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5.1 Čech cohomology

Speaker: George Cooper

In this section we restrict our attention to étale sheaves, although several ar-
guments remain true for general sites.

We can develop the machinery of Čech cohomology for the étale topology
by analogy with the Zariski case, replacing 𝑈∩𝑉 with 𝑈×𝛸 𝑉. However, some
care must be taken; for example, 𝑈×𝛸𝑈 ≠ 𝑈 in general.

Fix a scheme 𝑋, an étale presheaf ℱ on 𝑋, and let 𝒰 = {𝑈𝑖
𝜙𝑖−→ 𝑋}𝑖∈ℐ an étale

cover of 𝑋. For 𝑝 > 0 and 𝑖0,… , 𝑖𝑝 ∈ ℐ, set 𝑈𝑖0,…,𝑖𝑝
..= 𝑈𝑖0 ×𝛸 … ×𝛸 𝑈𝑖𝑝 . Then the

natural projections onto the factors give rise to a map

pr�̂� ∶ 𝑈𝑖0,…,𝑖𝑝 →𝑈𝑖0,…,�̂�𝑗,…,𝑖𝑝 , 0 ≤ 𝑗 ≤ 𝑝, (5.1)

where �̂�𝑗 means that the 𝑖𝑗-component is omitted. Next, let

�̌�𝑝(𝒰,ℱ) ..= ∏
(𝑖0,…,𝑖𝑝)

ℱ(𝑈𝑖0,…,𝑖𝑝) (5.2)

and note that the projections pr�̂� induce natural maps res𝑗 = ℱ(pr�̂�), which we
use to define

𝑑 = 𝑑𝑝 ∶ �̌�𝑝(𝒰,ℱ)→ �̌�𝑝+1(𝒰,ℱ) by 𝑑𝑝(𝑠𝑖0,…,𝑖𝑝)
𝑝+1

∑
𝑗=0

(−1)𝑗 res𝑗(𝑠𝑖0,…,�̂�𝑗,…,𝑖𝑝+1).

(5.3)
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One then checks that 𝑑𝑝+1𝑑𝑝 = 0 for all 𝑝 ≥ 0, so (�̌�•(𝒰,ℱ),𝑑•) forms a complex,
and we can take cohomology, giving �̌�𝑝(𝒰,ℱ) ..= ker𝑑𝑝+1/ im𝑑𝑝. Then it follows
directly from the definition that �̌�0(𝒰,ℱ) = 𝛤(𝑋ét,ℱ).

Note that �̌�•(𝒰,ℱ) depends on the choice of covering 𝒰; to remove this de-
pendency, we introduce the notion of a refinement:

Definition 5.1. A covering𝒱 = {𝑉𝑗 →𝑋}𝑗∈𝒥 is a refinement of𝒰 = {𝑈𝑖 →𝑋}𝑖∈ℐ
if there exists a map 𝜏 ∶ ℐ → 𝒥 such that for all 𝑗 ∈ 𝒥, there exists a map 𝜂𝑗 such
that triangle

𝑉𝑗 𝑈𝜏(𝑗)

𝑋

𝜂𝑗

(5.4)

commutes.

Such a refinement gives maps

𝜏𝑝 ∶ �̌�𝑝(𝒰,ℱ)→ �̌�𝑝(𝒱,ℱ), 𝜏𝑝(𝑠)𝑗0,…,𝑗𝑝 = res𝜂𝑗0×…×𝜂𝑗𝑝
(𝑠𝜏(𝑗0),…,𝜏𝑗𝑝) (5.5)

where 𝑠 = 𝑠𝑖0,…,𝑖𝑝 ∈ �̌�
𝑝(𝒰,ℱ). One then checks that 𝜏𝑑 = 𝑑𝜏, so 𝜏 induces a map

on cohomology, 𝜌 = 𝜌(𝒱,𝒰,𝜏).

Lemma 5.2 ( [Mil80, III.2.1]). The map 𝜌 does not depend on the choice of 𝜏 and 𝜂𝑗.

