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6.1 Constructible sheaves

Speaker: Håvard Damm-Johnsen

In this section, we assume as always that all schemes are locally Noetherian,
and sheaves are assumed to be valued in Ab or Mod(ℤ/𝑛ℤ), although most of the
results extend to sheaves valued in modules over an arbitrary Noetherian ring.

Keymotivation: wewant a “nice” category for coefficient systems of schemes.
Issue: the category of locally constant sheaves is not well-behaved, in particular,
not closed under pushforward.

Example 6.1. Let 𝐺 be a finite abelian group, and let 𝑖 ∶ 0 ↪𝔸1ℂ be the inclusion
of 0 = Specℂ corresponding to the origin. Then 𝑖∗𝐺 is the skyscraper sheaf, and
is not locally constant: if 𝑈 → 𝔸1ℂ is etale with 0 in its image, then the stalk of
𝑖∗𝐺 at 0 is different from the stalk away from 0 so 𝑖∗𝐺 not constant on any etale
covering.

Recall that a sheaf ℱ is locally constant on a scheme 𝑋 if there exists some
étale covering {𝜙 ∶ 𝑈→𝑋} such that ℱ|𝑈 ..= 𝜙∗ℱ is a constant sheaf.

We first define constructible sheaves on a Noetherian scheme:

Definition 6.2. Let 𝑋 be a Noetherian scheme. A sheaf ℱ ∈ Sh(𝑋ét) is con-
structible if there exists a finite partition 𝑋 = ⨆𝑖𝑍𝑖 where 𝑍𝑖 are locally closed
subschemes of 𝑋, and ℱ|𝑍𝑖 is locally constant with finite stalks.

We frequently shorten “locally constant with finite stalks” to “finite locally
constant”. The reason for restricting our attention to such sheaves is that co-
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homology with infinite coefficient sheaves is frequently ill-behaved, as in exam-
ple 5.16.

Remark. In [Mil80, §V.1], Milne defines constructible sheaves via algebraic spaces,
while we loosely follow the approach of [Sta21, Section 05BE], albeit in lesser
generality.

Constructible sheaves extend the class of locally constant sheaves by allowing
them to vary along closed subschemes. We can think of these as “locally locally
constant sheaves”, and by taking the trivial partition it is clear that any locally
constant sheaf with finite stalks is constructible.

Lemma 6.3. Let𝑋 beNoetherian. Thenwe can check constructibility Zariski-locally.

Proof. Wewant to show that ifℱ|𝑈𝑖 is constructible for some Zariski-open cover-
ing 𝑋 =⋃𝑖𝑈𝑖, then ℱ is constructible. Since 𝑋 is quasi-compact, we can assume
{𝑈𝑖} is finite. If 𝑈𝑖 = ⊔𝑗𝑍𝑖𝑗 with ℱ𝑍𝑖𝑗 locally constant with finite stalks, then we
have a decomposition 𝑋 = ⋃𝑖𝑗𝑍𝑖𝑗. By the usual topological argument, this can
be refined to a disjoint union 𝑋 = ⊔𝑖′𝑍

′
𝑖′ with ℱ|𝑍′

𝑖′
finite locally constant.

This allows us to extend the definition of constructibility to arbitrary locally
Noetherian schemes in a natural way.

Proposition 6.4 ( [Sta21, Tag 095H]). Let 𝑓 ∶ 𝑋′ →𝑋 be a finite étale morphism,
andℱ′ ∈ Sh(𝑋′ét) a constructible sheaf. Then 𝑓∗ℱ

′ is also constructible.

This is somewhat technical, and in the interest of time we won’t go into de-
tails. The full subcategory of Sh(𝑋ét) consisting of constructible sheaves retains
several good properties:

Theorem 6.5. The category of constructible sheaves is closed under closed under tak-
ing kernels, cokernels, extensions and tensor products, and is abelian.

Tate twists

Tate twists are a nifty device for stating Poincaré duality without making a choice
of an orientation. See this link for a less vague explanation.

Fix now a scheme𝑋 such that 𝑛 is invertible in every residue field of𝑋. Then
we saw in exercise sheet 3 that 𝜇𝑛 is locally isomorphic to the constant sheaf ℤ/𝑛ℤ,
and we regard 𝜇𝑛 as a locally free sheaf of ℤ/𝑛ℤ-modules of rank 1 on 𝑋ét.

Lemma 6.6. If ℱ is a locally free and constructible sheaf with values in ℤ/𝑛ℤ, then
so is its dual,ℱ∨ ..= ℋℴ𝓂ℤ/𝑛ℤ(ℱ,ℤ/𝑛ℤ).
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Proof. Choose an étale covering {𝑈→𝑋} such thatℱ|𝑈 is free; thenℱ∨|𝑈 is also
free. By lemma 6.3 we can check constructibility locally, where it is immediate.

In particular, we can consider the dual of 𝜇𝑛. Let

(ℤ/𝑛ℤ)(𝑟) ..= {
𝜇⊗𝑟𝑛 if 𝑟 > 0,
ℤ/𝑛ℤ if 𝑟 = 0,
(𝜇⊗(−𝑟)𝑛 )∨ if 𝑟 < 0.

(6.1)

This is a sheaf of ℤ/𝑛ℤ-modules by the previous lemma.

Definition 6.7. Let ℱ be a sheaf of ℤ/𝑛ℤ-modules, and fix 𝑟 ∈ ℤ. The 𝑟-th Tate
twist of ℱ is ℱ(𝑟) ..= ℱ⊗ (ℤ/𝑛ℤ)(𝑟).

