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4.1 Cohomology on sites

Speaker: Lukas Kofler

We assume some familiarity with the cohomological machinery used in alge-
braic geometry, and only give a quick summary here to fix notations. Further
details can be found in [Har77, Chap. III].

Let𝒜 be an abelian category, and recall that an object 𝐼 of𝒜 is injective if the
functor Hom(−,𝐼) is exact. We say 𝒜 has enough injectives if for every element of
𝒜 there exists an injection 𝐴↪ 𝐼 where 𝐼 is injective.

Proposition 4.1 ( [Mil80, Prop. III.1.1]). The category of sheaves valued in abelian
groups on a site has enough injectives.

In any abelian category 𝒜 along with a left exact functor 𝐹∶ 𝒜→𝒜′, we can
form right derived functors 𝑅𝑖𝐹, 𝑖 ≥ 0, in the usual manner. These are charac-
terised by the properties 𝑅0𝐹 = 𝐹, 𝑅𝑖𝐹(𝐼) = 0 for any injective object 𝐼, and that
every short sequence in 𝒜 gives a long exact sequence in cohomology in 𝒜′.

Example 4.2. The global sections functor 𝛤(𝑋,−) ∶ Sh(𝑋ét) → Ab is left exact, and
we define 𝐻𝑖(𝑋,−) ..= 𝑅𝑖𝛤(𝑋,−) to be the corresponding cohomology functors.

Example 4.3. The inclusion Sh(𝑋ét) ↪ pSh(𝑋ét) is left exact by proposition 3.40
(i), and the cohomology functors are denoted by 𝐻𝑖(−).

Example 4.4. For a fixed sheafℱ ∈ Sh(𝑋ét), the functor Hom(−,ℱ) is left exact,
and the right derived functors are denoted by Ext𝑖Sh(𝛸ét)

(ℱ,−).
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Example 4.5. Similarly, for ℱ,𝒢 ∈ Sh(𝑋ét) we can define the hom-sheaf by

ℋℴ𝓂(ℱ,𝒢) ∶ 𝑈 ↦ Hom(ℱ|𝑈,𝒢|𝑈). (4.1)

This gives a left exact functor ℋℴ𝓂(ℱ,−) ∶ Sh(𝑋ét) → Sh(𝑋ét), with right de-
rived functors ℰ𝓍𝓉𝑖(ℱ,−).

Example 4.6. For a continuous map of sites 𝜋∶ 𝑋′𝛦′ →𝑋𝛦, the pushforward 𝜋∗ is
left exact, and the right derived functors 𝑅𝑖𝜋∗ are called higher direct images.

4.2 Spectral sequences

Spectral sequences have a reputation for being somewhat arcane objects, and so
we begin the section gently with some motivation:

Suppose we have a double complex {𝐸𝑝,𝑞0 }𝑝,𝑞≥0 in an abelian category 𝒜; that
is, a collection of objects 𝐸0,00 ,𝐸1,00 ,𝐸0,10 ,… along with maps

𝑑ℎ ∶ 𝐸
𝑝,𝑞
0 →𝐸𝑝+1,𝑞0 and 𝑑𝑣 ∶ 𝐸

𝑝,𝑞
0 →𝐸𝑝,𝑞+10 (4.2)

satisfying 𝑑2ℎ = 0 = 𝑑2𝑣 and 𝑑ℎ𝑑𝑣 = −𝑑𝑣𝑑ℎ. These arise naturally in algebraic ge-
ometry, say from taking resolutions of complex, or complexes of filtered objects.
From this double complex we construct the total complex 𝐸•0 with 𝐸𝑘0 ..=⨁𝑖𝐸

𝑖,𝑘−𝑖,
the direct sum along the 𝑘-th antidiagonal. This is becomes a complex with the
differential 𝑑 ..= 𝑑ℎ +𝑑𝑣.

It is natural to ask whether one can find the cohomology of the total complex
by computing cohomology of the complexes in the horisontal or vertical direc-
tions separately. Taking cohomology of 𝐸•,•0 first in the vertical direction under
the action of 𝑑𝑣, we define

𝐸𝑝,𝑞1
..= ker𝑑𝑝,𝑞𝑣

im𝑑𝑝,𝑞−1𝑣
. (4.3)

This gives a new double complex, where the action of the induced maps 𝑑𝑣 is
trivial. However, the induced maps 𝑑ℎ ∶ 𝐸

𝑝,𝑞
1 → 𝐸𝑝+1,𝑞1 are well-defined (check!)

and non-zero in general. By convention they are denoted 𝑑1, and 𝐸
•,•
1 is called the

first page. We can now take its cohomology under 𝑑1, and the resulting double
complex is denoted by 𝐸•,•2 , called the second page.

