Proper base change II Étale cohomology study group

Wojtek Wawrów

2 July 2021

Review

Main goal:

Theorem

Base change works for any proper morphism $f : X \to Y$, i.e. for any torsion étale sheaf \mathcal{F} on X and morphism $g : Y' \to Y$, we have $g^*(R^n f_* \mathcal{F}) \xrightarrow{\cong} R^n f'_*(g'^* \mathcal{F})$.

Review

Main goal:

Theorem

Base change works for any proper morphism $f : X \to Y$, i.e. for any torsion étale sheaf \mathcal{F} on X and morphism $g : Y' \to Y$, we have $g^*(R^n f_* \mathcal{F}) \xrightarrow{\cong} R^n f'_*(g'^* \mathcal{F})$.

We have reduced this to:

Proposition

Base change works for the structure morphism $\mathbb{P}^1_Y \to Y$.

Review

Main goal:

Theorem

Base change works for any proper morphism $f : X \to Y$, i.e. for any torsion étale sheaf \mathcal{F} on X and morphism $g : Y' \to Y$, we have $g^*(R^n f_* \mathcal{F}) \xrightarrow{\cong} R^n f'_*(g'^* \mathcal{F})$.

We have reduced this to:

Proposition

Base change works for the structure morphism $\mathbb{P}^1_Y \to Y$.

Key case:

Proposition

Let A be a strictly henselian local ring, $X = \mathbb{P}^1_A, X_0$ the special fiber. Then $H^n_{\acute{e}t}(X, \mathcal{F}) \cong H^n_{\acute{e}t}(X_0, \mathcal{F}|_{X_0})$.

Key reduction (follows from the n = 0 case):

Lemma

Base change holds for $f : X \to Y$ iff for all injective \mathbb{Z}/ℓ -sheaves \mathcal{I} on X_{et} and $g : Y' \to Y$, $g'^{-1}\mathcal{I}$ is f'_* -acyclic: $R^n f'_*(g'^{-1}\mathcal{I}) = 0$ for all n > 0.

Key reduction (follows from the n = 0 case):

Lemma

Base change holds for $f : X \to Y$ iff for all injective \mathbb{Z}/ℓ -sheaves \mathcal{I} on X_{et} and $g : Y' \to Y$, $g'^{-1}\mathcal{I}$ is f'_* -acyclic: $R^n f'_*(g'^{-1}\mathcal{I}) = 0$ for all n > 0.

Therefore it is enough to show:

Proposition

Let A be a henselian local ring, $X = \mathbb{P}^{1}_{A}, X_{0}$ the special fiber. For any injective étale \mathbb{Z}/ℓ -module \mathcal{I} on X, $H^{n}_{\acute{e}t}(X_{0}, \mathcal{I}|_{X_{0}}) = 0$ for n > 0.

Let $\xi \in H^1_{\acute{e}t}(X_0, \mathcal{I}|_{X_0})$, we want to show $\xi = 0$.

Let $\xi \in H^1_{\acute{et}}(X_0, \mathcal{I}|_{X_0})$, we want to show $\xi = 0$. Every torsion abelian sheaf is a filtered colimit of constructible sheaves, so ξ is the image of some $\zeta \in H^1_{\acute{et}}(X_0, \mathcal{F}|_{X_0})$, \mathcal{F} constructible, under $\mathcal{F} \to \mathcal{I}$.

Let $\xi \in H^1_{\acute{et}}(X_0, \mathcal{I}|_{X_0})$, we want to show $\xi = 0$. Every torsion abelian sheaf is a filtered colimit of constructible sheaves, so ξ is the image of some $\zeta \in H^1_{\acute{et}}(X_0, \mathcal{F}|_{X_0})$, \mathcal{F} constructible, under $\mathcal{F} \to \mathcal{I}$. If ζ lifts to $\zeta' \in H^1_{\acute{et}}(X, \mathcal{F})$, we are done by the diagram:

Let $\xi \in H^1_{\acute{et}}(X_0, \mathcal{I}|_{X_0})$, we want to show $\xi = 0$. Every torsion abelian sheaf is a filtered colimit of constructible sheaves, so ξ is the image of some $\zeta \in H^1_{\acute{et}}(X_0, \mathcal{F}|_{X_0})$, \mathcal{F} constructible, under $\mathcal{F} \to \mathcal{I}$. If ζ lifts to $\zeta' \in H^1_{\acute{et}}(X, \mathcal{F})$, we are done by the diagram:

In general ζ need not lift, but we will modify \mathcal{F} to achieve that.