Thus we can talk about a map 𝜌 = 𝜌(𝒱,𝒰) ∶ �̌�•(𝒰,ℱ) → �̌�•(𝒱,ℱ). If 𝒲 is
a refinement of 𝒱, then it is also a refinement of 𝒰 (check!) and one can verify
that 𝜌(𝒲,𝒰) = 𝜌(𝒲,𝒱)𝜌(𝒱,𝒰).

Definition 5.3. The 𝑝-th Čech cohomology group of (𝑋,ℱ) (for the étale topol-
ogy) is given by

�̌�𝑝(𝑋ét,ℱ) ..= lim−−→
𝒰
�̌�𝑝(𝒰,ℱ), (5.6)

where the injective limit is taken over the poset of coverings 𝒰 with maps 𝜌 as
above.

Remark. If𝑈→𝑋 is an étale map andℱ a presheaf on the big étale site𝑋Ét, then
the assignment

𝑈↦ �̌�𝑝(𝑈,ℱ) = lim−−→
𝒰
�̌�𝑝(𝒰,ℱ) (5.7)

where𝒰 runs over coverings of𝑈, is naturally a presheaf on𝑋Ét, denoted ℋ̌
𝑝(𝑋Ét,ℱ).

Proposition 5.4 ( [Mil80, III.2.3-5]). Fix 𝑈→𝑋 étale, and an étale covering𝒰 of
𝑈.
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(i) For each 𝑝 ≥ 0, �̌�𝑝(𝒰/𝑈,−) ∶ pSh(𝑋ét) → Ab is isomorphic to the 𝑝-th right
derived functor of𝐻0(𝒰/𝑈,−).

(ii) For each 𝑝 ≥ 0, �̌�𝑝(𝑈,−) ∶ pSh(𝑋ét) → Ab is isomorphic to the 𝑝-th right
derived functor of𝐻0(𝑈,−).

(iii) For each 𝑝 ≥ 0, �̌�𝑝(𝑋ét,−) ∶ Sh(𝑋ét) → Ab is isomorphic to the 𝑝-th right
derived functor of 𝛤(𝑋ét,−) if and only if for everyℱ ∈ Sh(𝑋ét) there exists a
long exact sequence in Čech cohomology.

Using spectral sequences, we can compute étale cohomology groups from
Čech cohomology groups:

Proposition 5.5 ( [Mil80, III.2.7]). Let 𝑈 → 𝑋 be étale, 𝒰 a covering of 𝑈, and
ℱ ∈ Sh(𝑋ét). Then we have spectral sequences starting on the second page as follows:

(i) �̌�𝑝(𝒰/𝑈,ℋ𝑞(ℱ)) ⇒ �̌�𝑝+𝑞(𝑈,ℱ).
(ii) �̌�𝑝(𝒰,ℋ𝑞(ℱ)) ⇒ �̌�𝑝+𝑞(𝑈,ℱ).

This essentially an application of the Grothendieck spectral sequence, see
Milne for more details.

Corollary 5.6. For anyℱ ∈ Sh(𝑋ét) and 𝑈→𝑋 étale, there are isomorphisms

�̌�0(𝑈,ℱ) ∼−→𝐻0(𝑈,ℱ) and �̌�1(𝑈,ℱ) ∼−→𝐻1(𝑈,ℱ) (5.8)

It is natural to ask whether we have isomorphisms in general; under mild
conditions this is indeed the case:

Theorem 5.7 ( [Mil80, Thm. III.2.17]). Let 𝑋 be a quasi-compact scheme, and sup-
pose that any finite subset of 𝑋 is contained in some affine open set.18 Then for every
𝑝 ≥ 0 andℱ ∈ Sh(𝑋ét), we have natural isomorphisms

�̌�𝑝(𝑋,ℱ) ∼−→𝐻𝑝(𝑋,ℱ). (5.9)

The proof is quite technical, and can be found in Milne’s book. A further
discussion on when derived cohomology and Čech cohomology differ can be
found in the following link: MO.