Now, one might think that we are done at this point, and should be able to
say something about the cohomology of the total complex. In fact, if the only
non-zero columns of 𝐸•,•2 are given by 𝑝 and 𝑝+1, then we have an exact sequence

0→ 𝐸𝑝,𝑞2 →𝐻𝑝+𝑞(𝐸•) → 𝐸𝑝+1,𝑞−12 →0, (4.4)

so we have computed 𝐻𝑛(𝐸•) “up to extension”.
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However, in general there is a new non-zero differential on 𝐸•,•2 , 𝑑2 ∶ 𝐸
𝑝,𝑞
2 →

𝐸𝑝+2,𝑞−12 constructed by the following diagram chase:

Take 𝑥 ∈ 𝐸𝑝,𝑞2 and lift it to 𝑥′ ∈ 𝐸𝑝,𝑞1 . Then 𝑑1(𝑥
′) = 0 in 𝐸𝑝+1,𝑞1 , so for a lift

𝑥″ ∈ 𝐸𝑝,𝑞0 of 𝑥′, 𝑑ℎ(𝑥
″) is in the image of 𝑑𝑣, say 𝑑ℎ(𝑥

″) = 𝑑𝑣(𝑦) for 𝑦 ∈ 𝐸
𝑝+1,𝑞−1
0 .

Now 𝑑ℎ(𝑦) ∈ 𝐸
𝑝+2,𝑞−1
0 and 𝑑𝑣𝑑ℎ(𝑦) = −𝑑ℎ𝑑𝑣(𝑦) = −𝑑2ℎ(𝑥

″) = 0, so 𝑑ℎ(𝑦) ∈ ker𝑑𝑣,
determining an element of 𝐸𝑝+2,𝑞−11 . Since 𝑑1𝑑ℎ)(𝑦) = 0, this factors through to an
element of 𝐸𝑝+2,𝑞−12 , which is the desired image of 𝑥.

Now that we have defined the map, it is not too difficult to check that it is
well-defined and a differential, and in fact this construction generalises to higher
differentials 𝑑𝑟 ∶ 𝐸

𝑝,𝑞
𝑟 →𝐸𝑝+𝑟,𝑞−𝑟+1𝑟 . This leads to the following definition:

Definition 4.7. A (cohomological, first quadrant) spectral sequence consists of

(i) objects 𝐸𝑝,𝑞𝑟 ∈ 𝒜 for all 𝑝,𝑞,𝑟 ≥ 0,
( ii) morphisms 𝑑𝑟 ≡ 𝑑

𝑝,𝑞
𝑟 ∶ 𝐸𝑝,𝑞𝑟 →𝐸𝑝+𝑟,𝑞−𝑟+1𝑟 satisfying 𝑑2𝑟 = 0,

( iii) isomorphisms ker𝑑𝑝,𝑞𝑟 / im𝑑𝑝−𝑟,𝑞−𝑟+1𝑟 ≅ 𝐸𝑝,𝑞𝑟+1.

The collection {𝐸𝑝,𝑞𝑟 }𝑝,𝑞≥0 is called the 𝑟-th page of the spectral sequence.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

𝐸0 and 𝐸1.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

𝐸2 and 𝐸3.

Note that since 𝐸𝑝,𝑞𝑟 all lie in the upper quadrant, we eventually take the co-
homology of 0 → 𝐸𝑝,𝑞𝑟 → 0, the zeroes lying in the second and fourth quadrant
respectively. When this happens, we evidently have 𝐸𝑝,𝑞𝑟 = 𝐸𝑝,𝑞𝑟+1 = …, and we write
𝐸𝑝,𝑞𝑟 = 𝐸𝑝,𝑞∞ .
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Theorem 4.8. For each 𝑛 ≥ 0, there is a decreasing filtration on𝐻𝑛(𝐸•),

𝐻𝑛 = 𝐹0𝐻𝑛 ⊃ … ⊃ 𝐹𝑛+1𝐻𝑛 = 0, (4.5)

such that gr𝑝𝐻
𝑛 = 𝐸𝑝,𝑛−𝑝∞ .14

In particular, we have that ⨁𝑛
𝑝=0𝐸

𝑝,𝑛−𝑝
∞ = gr𝐻𝑛. We write 𝐸𝑝,𝑞0 ⇒ 𝐻𝑝+𝑞(𝐸•)

and say that the spectral sequence converges to 𝐻𝑝+𝑞(𝐸•).