 \mathcal{F} embeds into a sheaf \mathcal{F}' which is a product of ones of the form $f_*\underline{M}$, where M is a finite abelian group and $f: Y \to X$ is finite.

 \mathcal{F} embeds into a sheaf \mathcal{F}' which is a product of ones of the form $f_*\underline{M}$, where M is a finite abelian group and $f: Y \to X$ is finite. Since \mathcal{I} is injective the map factors through \mathcal{F}' , so we may replace \mathcal{F} by \mathcal{F}' , or one of these factors. Thus we may take $\mathcal{F} = f_*\underline{M}$.

 \mathcal{F} embeds into a sheaf \mathcal{F}' which is a product of ones of the form $f_*\underline{M}$, where M is a finite abelian group and $f: Y \to X$ is finite. Since \mathcal{I} is injective the map factors through \mathcal{F}' , so we may replace \mathcal{F} by \mathcal{F}' , or one of these factors. Thus we may take $\mathcal{F} = f_*\underline{M}$.

By Leray spectral sequence + vanishing of $R^n f_*$ (since f is finite), we have

$$\begin{aligned} H^{1}_{\acute{e}t}(X, f_{*}\underline{M}) &\cong H^{1}_{\acute{e}t}(Y, \underline{M}), \\ H^{1}_{\acute{e}t}(X_{0}, f_{*}\underline{M}|_{X_{0}}) &\cong H^{1}_{\acute{e}t}(Y_{0}, \underline{M}|_{Y_{0}}). \end{aligned}$$

 \mathcal{F} embeds into a sheaf \mathcal{F}' which is a product of ones of the form $f_*\underline{M}$, where M is a finite abelian group and $f: Y \to X$ is finite. Since \mathcal{I} is injective the map factors through \mathcal{F}' , so we may replace \mathcal{F} by \mathcal{F}' , or one of these factors. Thus we may take $\mathcal{F} = f_*\underline{M}$.

By Leray spectral sequence + vanishing of $R^n f_*$ (since f is finite), we have

$$\begin{aligned} H^1_{\acute{e}t}(X, f_*\underline{M}) &\cong H^1_{\acute{e}t}(Y, \underline{M}), \\ H^1_{\acute{e}t}(X_0, f_*\underline{M}|_{X_0}) &\cong H^1_{\acute{e}t}(Y_0, \underline{M}|_{Y_0}). \end{aligned}$$

Now, at the level of Y, we can lift: H^1 classifies étale <u>M</u>-torsors, which are represented by finite étale schemes. By henselianness they lift from Y_0 to Y uniquely.

 \mathcal{F} embeds into a sheaf \mathcal{F}' which is a product of ones of the form $f_*\underline{M}$, where M is a finite abelian group and $f: Y \to X$ is finite. Since \mathcal{I} is injective the map factors through \mathcal{F}' , so we may replace \mathcal{F} by \mathcal{F}' , or one of these factors. Thus we may take $\mathcal{F} = f_*\underline{M}$.

By Leray spectral sequence + vanishing of $R^n f_*$ (since f is finite), we have

$$\begin{aligned} H^1_{\acute{e}t}(X, f_*\underline{M}) &\cong H^1_{\acute{e}t}(Y, \underline{M}), \\ H^1_{\acute{e}t}(X_0, f_*\underline{M}|_{X_0}) &\cong H^1_{\acute{e}t}(Y_0, \underline{M}|_{Y_0}). \end{aligned}$$

Now, at the level of Y, we can lift: H^1 classifies étale <u>M</u>-torsors, which are represented by finite étale schemes. By henselianness they lift from Y_0 to Y uniquely. Hence classes from $H^1_{\acute{e}t}(X_0, f_*\underline{M}|_{X_0})$ lift to $H^1_{\acute{e}t}(X, f_*\underline{M})$ and we can

proceed as before.

We want to show that given an injective sheaf on $X = \mathbb{P}^1_A$, we have $H^n_{\acute{e}t}(X_0, \mathcal{I}|_{X_0}) = 0$ for injective \mathbb{Z}/ℓ -module \mathcal{I} for n > 1.