5.2 Cohomology of the additive group scheme

Speaker: Mike Daas

In this section, the goal is to compute 𝐻1(𝑋ét,𝔾𝑚) when 𝑋ét is a sufficiently
nice scheme of dimension 1. To do so, we first need to recall the language of
divisors on schemes:

18For example, this includes projective schemes over an affine scheme.
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Let 𝑋 be a regular integral quasi-compact scheme with function field 𝑘, let
𝑔 ∶ Spec𝑘 → 𝑋 denote the structure morphism, and denote by 𝑅(𝑈) the collec-
tion of rational functions on𝑈, for any𝑈→𝑋 is étale. Recall from example 3.36
that 𝔾𝑚,𝛸 ..= Specℤ[𝑡, 𝑡−1] × 𝑋. Note that 𝑅(𝑈)× = 𝛤(𝑈,𝑔∗𝔾𝑚,𝛫), and the natural
map 𝛤(𝑈,𝒪×𝑈) → 𝑅(𝑈)× induces an injection 𝑟 ∶ 𝔾𝑚,𝛫 →𝑔∗𝔾𝑚,𝑘.

Definition 5.8. The sheaf of Cartier divisors is the cokernel Div𝑋 ..= coker𝑟 =
𝑔∗𝔾𝑚,𝑘/𝑟(𝔾𝑚,𝑘).

On the other hand, the notion of a Weil divisor extends naturally to schemes
as follows: let 𝑋1 denote the set of points of 𝑋 of codimension 1. Then all the
local rings 𝒪𝛸,𝑥 are discrete valuation rings, and we denote by 𝑖𝑥 ∶ {𝑥} ↪ 𝑋 the
natural inclusion of a point 𝑥 into 𝑋.

Definition 5.9. The sheaf of Weil divisors is the sheaf 𝐷𝛸 ..=⨁𝑥∈𝛸1
𝑖𝑥∗ℤ.

Under the conditions above, it is a standard result from scheme theory (eg. [Har77,
Prop. II.6.11]) that𝐷𝛸 ≅ Div𝑋, and we use the two interchangeably; for example,
by definition of Div𝑋, 𝐷𝛸 fits into an exact sequence

0→𝔾𝑚,𝛸 →𝔾𝑚,𝑘 →𝐷𝛸 →0. (5.10)

Using the long exact sequence, we can therefore compute the cohomology of
𝔾𝑚,𝛸 in terms of the cohomology of 𝔾𝑚,𝑘 and 𝐷𝛸. For the latter, since cohomol-
ogy commutes with direct sums, it suffices to determine the cohomology of 𝑖𝑥∗ℤ
for all points 𝑥 ∈ 𝑋1. The Leray spectral sequence (theorem 4.23) for 𝑖𝑥∗ and ℤ is

𝐻𝑝(𝑋ét,𝑅
𝑞𝑖𝑥∗ℤ)⇒𝐻𝑝+𝑞(𝑥,ℤ). (5.11)

The right hand side is easier to compute explicitly. Let 𝜅(𝑥) be the residue
field at 𝑥 and 𝐺𝑥 ..= Gal(𝜅(𝑥)sep/𝜅(𝑥)). We claim that

𝐻𝑖(𝑥,ℤ) = {
𝛤(𝑋,ℤ) = ℤ for 𝑖 = 0,
0 for 𝑖 = 1,
𝐻2(𝑥,ℤ) ↪ Homcts(𝐺𝑥,ℚ/ℤ) for 𝑖 = 2.

(5.12)

Here the bottom line means that we can identify 𝐻2(𝑥,ℤ) with a subgroup of
Homcts(𝐺𝑥,ℚ/ℤ).

By using the equivalence Sh(Spec𝜅(𝑥)ét) ≅ Mod(𝐺𝑥), we can translate this to a
computation inGalois cohomology. Indeed, we have that𝐻1(𝑥,ℤ) ⊂ Homcts(𝐺𝑥,ℤ)
which vanishes since continuous homomorphisms factor through finite subgroups
of ℤ, and the only such is {0}; for 𝑖 = 2, we use the long exact sequence arising
from

0→ ℤ→ℚ→ℚ/ℤ→ 0 (5.13)
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along with the fact that𝐻2(𝐺𝑥,ℚ) = 0 sinceℚ is an injective object, to show that
𝐻2(𝑥,ℤ) ↪ Homcts(𝐺𝑥,ℚ/ℤ). An application of proposition 4.21 shows that
𝑅1𝑖𝑥∗ℤ = 0.