Note that we have not quite computed the cohomology of the total complex,
but if for some 𝑟 ≥ 2we have that 𝐸•,•𝑟 has only one non-zero column or row, then
we can read off 𝐻𝑛(𝐸•) directly. In this case we say that the spectral sequence
collapses, or degenerates, at page 𝑟. In most applications, spectral sequences
already collapse at 𝐸1 or 𝐸2.

A powerful feature of spectral sequences is that we can flip the roles of 𝑑ℎ
and 𝑑𝑣 while still converging to the cohomology of the graded complex. For
convenience, let �̂� denote the original spectral sequence and �⃗� the one with 𝑑ℎ
and 𝑑𝑣 swapped, and let’s look at some applications:

Example 4.9 (Five lemma). Suppose we have the following diagram

𝐹 𝐺 𝐻 𝐼 𝐽

𝐴 𝐵 𝐶 𝐷 𝐸

𝛼 𝛽 𝛾 𝛿 𝜖 (4.6)

where the rows are exact, and 𝛼,𝛽,𝛿 and 𝜖 are isomorphisms. The five lemma states
that in this case 𝛾 is an isomorphism as well. We can show this using a spectral
sequence argument: view the diagram in eq. (4.6) as �⃗�𝑝,𝑞0 , and take horisontal
cohomology to get �⃗�𝑝,𝑞1 , which since the rows are exact looks as follows:

? 0 0 0 ?

? 0 0 0 ?

(4.7)

Now the cohomology of the total complex vanishes in the degrees corresponding
to 𝐻 → 𝐶. The spectral sequence converges at the 2nd page since there are no
more arrows between non-zero objects to draw there.

Now let’s look at the vertical cohomology. The first page, �̂�𝑝,𝑞1 , looks as
follows:

0 0 ? 0 0

0 0 ? 0 0

(4.8)

14Recall that the 𝑝-th graded part of the filtered object 𝐹•𝛨𝑛 is given by the quotient
𝐹𝑝+1𝛨𝑛/𝐹𝑝𝛨𝑛, which is the 𝑝-th summand of gr𝛨𝑛 ..=⨁𝑘≥0𝐹

𝑘+1𝛨𝑛/𝐹𝑘𝛨𝑛.
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and 𝛾 being an isomorphism is equivalent to the vanishing of the two question
marks here. Note that the spectral sequence converges on this page, and so since
the question marks correspond to the same pieces of the cohomology which van-
ished by the previous computation, we conclude that 𝛾 is indeed an isomorphism.
This proves the claim.

Example 4.10 (Long exact sequence in cohomology). Using spectral sequences
we can also deduce the long exact sequence in cohomology from a short exact
sequence of objects. Suppose

0→ 𝐴→𝐵→𝐶→ 0 (4.9)

is an exact sequence. In horisontal cohomology the sequence converges on the
first page because the sequence is exact. On the other hand, �̂�𝑝,𝑞1 is given by

0 𝐻2(𝐴) 𝐻2(𝐵) 𝐻2(𝐶) 0

0 𝐻1(𝐴) 𝐻1(𝐵) 𝐻1(𝐶) 0

0 𝐻0(𝐴) 𝐻0(𝐵) 𝐻0(𝐶) 0

𝛼2 𝛽2

𝛼1 𝛽1

𝛼0 𝛽0

(4.10)

and the next page looks like this:

0 ker𝛼2 ker𝛽2/ im𝛼2 coker𝛽2 0

0 ker𝛼1 ker𝛽1/ im𝛼1 coker𝛽1 0

0 ker𝛼0 ker𝛽0/ im𝛼0 coker𝛽0 0

(4.11)

The sequence converges on the next page, and so we conclude that every entry
on the next page is 0. In particular, ker𝛽𝑖/ im𝛼𝑖 = 0 and ker𝛼𝑖+1 ≅ coker𝛽𝑖 for all
𝑖 ≥ 0. This gives the connecting homomorphism 𝐻𝑖(𝐶) → 𝐻𝑖+1(𝐴) along with
exactness everywhere in the long exact sequence.