We want to show that given an injective sheaf on $X = \mathbb{P}^1_A$, we have $H^n_{\acute{e}t}(X_0, \mathcal{I}|_{X_0}) = 0$ for injective \mathbb{Z}/ℓ -module \mathcal{I} for n > 1. We claim that this follows because X is a union of two affine schemes:

We want to show that given an injective sheaf on $X = \mathbb{P}^1_A$, we have $H^n_{\acute{e}t}(X_0, \mathcal{I}|_{X_0}) = 0$ for injective \mathbb{Z}/ℓ -module \mathcal{I} for n > 1. We claim that this follows because X is a union of two affine schemes:

Theorem

Let X be a separated scheme covered by k + 1 affine opens, $Z \subseteq X$ closed subscheme, \mathcal{I} an injective étale \mathbb{Z}/ℓ -module. Then $H^n_{\acute{e}t}(Z, \mathcal{I}|_Z) = 0$ for n > k.

We want to show that given an injective sheaf on $X = \mathbb{P}^1_A$, we have $H^n_{\acute{e}t}(X_0, \mathcal{I}|_{X_0}) = 0$ for injective \mathbb{Z}/ℓ -module \mathcal{I} for n > 1. We claim that this follows because X is a union of two affine schemes:

Theorem

Let X be a separated scheme covered by k + 1 affine opens, $Z \subseteq X$ closed subscheme, \mathcal{I} an injective étale \mathbb{Z}/ℓ -module. Then $H^n_{\acute{e}t}(Z, \mathcal{I}|_Z) = 0$ for n > k.

The hard part is k = 0, the rest follows by induction using Mayer-Vietoris exact sequence: if $X = U \cup V$, U affine, V union of k affines, then we have $U \cap V$ union of k affines and

$$0 = H_{\acute{e}t}^{n-1}(U \cap V \cap Z, \mathcal{I}|_Z) \to H_{\acute{e}t}^n(Z, \mathcal{I}|_Z) \to H_{\acute{e}t}^n(U \cap Z, \mathcal{I}|_Z) \oplus H_{\acute{e}t}^n(V \cap Z, \mathcal{I}|_Z) = 0$$

for n > k.

We are thus reduced to showing vanishing on affine schemes.

We are thus reduced to showing vanishing on affine schemes. In the case of henselian rings, a stronger result is available:

Theorem (Gabber)

Let (A, I) be a henselian pair, X = Spec A, Z = Spec A/I. For any torsion étale sheaf \mathcal{F} on X we have $H^n_{\acute{e}t}(X, \mathcal{F}) \cong H^n_{\acute{e}t}(Z, \mathcal{F}|_Z)$.

We are thus reduced to showing vanishing on affine schemes. In the case of henselian rings, a stronger result is available:

Theorem (Gabber)

Let (A, I) be a henselian pair, X = Spec A, Z = Spec A/I. For any torsion étale sheaf \mathcal{F} on X we have $H^n_{\acute{e}t}(X, \mathcal{F}) \cong H^n_{\acute{e}t}(Z, \mathcal{F}|_Z)$.

Idea: induction on n. n = 0 is known from before.

We are thus reduced to showing vanishing on affine schemes. In the case of henselian rings, a stronger result is available:

Theorem (Gabber)

Let (A, I) be a henselian pair, X = Spec A, Z = Spec A/I. For any torsion étale sheaf \mathcal{F} on X we have $H^n_{\acute{e}t}(X, \mathcal{F}) \cong H^n_{\acute{e}t}(Z, \mathcal{F}|_Z)$.

Idea: induction on n. n = 0 is known from before. Pick nonzero $\xi \in H^n(X, \mathcal{F})$. There exists an injection $\mathcal{F} \to \mathcal{F}'$ such that ξ maps to zero in $H^n(X, \mathcal{F}')$ (by argument like before + pass to extension of Y with large function field; for n = 1 this is trivialization of an étale torsor.)

We are thus reduced to showing vanishing on affine schemes. In the case of henselian rings, a stronger result is available:

Theorem (Gabber)

Let (A, I) be a henselian pair, X = Spec A, Z = Spec A/I. For any torsion étale sheaf \mathcal{F} on X we have $H^n_{\acute{e}t}(X, \mathcal{F}) \cong H^n_{\acute{e}t}(Z, \mathcal{F}|_Z)$.