𝐻0(𝑋ét,𝑅
2𝑖𝑥∗ℤ) 𝐻1(𝑋ét,𝑅

2𝑖𝑥∗ℤ) 𝐻2(𝑋ét,𝑅
2𝑖𝑥∗ℤ)

𝐻0(𝑋ét,𝑅
1𝑖𝑥∗ℤ) = 0 𝐻1(𝑋ét,𝑅

1𝑖𝑥∗ℤ) = 0 𝐻2(𝑋ét,𝑅
1𝑖𝑥∗ℤ) = 0

𝐻0(𝑋ét, 𝑖𝑥∗ℤ) = ℤ 𝐻1(𝑋ét, 𝑖𝑥∗ℤ) 𝐻2(𝑋ét, 𝑖𝑥∗ℤ)

The 𝐸2-page of the spectral sequence 𝐻
𝑝(𝑋ét,𝑅

𝑞𝑖𝑥∗ℤ)⇒𝐻𝑝+𝑞(𝑥,ℤ).

The spectral sequence19 implies that

𝐻𝑖(𝑥, 𝑖𝑥∗ℤ) = {
𝛤(𝑋,𝑖𝑥∗ℤ) = ℤ for 𝑖 = 0,
0 for 𝑖 = 1,
𝐻2(𝑥, 𝑖𝑥∗ℤ)↪ Homcts(𝐺𝑥,ℚ/ℤ) for 𝑖 = 2.

(5.14)

and since cohomology commutes with direct sums,

𝐻𝑖(𝑋ét,𝐷𝛸) = {
⨁𝑥∈𝛸1

ℤ for 𝑖 = 0,
0 for 𝑖 = 1,
𝐻2(𝑋ét,𝐷𝛸) ↪⨁𝑥∈𝛸1

Homcts(𝐺𝑥,ℚ/ℤ) for 𝑖 = 2.
(5.15)

On the other hand, the Leray spectral sequence associated to 𝑔 ∶ Spec𝑘 → 𝑋
and 𝔾𝑚 is given by

𝐻𝑝(𝑋ét,𝑅
𝑞𝑔∗𝔾𝑚,𝛫) ⇒𝐻𝑝+𝑞(Spec𝑘,𝔾𝑚). (5.16)

Recall from theorem 4.22 that the stalk of 𝑅𝑞𝑔∗𝔾𝑚,𝑘 at a geometric point 𝑥 is
given by𝐻𝑞(Frac𝒪𝛸,𝑥,𝔾𝑚). ByHilbert’s theorem 90, we know that𝐻1(Frac𝑂𝛸,𝑥,𝔾𝑚) =
0, so 𝑅1𝑔∗𝔾𝑚,𝛫 = 0. By a similar argument as for ℤ, by passing to Galois coho-
mology we find that

𝐻0(𝑋ét, 𝑔∗𝔾𝑚,𝑘) = 𝐻
0(𝑘,𝔾𝑚) = 𝑘

× and 𝐻0(𝑋ét, 𝑔∗𝔾𝑚,𝑘) ↪𝐻2(𝑘,𝔾𝑚,𝑘). (5.17)

19Explicitly, one argues as follows: In degree 1, we know one of the two terms vanishes, and
the other one does not admit nontrivial boundary maps. The result in degree 1 must be zero, so
both terms on the E2-page in degree 1 must be zero.

In degree 2, we just include one of the objects in the sequence in degree 2 into the total complex:
again no boundary maps reach the term we are looking at and the total complex can be recovered
from the degree 2 terms by some kind of filtration.
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The long exact sequence associated to eq. (5.10) then becomes

0→ 𝛤(𝑋ét,𝒪
×
𝛸) → 𝑘× → ⨁

𝑥∈𝛸1
𝑖𝑥∗ℤ→𝐻1(𝑋ét,𝔾𝑚) → 0

0→𝐻2(𝑋,𝔾𝑚) →𝐻2(𝑘,𝔾𝑚,𝑘). (5.18)

In particular, we can identify 𝐻1(𝑋ét,𝔾𝑚) with the quotient Div𝛸 /(𝑘×/𝒪×𝛸) =
Pic(𝑋).