Exercise. Prove the snake lemma using spectral sequences: given a commutative
diagram with exact rows

0 𝐸 𝐹 𝐺 0

0 𝐴 𝐵 𝐶 0

𝛼 𝛽 𝛾 (4.12)

prove the exactness of the sequence

0→ ker𝛼→ ker𝛽→ ker𝛾→ coker𝛼→ coker𝛽→ coker𝛾→ 0. (4.13)
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Next we turn to study properties of spectral sequences. For convenience, we
consider only sequences 𝐸 = �̂�, with 𝑑0 vertical. We will also abstract slightly and
let 𝐸•,• converge to any family of filtered objects 𝐸𝑛 ∈ 𝒜 such that 𝐹0𝐸𝑛 = 𝐸𝑛 and
𝐹𝑛+1𝐸𝑛 = 0. As usual we then have 𝐸𝑝,𝑞∞ ≅ gr𝑝𝐸

𝑝+𝑞.

Note that 𝐸𝑝,𝑞𝑟+1 is a subquotient of 𝐸
𝑝,𝑞
𝑟 for all 𝑝,𝑞,𝑟; this gives rise to a sequence

of quotient maps
𝐸𝑛,00 →𝐸𝑛,01 →…→𝐸𝑛,0∞ . (4.14)

The natural composite 𝐸𝑛,00 →𝐸𝑛 is called an edge morphism. In a similar manner
we construct an edge morphism 𝐸𝑛 →𝐸0,𝑛0 .

Exercise. Show that the following sequence is exact:

0→ 𝐸1,02 →𝐸1 →𝐸0,12
𝑑−→ 𝐸2,02 →𝐸2. (4.15)

This is called the five term exact sequence.

Example 4.11. The Hochschild-Serre spectral sequence in group cohomology
computes the group cohomology of a group 𝐺 in terms of a subgroup𝐻 and the
quotient 𝐺/𝐻. In this case, the five term exact sequence is simply the inflation-
restriction sequence

0→𝐻1(𝐺/𝐻,𝐴𝛨) →𝐻1(𝐺,𝐴) →𝐻1(𝐻,𝐴)𝐺/𝛨 →𝐻2(𝐺/𝐻,𝐴𝛨) →𝐻2(𝐺,𝐴).
(4.16)

We round off the section with a theorem, the “chain rule for derived func-
tors”, which we will put to good use later:

Theorem 4.12 (The Grothendieck spectral sequence). Let A,B and C be abelian
categories, with A and B having enough injectives. Suppose we are given left exact
functors A 𝐺−→ B 𝐹−→ C such that for any injective object 𝐼 ∈ A, 𝑅𝑖𝐹(𝐼) = 0 for 𝑖 >
0. Then there exists a convergent (first quadrant, cohomological) spectral sequence
starting on the page 2:

𝐸𝑝,𝑞2 = (𝑅𝑝𝐹)(𝑅𝑞𝐺)(𝐴) ⇒ 𝑅𝑝+𝑞(𝐹𝐺)(𝐴). (4.17)

For a proof of this, see [Wei94, Sec. 5.8].

4.3 Étale cohomology groups

Speaker: George Robinson
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Étale cohomology and Galois cohomology

Let 𝑘 be a field, 𝑋 = Spec𝑘 and for the remainder of the section, 𝐺 ..= Gal(𝑘sep/𝑘)
for some fixed separable closure 𝑘sep of 𝑘.

Recall from theorem 3.12 that Sh(𝑋ét) is equivalent to Mod(𝐺), the cate-
gory of discrete 𝐺-modules. Explicitly, for 𝑀 ∈ Mod(𝐺) we have a sheaf ℱ𝛭
whose sections over a finite separable extension 𝑘′/𝑘 are given by 𝑀𝐺′ , the ele-
ments of 𝑀 fixed by 𝐺′ = Gal(𝑘sep/𝑘′). In the equivalence, the functor 𝛤(𝑋,−)
simply becomes the covariant functor (−)𝐺 ∶ Mod(𝐺) → Ab, which sends a 𝐺-
module 𝑀 to the 𝐺-invariant submodule 𝑀𝐺. Taking derived functors shows
that 𝐻•

ét(𝑋,ℱ𝛭) = 𝐻•
Gal(𝐾,𝑀), that is, the derived functors of 𝛤(𝑋,−) in the

étale topology are precisely Galois cohomology.