Idea: induction on n. n = 0 is known from before. Pick nonzero $\xi \in H^n(X, \mathcal{F})$. There exists an injection $\mathcal{F} \to \mathcal{F}'$ such that ξ maps to zero in $H^n(X, \mathcal{F}')$ (by argument like before + pass to extension of Y with large function field; for n = 1 this is trivialization of an étale torsor.) Take short exact sequence $0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0$ and chase in the diagram to show image of ξ is nonzero:

$$\begin{array}{cccc} H^{n-1}_{\acute{e}t}(X,\mathcal{F}') & \longrightarrow & H^{n-1}_{\acute{e}t}(X,\mathcal{F}'') & \longrightarrow & H^n_{\acute{e}t}(X,\mathcal{F}) & \longrightarrow & H^n_{\acute{e}t}(X,\mathcal{F}') \\ & \downarrow & & \downarrow & & \downarrow \\ H^{n-1}_{\acute{e}t}(Z,\mathcal{F}'|_Z) & \to & H^{n-1}_{\acute{e}t}(Z,\mathcal{F}''|_Z) & \to & H^n_{\acute{e}t}(Z,\mathcal{F}|_Z) & \to & H^n_{\acute{e}t}(Z,\mathcal{F}'|_Z). \end{array}$$

Let $X = \operatorname{Spec} A$ any affine scheme, $Z = \operatorname{Spec} A/I$ a closed subscheme, \mathcal{I} an injective torsion étale sheaf. We want $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = 0$ for n > 0.

Let $X = \operatorname{Spec} A$ any affine scheme, $Z = \operatorname{Spec} A/I$ a closed subscheme, \mathcal{I} an injective torsion étale sheaf. We want $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = 0$ for n > 0. Let A^h be the henselization of (A, I)—colimit over all étale $B \to A$ such that $B/IB \cong A/I$. Let $X = \operatorname{Spec} A$ any affine scheme, $Z = \operatorname{Spec} A/I$ a closed subscheme, \mathcal{I} an injective torsion étale sheaf. We want $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = 0$ for n > 0. Let A^h be the henselization of (A, I)—colimit over all étale $B \to A$ such that $B/IB \cong A/I$. Then $Z = \operatorname{Spec} A^h/IA^h$, so by Gabber's theorem $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = H^n_{\acute{e}t}(\operatorname{Spec} A^h,\mathcal{I}|_{\operatorname{Spec} A^h})$. Let $X = \operatorname{Spec} A$ any affine scheme, $Z = \operatorname{Spec} A/I$ a closed subscheme, \mathcal{I} an injective torsion étale sheaf. We want $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = 0$ for n > 0. Let A^h be the henselization of (A, I)—colimit over all étale $B \to A$ such that $B/IB \cong A/I$. Then $Z = \operatorname{Spec} A^h/IA^h$, so by Gabber's theorem $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = H^n_{\acute{e}t}(\operatorname{Spec} A^h,\mathcal{I}|_{\operatorname{Spec} A^h})$. But

$$H^{n}_{\acute{e}t}(\operatorname{Spec} A^{h}, \mathcal{I}|_{\operatorname{Spec} A^{h}}) = \varinjlim_{B} H^{n}_{\acute{e}t}(\operatorname{Spec} B, \mathcal{I}|_{\operatorname{Spec} B}) = 0$$

since all $\mathcal{I}|_{\text{Spec }B}$ are injective.

Let $X = \operatorname{Spec} A$ any affine scheme, $Z = \operatorname{Spec} A/I$ a closed subscheme, \mathcal{I} an injective torsion étale sheaf. We want $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = 0$ for n > 0. Let A^h be the henselization of (A, I)—colimit over all étale $B \to A$ such that $B/IB \cong A/I$. Then $Z = \operatorname{Spec} A^h/IA^h$, so by Gabber's theorem $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = H^n_{\acute{e}t}(\operatorname{Spec} A^h,\mathcal{I}|_{\operatorname{Spec} A^h})$. But

$$H^{n}_{\acute{e}t}(\operatorname{Spec} A^{h}, \mathcal{I}|_{\operatorname{Spec} A^{h}}) = \varinjlim_{B} H^{n}_{\acute{e}t}(\operatorname{Spec} B, \mathcal{I}|_{\operatorname{Spec} B}) = 0$$

since all $\mathcal{I}|_{\text{Spec }B}$ are injective.

This, finally, completes the proof of proper base change!

