Let $N:=\operatorname{mult}_{q^{d / 2}} \phi \mid H^{d}$. Then

$$
\pm 1= \begin{cases}1 & \text { if } d \text { is even } \\ (-1)^{N} & \text { otherwise }\end{cases}
$$

Weil conjectures

(W1) "Rationality":

$$
Z(X, t)=\frac{P_{1}(t) \ldots P_{2 d-1}(t)}{P_{0}(t) \ldots P_{2 d}(t)}
$$

(W2) "Integrality":

$$
P_{0}(t)=1-t, \quad P_{2 d}(t)=1-q^{d} t, \quad P_{r}(t)=\prod\left(1-a_{i, r} t\right), \quad a_{i, r} \in \overline{\mathbb{Q}} .
$$

(W3) "Functional equation":

$$
Z\left(X, 1 /\left(q^{d} t\right)\right)= \pm q^{d \chi / 2} t^{\chi} Z(X, t) .
$$

(W4) "Riemann hypothesis": The numbers $a_{i, r}$ are Weil numbers, i.e. all their conjugates have real absolute value $q^{r / 2}$.
(W5) "Functoriality": if $X=X_{0} \times \operatorname{Spec} \mathbb{F}_{q}$ for some X_{0} / k, then

$$
\operatorname{deg} P_{i}=\beta_{i}\left(X_{0}\right):=\operatorname{dim} H^{i}\left(X_{0}(\mathbb{C}), \mathbb{C}\right)
$$

What about W4, "Riemann hypothesis"?

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;

What about W4, "Riemann hypothesis"?

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;
- Idea: info about pole of $Z \Rightarrow$ info about local factors P_{r}.

What about W4, "Riemann hypothesis"?

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;
- Idea: info about pole of $Z \Rightarrow$ info about local factors P_{r}.
- Weights of coeff. sheaf, monodromy calculations, Lefschetz pencils - lots of cool technical stuff we don't have time for.
- Other proofs: improvement in Deligne's Weil 2;

What about W4, "Riemann hypothesis"?

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;
- Idea: info about pole of $Z \Rightarrow$ info about local factors P_{r}.
- Weights of coeff. sheaf, monodromy calculations, Lefschetz pencils - lots of cool technical stuff we don't have time for.
- Other proofs: improvement in Deligne's Weil 2; simplified by Laumon using ℓ-adic Fourier transform;

What about W4, "Riemann hypothesis"?

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;
- Idea: info about pole of $Z \Rightarrow$ info about local factors P_{r}.
- Weights of coeff. sheaf, monodromy calculations, Lefschetz pencils - lots of cool technical stuff we don't have time for.
- Other proofs: improvement in Deligne's Weil 2; simplified by Laumon using ℓ-adic Fourier transform; rigid cohomology proof by Kedlaya.

Summary of the étale cohomology seminar

Summary

- Defined and studied étale morphisms, lots of examples

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it;

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on $\operatorname{Spec} k$ is just Galois theory;

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on $\operatorname{Spec} k$ is just Galois theory; Kummer sequence,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on $\operatorname{Spec} k$ is just Galois theory; Kummer sequence, geometric points

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\leftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\leftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{e ́ t}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {ét }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\leftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {ett }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {ett }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {ett }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {ett }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {ett }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {ét }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {êt }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity, Chow ring,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {êt }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity, Chow ring, cycle classes

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {êt }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity, Chow ring, cycle classes
- Poincaré duality in general,

Summary

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Speck is just Galois theory; Kummer sequence, geometric points
- Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H_{\text {êt }}^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity, Chow ring, cycle classes
- Poincaré duality in general, Lefschetz trace formula.

Resources

References

[Del74] Pierre Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., (43):273-307, 1974.
[Gon19] Evgeny Goncharov. Weil Conjectures Exposition. arXiv:1807.10812 [math], January 2019.
[Mil80] James S. Milne. Etale Cohomology (PMS-33). Princeton University Press, 1980.
[Mil00] James S. Milne. Lectures on étale cohomology. 2000.

Trace lemma

back See [Mil00, Lemma 27.5] for a somewhat dubious proof; otherwise, see [Del74, (1.5.3)] for a very sleek but not very informative proof.

[^0]: ${ }^{1}$ [Mil80] p. 289

[^1]: ${ }^{1}$ [Mil80] p. 289

[^2]: ${ }^{1}$ [Mil80] p. 289