Example 4.13. With 𝑋 = Spec𝑘 as above, suppose𝑀 is a trivial 𝐺-module, that
is, 𝑀 is an abelian group with the trivial action of 𝐺, 𝑔 ⋅ 𝑚 = 𝑚 for all 𝑔 ∈ 𝐺 and
𝑚 ∈ 𝑀. Then 𝐻0(𝐺,𝑀) = 𝑀, and from the definition of a cocycle we see that
𝐻1(𝐺,𝑀) = Hom(𝐺,𝑀).

This is already nontrivial, as for example

𝐻1(Gal(ℚ/ℚ),ℤ/2ℤ) = Hom(Gal(ℚ/ℚ),ℤ/2ℤ)
≅ {extensions of degree dividing 2} ≅ ℚ×/(ℚ×)2. (4.18)

An important theorem whose geometric analogue we will encounter later, is
the following:

Theorem 4.14 (Hilbert’s theorem 90). If 𝑘 is a perfect field, then𝐻1(𝐺,𝑘
×
) = 0.

We can apply this to the Kummer sequence (example 3.36) to compute the
cohomology of 𝜇𝑛 regarded as a Galois module:

Example 4.15. Applying Galois cohomology to the sequence

0→ 𝜇𝑛(𝑘) → 𝑘
× 𝑥↦𝑥𝑛−−−−→ 𝑘

×
→0 (4.19)

gives the following (rather short) long exact sequence in cohomology,

0→ 𝜇𝑛(𝑘)
𝐺 = 𝜇𝑛(𝑘) → 𝑘× → 𝑘× →𝐻1(𝐺,𝜇𝑛) →𝐻1(𝐺,𝑘

×
) = 0, (4.20)

where the last equality is Hilbert’s theorem 90. We sometimes write this as
𝐻1(𝐺,𝜇𝑛) = 𝑘×/(𝑘×)𝑛. Note that this generalises the previous example, since for
𝑘 = ℚ, 𝐺 acts trivially on 𝜇2 = {±1} ≅ ℤ/2ℤ.

Taking limits in two different ways gives the two identities

𝐻1(𝐺,𝜇𝑝∞) = 𝑘
× ⊗ℚ𝑝/ℤ𝑝 and 𝐻1(𝐺,ℤ𝑝(1)) = 𝑘

× ⊗̂ ℤ𝑝, (4.21)

where 𝜇𝑝∞ ..= lim−−→𝑛
𝜇𝑝𝑛 and ℤ𝑝(1) ..= lim←−−𝑛𝜇𝑝𝑛 .
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Example 4.16. Similarly, if 𝐸 is an elliptic curve over 𝑘, then multiplication by
𝑝 gives an exact sequence

0→ 𝐸[𝑝](𝑘) → 𝐸(𝑘) → 𝐸(𝑘) → 0, (4.22)

and the corresponding long exact sequence gives rise to

0→ 𝐸(𝑘)/𝑝𝐸(𝑘) →𝐻1(𝐺,𝐸[𝑝]) →𝐻1(𝐺,𝐸(𝑘))[𝑝] → 0, (4.23)

which is the starting point for the definition of Selmer groups, the Tate-Shafarevich
group and so on.

Cohomological dimension

Definition 4.17. Let 𝐺 be a profinite group. We say 𝐺 has (𝑝-)cohomological
dimension at most 𝑛 if for any (𝑝-)torsion 𝐺-module 𝑀, we have 𝐻𝑖(𝐺,𝑀) = 0
for 𝑖 > 𝑛. The (𝑝-)cohomological dimension of 𝐺, cd(𝐺) (resp. cd𝑝(𝐺)) is the
minimal such 𝑛.

Given a field 𝑘, we tend to write cd(𝑘) ..= cd(𝐺) where 𝐺 = Gal(𝑘sep/𝑘).

The following facts are useful in computation. For proofs, see [Ser02, §I.3].

Theorem 4.18. Let 𝐺 be any profinite group.

(i) cd(𝐺) = sup𝑝 𝑐𝑑𝑝(𝐺), where 𝑝 runs over the prime numbers.
(ii) For any 𝑝-Sylow subgroup 𝐺𝑝 of 𝐺, we have cd𝑝𝐺 = cd𝑝𝐺𝑝.15

(iii) Let𝐻 be a pro-𝑝 group.16 Then cd(𝐻) ≤ 𝑛 if and only if𝐻𝑛(𝐻,ℤ/𝑝ℤ) = 0.

Corollary 4.19. For any finite field 𝔽𝑞, we have cd(𝔽𝑞) = 1.