Let $X = \operatorname{Spec} A$ any affine scheme, $Z = \operatorname{Spec} A/I$ a closed subscheme, \mathcal{I} an injective torsion étale sheaf. We want $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = 0$ for n > 0. Let A^h be the henselization of (A, I)—colimit over all étale $B \to A$ such that $B/IB \cong A/I$. Then $Z = \operatorname{Spec} A^h/IA^h$, so by Gabber's theorem $H^n_{\acute{e}t}(Z,\mathcal{I}|_Z) = H^n_{\acute{e}t}(\operatorname{Spec} A^h,\mathcal{I}|_{\operatorname{Spec} A^h})$. But

$$H^{n}_{\acute{e}t}(\operatorname{Spec} A^{h}, \mathcal{I}|_{\operatorname{Spec} A^{h}}) = \varinjlim_{B} H^{n}_{\acute{e}t}(\operatorname{Spec} B, \mathcal{I}|_{\operatorname{Spec} B}) = 0$$

since all $\mathcal{I}|_{\text{Spec }B}$ are injective.

This, finally, completes the proof of proper base change!

Corollary: cohomological dimension of morphisms

Corollary

Let $f : X \to Y$ be proper. If all (geometric) fibers of f have dimension $\leq d$, then for all torsion étale sheaves \mathcal{F} we have $R^n f_* \mathcal{F} = 0$ for n > 2d.

Let $f : X \to Y$ be proper. If all (geometric) fibers of f have dimension $\leq d$, then for all torsion étale sheaves \mathcal{F} we have $R^n f_* \mathcal{F} = 0$ for n > 2d. If further Y has characteristic p and \mathcal{F} is p^{∞} -torsion, $R^n f_* \mathcal{F} = 0$ for n > d.

Let $f : X \to Y$ be proper. If all (geometric) fibers of f have dimension $\leq d$, then for all torsion étale sheaves \mathcal{F} we have $R^n f_* \mathcal{F} = 0$ for n > 2d. If further Y has characteristic p and \mathcal{F} is p^{∞} -torsion, $R^n f_* \mathcal{F} = 0$ for n > d.

Proof.

By proper base change, for all geometric points \overline{y} we have

$$(R^n f_* \mathcal{F})_{\overline{y}} = H^n(X_{\overline{y}}, \mathcal{F}_{\overline{y}}).$$

We are then done by results on cohomological dimension.

Let $f : X \to \text{Spec } k$ be a proper variety over separably closed k, and K separably closed extension of k. For any torsion étale sheaf \mathcal{F} on X we have an isomorphism

$$H^n_{\acute{e}t}(X_K, \mathcal{F}_K) \cong H^n_{\acute{e}t}(X, \mathcal{F}),$$

where X_K is the base change of X and \mathcal{F}_K the corresponding pullback.

Let $f : X \to \text{Spec } k$ be a proper variety over separably closed k, and K separably closed extension of k. For any torsion étale sheaf \mathcal{F} on X we have an isomorphism

$$H^n_{\acute{e}t}(X_K, \mathcal{F}_K) \cong H^n_{\acute{e}t}(X, \mathcal{F}),$$

where X_K is the base change of X and \mathcal{F}_K the corresponding pullback.

Proof.

By proper base change, these coincide with the stalks of $R^n f_* \mathcal{F}$ at geometric points corresponding to k, K. Since k is separably closed, both are just global sections.

Corollary: cohomology with compact support

Recall: for an open immersion $j : U \hookrightarrow X$, let $j_!$ be the extension by zero functor $Sh(U_{\acute{e}t}) \to Sh(X_{\acute{e}t})$.

Definition

For an étale sheaf \mathcal{F} on U, we define *cohomology with compact* support as $H^n_{\acute{e}t,c}(U,\mathcal{F}) = H^n_{\acute{e}t,c}(X,j_!\mathcal{F})$ for any inclusion $j: U \hookrightarrow X$ into a proper scheme.

Recall: for an open immersion $j : U \hookrightarrow X$, let $j_!$ be the extension by zero functor $Sh(U_{\acute{e}t}) \to Sh(X_{\acute{e}t})$.

Definition

For an étale sheaf \mathcal{F} on U, we define *cohomology with compact* support as $H^n_{\acute{e}t,c}(U,\mathcal{F}) = H^n_{\acute{e}t,c}(X,j_!\mathcal{F})$ for any inclusion $j: U \hookrightarrow X$ into a proper scheme.