Stronger results:

Suppose now dim𝑋 = 1, and that 𝜅(𝑥) is perfect for every 𝑥 ∈ 𝑋. Then 𝒪𝛸,𝑥 is a
Henselian discrete valuation ring with algebraically closed residue field, and we
set 𝑘𝑥 ..= Frac𝒪𝛸,𝑥. We claim that 𝐻2(𝑘𝑥,𝔾𝑚) = 0. Indeed, by [Ser02, II.2.2] we
can identify𝐻2(𝑘𝑥,𝔾𝑚)with the Brauer groupBr(𝑘𝑥) of 𝑘𝑥, that is, the group of 𝑘𝑥-
algebras 𝐴with centre equal to 𝑘𝑥, and whose only two-sided ideals are the trivial
ones. The group operation is given by the tensor product, −⊗𝑘𝑥 −. The valuation
on 𝑘𝑥 extends uniquely (by Henselian-ness) to a valuation on any 𝐴 ∈ Br(𝑘𝑥),
and we can then produce a subfield 𝐿′ ⊂ 𝐴 with [𝐴 ∶ 𝑘𝑥] = [𝐿′ ∶ 𝑘𝑥]

2. 𝐿′/𝑘𝑥 is
unramified, so 𝐿′ = 𝑘𝑥 hence 𝐴 = 𝑘𝑥. See [Ser95, §XII.2] for more details.

Now, since the stalk of 𝑅2𝑔∗𝔾𝑚,𝑘 at 𝑥 is given by 𝐻2(𝑘𝑥,𝔾𝑚), and all stalks
vanish, we conclude that 𝑅2𝑔∗𝔾𝑚,𝑘 = 0. The points 𝑥 ∈ 𝑋1 are all closed, so the
functors 𝑖𝑥∗ are all exact by proposition 3.51.

It follows that𝐻2(𝑋ét, 𝑔∗𝔾𝑚,𝑘) = 𝐻
2(Spec𝑘,𝔾𝑚), and as before we get isomor-

phisms 𝐻𝑞(𝑋ét, 𝑖𝑥∗ℤ) ≅ 𝐻
𝑞(𝑥,ℤ), whence we obtain an exact sequence

0 𝐻2(𝑋ét,𝔾𝑚) 𝐻2(𝑘,𝔾𝑚,𝑘) ⨁𝑥∈𝛸1
Homcts(𝐺𝑥,ℚ/ℤ)

𝐻3(𝑋ét,𝔾𝑚) 𝐻3(𝑘,𝔾𝑚,𝑘)
(5.19)

If we additionally assume that𝑋 is “excellent” (a technical condition wewon’t
define, see [Sta21, Section 07QS] – a scheme is excellent if it can be covered by
spectra of excellent rings), then 𝑘𝑥 is quasi-algebraically closed field: any polyno-
mial over it whose number of variables is greater than its degree has a root.

Example 5.10. The Chevalley–Warning theorem ( [Ser73, Thm. I.3]) states that
any finite field 𝔽𝑞 is quasi-algebraically closed.

With 𝑋 as above, for any closed point 𝑥 ∈ 𝑋 we have 𝐻𝑞(𝑘𝑥,𝔾𝑚) = 0 hence
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𝑅𝑞𝑔∗𝔾𝑚 = 0 for 𝑞 > 0, and this gives the long exact sequence

… 𝐻𝑟(𝑋ét,𝔾𝑚) 𝐻𝑟(𝑘,𝔾𝑚,𝑘) ⨁𝑥∈𝛸1
𝐻𝑟−1(𝐺𝑥,ℚ/ℤ)

𝐻𝑟+1(𝑋ét,𝔾𝑚) 𝐻𝑟+1(𝑘,𝔾𝑚,𝑘) …
(5.20)

For example, if 𝑋 is a smooth algebraic curve over an algebraically closed field,
then 𝑘 is 𝐶1 by Tsen’s theorem ( [Sta21, Theorem 03RD]). Since we also have that
𝐻𝑟(𝐺𝑥,ℚ/ℤ) = 0 for 𝑟 ≥ 1, as 𝑘𝑥 is algebraically closed, we deduce from the long
exact sequence that 𝐻𝑟(𝑋ét,𝔾𝑚) = 0 for all 𝑟 ≥ 2.