Proof. Note that 𝐺 = Gal(𝔽sep
𝑞 /𝔽𝑞) ≅ ℤ̂. The unique 𝑝-Sylow subgroup of ℤ̂ is ℤ𝑝

(since ℤ̂ ≅∏𝑝ℤ𝑝 ) so by (i) and (ii) we get that

cd(𝔽𝑞) = cd(ℤ̂) = sup
𝑝

cd𝑝(ℤ𝑝). (4.24)

A standard computation shows that 𝐻0(ℤ𝑝,ℤ/𝑝ℤ) = 𝐻1(ℤ𝑝,ℤ/𝑝ℤ) = ℤ/𝑝ℤ. On
the other hand, 𝐻2(ℤ𝑝,ℤ/𝑝ℤ) classifies isomorphism classes of extensions

0→ ℤ/𝑝ℤ→ 𝐸→ ℤ𝑝 →0, (4.25)

and by looking at the preimage of the toplogical generator of ℤ𝑝, it is not too
hard to see that 𝐸 necessarily splits, that is, 𝐻2(ℤ𝑝,ℤ/𝑝ℤ) = 0, whence our result
follows.

15For 𝐺 profinite, a 𝑝-Sylow subgroup is a subgroup of maximal index not divisible by 𝑝 (for
more detail, see [Ser02, §I.1.4])

16A projective limit of 𝑝-groups, groups of order a power of 𝑝.
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A more difficult result is the following:

Theorem 4.20. If 𝑘 is a number field and 𝑝 prime, then

cd𝑝(𝑘) = {
2 if 𝑝 > 2 or 𝑘 is totally imaginary,
∞ if 𝑝 = 2 and 𝑘 is totally real.

(4.26)

The issue here is that a real embedding gives rise to an element of order 2 in
the Galois group, and by the Hochschild-Serre spectral sequence we can produce
a nontrivial element of 𝐻𝑖(𝐺,ℤ/2ℤ) via 𝐻𝑖(𝐶2,ℤ/2ℤ), where 𝐶2 is the subgroup
generated by complex conjugation. See [Ser02, §II.4.4] for a proof.

Higher direct images

We now return to cohomology on sites in general. Recall from section 4.1 that
given a continuous map of sites 𝜋∶ 𝑋′𝛦′ →𝑋𝛦, the higher direct images are 𝑅𝑛𝜋∗(−),
the right derived functors of the pushforward 𝜋∗ ∶ Sh(𝑋′𝛦′) → Sh(𝑋𝛦).

Intuitively, higher direct images aim to describe the fibres of the top space 𝑋′

in terms of the cohomology of the base space. More precisely, if 𝑋 is a single
point, then 𝑅𝑛𝜋∗(−) is simply cohomology of the global sections functor. For
general 𝑋, the idea is that we patch together the cohomology of the fibres 𝑋′𝑥 as
𝑥 varies in 𝑋. For example, a theorem of Grothendieck states that under suitably
nice conditions, 𝑅𝑛𝜋∗(ℱ) vanishes for 𝑛 greater than the maximal dimension of
the fibres.17

𝑋′

𝑋

𝜋

𝑈×𝛸𝑋
′

𝑈

Proposition 4.21 ( [Mil80, III.1.13]). With 𝜋 as above, ℱ ∈ Sh(𝑋′𝛦′), 𝑅
𝑛𝜋∗ℱ is

isomorphic to the sheafification of the presheaf

𝑈↦𝐻𝑛(𝑈 ×𝛸𝑋
′,ℱ|𝑈×𝛸𝛸′). (4.27)

Proof. Recall that 𝜋∗ = 𝑎𝜋𝑝𝑖, where 𝑎 is the sheafification functor and 𝑖 ∶ Sh(𝑋′𝛦′) ↪
pSh(𝑋′𝛦′) is the inclusion functor. From proposition 3.35, 𝜋𝑝 is exact, and so is
𝑎 by proposition 3.40. The main issue is the failure of exactness of 𝑖. Now fix

17See this M.SE post for a precise statement.
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an injective resolution ℱ→ℐ• – we can always do so since Sh(𝑋′𝛦′) has enough
injectives – and note that by exactness,

𝑅𝑛𝜋∗ℱ =𝐻𝑛(𝑎𝜋𝑖𝐼•) = 𝑎𝜋𝑝𝐻
𝑛(𝑖𝐼•). (4.28)

But the presheaf in eq. (4.27) is precisely the one we are applying 𝑎 to, and this
proves our claim.