More generally:

Definition

Let $\pi: U \to S$ be compactifiable, meaning there exists an open immersion $j: U \to X$ into a proper $\overline{\pi}: X \to S$. Define higher direct image with compact support as $R_c^n \pi_* \mathcal{F} = R^n \overline{\pi}_* j_! \mathcal{F}$.

Recall: for an open immersion $j : U \hookrightarrow X$, let $j_!$ be the extension by zero functor $Sh(U_{\acute{e}t}) \to Sh(X_{\acute{e}t})$.

Definition

For an étale sheaf \mathcal{F} on U, we define *cohomology with compact* support as $H^n_{\acute{e}t,c}(U,\mathcal{F}) = H^n_{\acute{e}t,c}(X,j_!\mathcal{F})$ for any inclusion $j: U \hookrightarrow X$ into a proper scheme.

More generally:

Definition

Let $\pi: U \to S$ be compactifiable, meaning there exists an open immersion $j: U \to X$ into a proper $\overline{\pi}: X \to S$. Define *higher direct image with compact support* as $R_c^n \pi_* \mathcal{F} = R^n \overline{\pi}_* j_! \mathcal{F}$.

Proposition

The cohomology sheaves $R_c^n \pi_* \mathcal{F}$ are independent of the compactification $j : U \hookrightarrow X$.

Proposition

The cohomology sheaves $R_c^n \pi_* \mathcal{F}$ are independent of the compactification $j : U \hookrightarrow X$.

Proof.

Let $\overline{\pi}: X \to S, \overline{\pi}': X \to S$ be proper and $j: U \to X, j': U \to X'$ open immersions.

Proposition

The cohomology sheaves $R_c^n \pi_* \mathcal{F}$ are independent of the compactification $j : U \hookrightarrow X$.

Proof.

Let $\overline{\pi}: X \to S, \overline{\pi}': X \to S$ be proper and $j: U \to X, j': U \to X'$ open immersions. Replacing X' by the closure of U of $X \times_S X'$, assume $j = g \circ j'$ for an S-morphism $g: X' \to X$, so $\overline{\pi}' = \overline{\pi} \circ g$.

Proposition

The cohomology sheaves $R_c^n \pi_* \mathcal{F}$ are independent of the compactification $j : U \hookrightarrow X$.

Proof.

Let $\overline{\pi}: X \to S, \overline{\pi}': X \to S$ be proper and $j: U \to X, j': U \to X'$ open immersions. Replacing X' by the closure of U of $X \times_S X'$, assume $j = g \circ j'$ for an S-morphism $g: X' \to X$, so $\overline{\pi}' = \overline{\pi} \circ g$. We have the spectral sequence

$$(R^{p}\overline{\pi}_{*})(R^{q}g_{*})(j'_{!}\mathcal{F}) \Rightarrow (R^{p+q}\overline{\pi}'_{*})(j'_{!}\mathcal{F}).$$

Proposition

The cohomology sheaves $R_c^n \pi_* \mathcal{F}$ are independent of the compactification $j : U \hookrightarrow X$.

Proof.

Let $\overline{\pi}: X \to S, \overline{\pi}': X \to S$ be proper and $j: U \to X, j': U \to X'$ open immersions. Replacing X' by the closure of U of $X \times_S X'$, assume $j = g \circ j'$ for an S-morphism $g: X' \to X$, so $\overline{\pi}' = \overline{\pi} \circ g$. We have the spectral sequence

$$(R^{p}\overline{\pi}_{*})(R^{q}g_{*})(j'_{!}\mathcal{F}) \Rightarrow (R^{p+q}\overline{\pi}'_{*})(j'_{!}\mathcal{F}).$$

By proper base change, $(R^q g_*)(j'_! \mathcal{F})$ can be computed on fibers. g_* is an isomorphism over U, and on other fibers $j'_! \mathcal{F}$ vanishes, so $(R^q g_*)(j'_! \mathcal{F}) = j_! \mathcal{F}$ for q = 0 and vanishes for q > 0.

Proposition

The cohomology sheaves $R_c^n \pi_* \mathcal{F}$ are independent of the compactification $j : U \hookrightarrow X$.

Proof.