5.3 Comparing topologies

In this section, we take a brief pause from the gritty computations to answer
the question “how do we compare cohomology groups defined with respect to
different Grothendieck topologies on a site?” We don’t give any proofs, but refer
the eager reader to Milne’s book.

Proposition 5.11 ( [Mil80, Prop. III.3.1]). Let (𝐶′/𝑋)𝛦 be aGrothendieck topology,
let 𝐶 ⊂ 𝐶′ be a subcategory and suppose 𝑓∶ (𝐶′/𝑋)𝛦 → (𝐶/𝑋)𝛦 is the map induced
by the inclusion functor 𝐶↪𝐶′. For any sheavesℱ′ on (𝐶′/𝑋)𝛦 andℱ on (𝐶/𝑋)𝛦,
we have

𝐻𝑖(𝑋,𝑓∗ℱ
′) ≅ 𝐻𝑖(𝑋,ℱ′) and 𝐻𝑖(𝑋,ℱ) ≅ 𝐻𝑖(𝑋,𝑓∗ℱ′), (5.21)

for all 𝑖 ≥ 0.

In particular, we can pass freely between the small and big étale sites when
computing étale cohomology groups.

Definition 5.12. Let (𝐶1/𝑋)𝛦1 and (𝐶2/𝑋)𝛦2 be sites where 𝐶1 ⊃ 𝐶2 and 𝐸1 ⊃ 𝐸2.
If for every covering in the 𝐸1-topology there exists a covering in 𝐸2 which refines
it and vice versa, then we say that 𝐸1 and 𝐸2 admit mutual refinements.

Proposition 5.13 ( [Mil80, Prop. III.3.3]). Suppose 𝐸1 and 𝐸2 as above are stable
classes, cf. definition 2.4. Let 𝑓∶ (𝐶1/𝑋)𝛦1 → (𝐶2/𝑋)𝛦2 be the natural map. If 𝐸1 and
𝐸2 admit mutual refinements, then

𝐻𝑖(𝑋𝛦2 ,𝑓∗ℱ) ≅ 𝐻
𝑖(𝑋𝛦1 ,ℱ), (5.22)

for any sheafℱ ∈ Sh(𝑋𝛦1) and 𝑖 ≥ 0.

We can use this to restrict from the class of étale morphisms to the class of
étale morphisms of finite type, or to the class of separated étale morphisms, or
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even to affine étale morphisms (exercise! – this amounts to showing that suitable
mutual refinements exist). In a similar fashion we can reduce a problem from
the class of smooth morphisms to the class of étale morphisms: the key point in
showing this is that every smooth morphism admits a section étale-locally. The
following shows that we can also restrict our attention to finite subcoverings:

Proposition 5.14 ( [Mil80, Prop. III.3.5]). Suppose (𝐶/𝑋)𝛦 is a Noetherian site,
meaning that every covering has a finite subcovering, i.e. a covering consisting of
finitely many elements. Let 𝐸𝑓 denote the category of finite subcoverings. Then the
categories of sheaves (resp. presheaves) on 𝑋𝛦 and 𝑋𝛦𝑓 are canonically equivalent. In
particular, cohomology is preserved when passing from one to the other.

5.4 Étale and complex cohomology

In this section, for a scheme 𝑋 over Specℂ, we let 𝐻𝑖(𝑋(ℂ),−) denote the usual
singular cohomology. If étale cohomology is indeed a “good” cohomology the-
ory, then it should coincide with singular cohomology under suitably nice con-
ditions. The goal of this section is to prove the following theorem:

Theorem 5.15. Let𝑋 be a smooth scheme over Specℂ and𝑀 a finite abelian group.
Then

𝐻𝑖(𝑋(ℂ),𝑀) ≅ 𝐻𝑖(𝑋ét,𝑀), (5.23)

for all 𝑖 ≥ 0.