With some additional work, one can prove the following stronger result on
the small étale site, which states that the cohomology of the fibres is isomorphic
to the stalks of the higher direct image functors.

Theorem 4.22 ( [Mil80, Thm. III.1.15]). Let 𝜋∶ 𝑌 → 𝑋 be a quasi-compact mor-
phisms of schemes, and ℱ ∈ Sh(𝑌ét). Let 𝑥 be a geometric point of 𝑋, set 𝑖 ∶ 𝑋 ..=
Spec𝒪𝛸,𝑥 →𝑋 and ℱ̃ ..= 𝑖∗ℱ. Then

(𝑅𝑛𝜋∗ℱ)𝑥 ≅ 𝐻
𝑛(𝑌 ×𝛸𝑋,ℱ̃). (4.29)

Proof sketch. The idea of the proof is to reduce to the case of 𝑈 affine, then use
what Milne calls a “highly technical result” from EGA which allows us to pass
the limit inside the cohomology groups. Then

(𝑅𝑛𝜋∗ℱ)𝑥 ≅ lim−−→
𝑈
𝐻𝑛(𝑈 ×𝛸 𝑌,ℱ|𝑈×𝛸𝑌)

≅ 𝐻𝑛(lim−−→
𝑈
𝑈×𝛸 𝑌, lim−−→

𝑈
ℱ|𝑈×𝛸𝑌) (4.30)

= 𝐻𝑛(𝑌 ×𝛸𝑋,ℱ̃),

where the first isomorphism follows from the preceding proposition, and the
second is the highly technical result.

The following is one of the most famous applications of the Grothendieck
spectral sequence:

Theorem 4.23 (Leray spectral sequence). Let 𝜋∶ 𝑋′𝛦′ → 𝑋𝛦 be a continuous map
of sites, and ℱ ∈ Sh(𝑋′𝛦′). Then we have a spectral sequence beginning on the second
page,

𝐻𝑝(𝑋𝛦,𝑅
𝑞𝜋∗ℱ)⇒𝐻𝑝+𝑞(𝑋′𝛦′ ,ℱ) (4.31)

Proof. We give a quick proof in the case where 𝑋𝛦 = 𝑋ét, and refer to [Mil80,
Thm. III.1.18] for (not much) more detail. For the étale site, 𝜋∗ has an ex-
act left adjoint so preserves injectives. Thus it satisfies the conditions for the
Grothendieck spectral sequence (theorem 4.12), which immediately gives the re-
sult.
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4.4 Cohomology with supports

Speakers: George Robinson and George Cooper

One important application of the six functor setup of section 3.5 is to define
an algebro-geometric analogue of the theory of cohomology with compact sup-
port for manifolds. For the remainder of the section, let 𝑖 ∶ 𝑍 → 𝑋 be a closed
immersion, and 𝑗 ∶ 𝑈 = 𝑋⧵𝑍→𝑋 be the corresponding open immersion.

Definition 4.24. The functor

𝛤(𝑍,𝑖!(−)) ∶ Sh(𝑋ét) → Ab, ℱ ↦ ker(ℱ(𝑋)→ℱ(𝑈)) (4.32)

is left exact, and𝐻𝑛
𝑍(−) ..= 𝑅𝑛𝛤(𝑍,𝑖!(−)) is called the 𝑛-th cohomology with sup-

port in 𝑍.

As the name suggests, 𝐻𝑛
𝑍(−) is a cohomological delta-functor. Cohomology

with support in 𝑍 relates to usual sheaf cohomology as follows:

Lemma 4.25 ( [Mil80, Prop. III.1.25]). With notation as above, there exists a long
exact sequence

…→𝐻𝑟
𝑍(𝑋ét,ℱ) →𝐻𝑟(𝑋ét,ℱ) →𝐻𝑟(𝑈ét,ℱ) →𝐻𝑟+1

𝑍 (𝑋ét,ℱ) → …, (4.33)

which is natural in 𝑋, 𝑍 andℱ.

Proof. There is a natural isomorphism Hom𝛸(ℤ𝛸ℱ)
∼→ 𝛤(𝑋ét, 𝑖

!ℱ). In particu-
lar, 𝐻𝑝

𝑍(𝑋ét,−) ≅ Ext𝑝𝛸(ℤ𝛸,−).