Let $\overline{\pi}: X \to S, \overline{\pi}': X \to S$ be proper and $j: U \to X, j': U \to X'$ open immersions. Replacing X' by the closure of U of $X \times_S X'$, assume $j = g \circ j'$ for an S-morphism $g: X' \to X$, so $\overline{\pi}' = \overline{\pi} \circ g$. We have the spectral sequence

$$(R^{p}\overline{\pi}_{*})(R^{q}g_{*})(j'_{!}\mathcal{F}) \Rightarrow (R^{p+q}\overline{\pi}'_{*})(j'_{!}\mathcal{F}).$$

By proper base change, $(R^q g_*)(j'_!\mathcal{F})$ can be computed on fibers. g_* is an isomorphism over U, and on other fibers $j'_!\mathcal{F}$ vanishes, so $(R^q g_*)(j'_!\mathcal{F}) = j_!\mathcal{F}$ for q = 0 and vanishes for q > 0. Hence we get $(R^p \overline{\pi}_*)(j_!\mathcal{F}) \cong (R^p \overline{\pi}'_*)(j'_!\mathcal{F})$.

Let $f: X \to Y$ be a proper morphism such that:

- Y is a smooth curve over an algebraically closed field k,
- X is a smooth surface over k,

Let $f: X \to Y$ be a proper morphism such that:

- Y is a smooth curve over an algebraically closed field k,
- X is a smooth surface over k,
- f is generically smooth,

Let $f: X \to Y$ be a proper morphism such that:

- Y is a smooth curve over an algebraically closed field k,
- X is a smooth surface over k,
- f is generically smooth,
- All geometric fibers of X are irreducible, and one fiber X₀ has an ordinary double point.

Let $f: X \to Y$ be a proper morphism such that:

- Y is a smooth curve over an algebraically closed field k,
- X is a smooth surface over k,
- f is generically smooth,
- All geometric fibers of X are irreducible, and one fiber X₀ has an ordinary double point.

Then, for the constant sheaf $\mathcal{F} = \mathbb{Z}_X$, we have

•
$$R^1 f_* \mathbb{Z}_X = 0$$
,

• $H^1(X_0, \mathbb{Z}_{X_0}) \neq 0.$

Let $i : x \to X$ be the inclusion of the generic point. Under our assumptions, we have an isomorphism $\mathbb{Z}_X \cong i_*\mathbb{Z}_x$.

Let $i: x \to X$ be the inclusion of the generic point. Under our assumptions, we have an isomorphism $\mathbb{Z}_X \cong i_*\mathbb{Z}_x$. By Leray's spectral sequence $H^1(X, i_*\mathbb{Z}_x)$ coincides with $H^1(x, \mathbb{Z}_x)$, which vanishes:

Let $i: x \to X$ be the inclusion of the generic point. Under our assumptions, we have an isomorphism $\mathbb{Z}_X \cong i_*\mathbb{Z}_x$. By Leray's spectral sequence $H^1(X, i_*\mathbb{Z}_x)$ coincides with $H^1(x, \mathbb{Z}_x)$, which vanishes: this relies on the fact this group is torsion and the exact sequence

$$0 \to H^1(x, \mathbb{Z}_x) \xrightarrow{\cdot n} H^1(x, \mathbb{Z}_x) \to H^1(x, (\mathbb{Z}/n)_x)$$

for all n.

Let $i : x \to X$ be the inclusion of the generic point. Under our assumptions, we have an isomorphism $\mathbb{Z}_X \cong i_*\mathbb{Z}_x$. By Leray's spectral sequence $H^1(X, i_*\mathbb{Z}_x)$ coincides with $H^1(x, \mathbb{Z}_x)$, which vanishes: this relies on the fact this group is torsion and the exact sequence

$$0 \to H^1(x, \mathbb{Z}_x) \xrightarrow{\cdot n} H^1(x, \mathbb{Z}_x) \to H^1(x, (\mathbb{Z}/n)_x)$$

for all n.

On the other hand, $H^1(X_0, \mathbb{Z}_{X_0}) = \mathbb{Z}$: for the double point Q, the fiber of $i_*\mathbb{Z}_{X_0}$ at Q is \mathbb{Z}^2 , so we have $0 \to \mathbb{Z}_{X_0} \to i_*\mathbb{Z}_{X_0} \to \mathbb{Z}_Q \to 0$. We then have

$$0 \to H^0(X_0, \mathbb{Z}_Q) \to H^1(X_0, \mathbb{Z}_{X_0}) \to 0$$

and so $H^0(X_0, \mathbb{Z}_Q) = \mathbb{Z} \neq 0$.