Example 5.16. Note that it is crucial to assume 𝑀 is finite; for example, if 𝑋 is
an elliptic curve, we have

𝐻1(𝑋(ℂ),ℤ) = ℤ2 but 𝐻1(𝑋ét,ℤ) = Homcts(𝜋1(𝑋),ℤ) = 0, (5.24)

the latter because 𝜋1(𝑋) is a profinite group, by the same argument as in sec-
tion 5.2.

Proof (sketch). For 𝑖 = 0, this amounts to showing that the numbers of compo-
nents of 𝑋 and 𝑋(ℂ) agree. This follows from a reduction to the case of 𝑋 being
a projective curve, and then an appeal to Riemann-Roch. For details, see [Sha13,
§VII.2].

For 𝑖 = 1, we use the fact that 𝐻1(𝑋ét,𝑀) is in bijective correspondence
with the set of Galois coverings with automorphism group equal to 𝑀; see [?
, Props. 11.1 & 11.3]. On the other hand, since 𝐻1(𝑋(ℂ),𝑀) classifies analytic
covering spaces with automorphism group 𝑀, the case follows from the follow-
ing theorem:
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Theorem 5.17 (Riemann existence theorem). Let 𝑋→ Specℂ be locally of finite
type. Then there is an equivalence of categories

{finite étale covers 𝑌→𝑋}↔ {analytic covering spaces 𝑌an →𝑋an},
𝑌 ↦ 𝑌an. (5.25)

Finally, for 𝑖 > 1, let 𝑋cx be the site on 𝑋an where coverings are given by
local isomorphisms of complex analytic spaces. Since for any complex-open
𝑈 ⊂ 𝑋(ℂ) the map 𝑈 ↪ 𝑋(ℂ) is a local isomorphism, we have a natural map
𝑋cx →𝑋(ℂ)top, where 𝑋(ℂ)top denotes the site generated by the complex topol-
ogy of 𝑋(ℂ). It is not difficult to see that these admit mutual refinements, so by
proposition 5.14,

𝐻𝑖(𝑋cx,𝑀) ≅ 𝐻𝑖(𝑋top,𝑀). (5.26)

By the implicit function theorem (cf. exercise sheet 1), for 𝑈 → 𝑋 étale that
associated map 𝑈an → 𝑋an is a local isomorphism, giving rise to a map of sites
𝑓∶ 𝑋cx →𝑋ét. This gives rise to a Leray spectral sequence

𝐻𝑖(𝑋ét,𝑅
𝑗𝑓∗ℱ)⇒𝐻𝑖+𝑗(𝑋cx,ℱ). (5.27)

If we can show that𝑅𝑗𝑓∗ℱ = 0 for 𝑗 > 0, then the spectral sequence degenerates and
we are done. By proposition 4.21, 𝑅𝑗𝑓∗ℱ is the sheafification of𝑈↦𝐻𝑗(𝑈cx,ℱ).
The final ingredient in the proof is the following lemma, which relies on quite
heavy machinery, namely [Mil80, VI.4.2 & 5.1]. We refer the reader to Milne’s
book for a proof.

Lemma 5.18 ( [Mil80, III. 3.15]). For a locally constant sheaf ℱ ∈ Sh(𝑋cx) with
finite fibres and 𝑖 > 0, fix 𝛾 ∈ 𝐻𝑖(𝑋cx,ℱ). For any 𝑥 ∈ 𝑋(ℂ), there exists an étale
morphism 𝑈→𝑋 whose image contains 𝑥 with 𝛾|𝑈cx

= 0.

In particular, for our constant sheaf 𝑀, we have that 𝐻𝑖(𝑈cm,𝑀) = 0 and
upon sheafifying this gives that 𝑅𝑗𝑓∗ℱ = 0, as required.
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