Now, recall that we have an adjunction between 𝑗∗ and 𝑗!, Hom𝛸(𝑗!𝑗
∗ℤ𝛸,ℱ) ≅

Hom𝛸(𝑗
∗ℤ𝛸, 𝑗

∗ℱ), so Ext𝛸(𝑗!ℎ∗ℤ𝛸,ℱ) ≅ 𝐻𝑟(𝑈ét,ℱ). We have a short exact se-
quence (see [Mil80, Rmk. II.3.13]),

0→ 𝑗!𝑗
∗ℤ𝛸 →ℤ𝛸 → 𝑖∗𝑖

∗ℤ𝛸 →0, (4.34)

and since Hom𝛸 is left exact, the sequence

0→ Hom𝛸(𝑖∗𝑖
∗ℤ𝛸,ℱ) → Hom𝛸(ℤ𝛸,ℱ) → Hom𝛸(𝑗!𝑗

∗ℤ𝛸,ℱ) (4.35)

is exact. Therefore we have isomorphisms Hom𝛸(𝑖∗𝑖
∗ℤ𝛸,ℱ) ≅ 𝛤(𝑋ét, 𝑖

!ℱ), so the
long exact sequence in Ext• gives the corresponding for 𝐻•

𝑍, proving our claim.

Theorem 4.26 (The Excision Theorem). Let 𝜋∶ 𝑋′ →𝑋 be étale, 𝑍′ ⊂ 𝑋′ be closed
and assume

(i) 𝑍 ..= 𝜋(𝑍′) is closed, and the restriction 𝜋|𝑍′ ∶ 𝑍
′ →𝑍 is an isomorphism;
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(ii) 𝜋(𝑋′ ⧵𝑍′) ⊂ 𝑋 ⧵𝑍.

Then for anyℱ ∈ Sh(𝑋ét), we have𝐻
𝑟
𝑍(𝑋ét,ℱ) ≅ 𝐻

𝑟
𝑍′(𝑋

′
étℱ|𝛸′).

Informally, this says that if we modify 𝑋 away from 𝑍, the cohomology with
support in 𝑍,𝐻𝑟

𝑍, is unchanged. This is an algebro-geometric version of a similar
statement from algebraic topology.

Proof. By assumption (i), we have a commutative diagram

𝑈′ 𝑋′ 𝑍′

𝑈 𝑋 𝑍

𝑗′

𝜋 ≅

𝑖′

𝑗 𝑖

(4.36)

where the undefined objects and maps are the natural ones. From this and the
exact sequence in eq. (4.34) (with ℱ in place of ℤ𝛸 ) the diagram

0 𝛤𝑍′(𝑋
′,𝜋∗ℱ) 𝛤(𝑋′,𝜋∗ℱ) 𝛤(𝑈′,𝜋∗ℱ)

0 𝛤𝑍(𝑋,ℱ) 𝛤(𝑋,ℱ) 𝛤(𝑈,ℱ)

𝜙 (4.37)

commutes. Since 𝜋∗ is exact and preserves injectives, it suffices to prove the state-
ment for 𝑟 = 0, which amounts to showing that 𝜙 is an isomorphism.

Let’s first prove that 𝜙 is injective: If 𝑠 ∈ 𝛤𝑍(𝑋,ℱ) maps to 0, then 𝑠 restricts
to 0 in 𝛤𝑍(𝑋

′,ℱ) and also in 𝛤(𝑈,ℱ), since 𝑠 is supported on 𝑍. Since {𝑋′ →
𝑋,𝑈→𝑋} is an étale cover, 𝑠 = 0 by the sheaf condition.

Next we show surjectivity: if 𝑠′ ∈ 𝛤𝑍′(𝑋
′,𝜋∗ℱ), then the idea is to glue the

image of 𝑠′ in 𝛤(𝑋′,𝜋∗ℱ) and 0 ∈ 𝛤(𝑈,ℱ) to obtain an element of 𝛤(𝑋,ℱ) which
vanishes outside 𝑍, hence pulls back to 𝛤𝑍(𝑋,ℱ). But the two agree on 𝑋′ ×𝛸𝑈 ⊂
𝑈′, and so indeed glue to a global section on 𝑋.

Corollary 4.27. If 𝑥 ∈ 𝑋 is a closed point and ℱ ∈ Sh(𝑋ét), then we have isomor-
phisms𝐻𝑟

{𝑥}(𝑋,ℱ) ≅ 𝐻
𝑟(Spec𝒪sh

𝛸,𝑥,ℱ).

Proof. Apply the theorem to étale neighbourhoods of 𝑥, and take the limit using
[Mil80, Lemma III.1.16].
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