Proposition 6.8. Letℱ be a constructible sheaf. Thenℱ(𝑟) is locally isomorphic to
ℱ.

6.2 Poincaré duality

A very readable introduction to this is Tony Feng’s notes.

The intuition for Poincaré duality is most easily seen in the case of a real
compact 𝑛-manifold𝑀. Recall that for each for each 0 ≤ 𝑘 ≤ 𝑛, the cup product

𝐻𝑘(𝑀;ℝ) ×𝐻𝑛−𝑘(𝑀;ℝ)→𝐻𝑛(𝑀;ℤ) (6.2)

defines a non-degenerate bilinear map.

Theorem 6.9 (Classical Poincaré duality). Let𝑀 be an orientable compact mani-
fold of real dimension 𝑛. Then a choice of an orientation on𝑀 defines a trace map

∫
𝛭
∶ 𝐻𝑛(𝑀;ℝ)→ℝ, (6.3)

which in turn gives an identification

𝐻𝑖(𝑀;ℝ) ≅ (𝐻𝑛−𝑖(𝑀;ℝ))∨ ≅ 𝐻𝑛−𝑖(𝑀;ℝ). (6.4)

Since we don’t have a canonical way of orienting our schemes, we ought to
study the above when 𝑀 is not oriented. In that case we need to add extra con-
ditions on the coefficient ring; for example, we always have Poincaré duality for
cohomology with coefficients in ℤ/2ℤ. This is done by introducing an orienta-
tion sheaf, whose analogue in the sheaf setting is 𝜇⊗𝑟. Postponing some essential
definitions, we give the statement of Poincare duality for algebraic curves:
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Theorem 6.10 (Poincaré duality for curves, [Mil80, Thm. V.2.1]). Let 𝑋 be a
smooth projective curve over an algebraically closed field 𝑘, and suppose 𝑛 ∈ ℤ is in-
vertible in 𝑘.

(a) If𝑈 ⊂ 𝑋 is a non-empty open subscheme, then there is a canonical isomorphism

𝜂(𝑈) ∶ 𝐻2
𝑐 (𝑈,𝜇𝑛)

∼−→ ℤ/𝑛ℤ. (6.5)

(b) For any constructible sheaf ℱ of ℤ/𝑛ℤ-modules on 𝑈ét, the groups 𝐻
𝑟
𝑐 (𝑈,ℱ)

and Ext𝑟Sh(𝑈ét,ℤ/𝑛ℤ)
(ℱ,𝜇𝑛) are finite for all 𝑟 and vanish for 𝑟 > 2. The pairing

𝐻𝑟
𝑐 (𝑈,ℱ) ×Ext𝑟Sh(𝑈ét,ℤ/𝑛ℤ)

(ℱ,𝜇𝑛) →𝐻2
𝑐 (𝑈,𝜇𝑛) ≅ ℤ/𝑛ℤ (6.6)

is non-degenerate.

Remark. The assumption that 𝑘 be algebraically closed is necessary; however
there are analogues for other fields, for example Tate-Poitou duality in Galois
cohomology, and more generally Artin-Verdier duality for Spec𝒪𝛫, when 𝐾 is a
number field. There are also many generalisations of Poincaré duality, in partic-
ular Verdier duality, see for example [KS13].

Speaker: Andrés Ibáñez Núñes

Let us first explain the cohomology groups 𝐻𝑐:

Definition 6.11. Let 𝑗 ∶ 𝑈 ↪ 𝑋 be an open immersion, and ℱ ∈ Sh(𝑈ét). Then
𝐻•
𝑐 (𝑈,ℱ) ..= 𝐻•(𝑋,𝑗!ℱ) is called cohomology with compact support.

We can define this more generally for 𝑈 → Spec𝑘 separated of finite type:
by Nagata compactification ( [Sta21, Theorem 0F41] or Brian Conrad’s notes), it
factors as

𝑈 𝑋

Spec𝑘

𝑗

(6.7)

where 𝑗 is an open immersion and 𝑋→ Spec𝑘 is proper, and one can check that
𝐻•
𝑐 (𝑈,ℱ) is independent of the choice of compactification𝑋. One can also check

that given a short exact sequence of sheaves on 𝑈, there is a corresponding long
exact sequence in 𝐻•

𝑐 .

Next, let’s define the pairing of eq. (6.6):21 for transparency, fix an abelian
category 𝒜 with enough injectives, and let 𝐴,𝐵 and 𝐶 be objects in 𝒜. It is well-
known (see e.g. Wikipedia) that Ext𝑟(𝐴,𝐵) classifies “𝑟-extensions”

0→ 𝐵→𝑋𝑟 →…→𝑋1 →𝐴→ 0 (6.8)
21I found the explanation on Wikipedia a lot more intuitive than the one from the talk, so I

decided to type up that.
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up to equivalence, and if

𝜉 = 0→ 𝐵→𝑋𝑟 →…→𝑋1 →𝐴→ 0 and 𝜉′ = 0→ 𝐶→𝑋′𝑠 →…→𝑋′1 →𝐵→ 0

are elements of Ext𝑟(𝐴,𝐵) and Ext𝑠(𝐵,𝐶) respectively, then there is a natural
pairing

Ext𝑛(𝐴,𝐵)×Ext𝑚(𝐵,𝐶) → Ext𝑛+𝑚(𝐴,𝐶) (6.9)
(𝜉,𝜉′) ↦ 𝜉⌣ 𝜉′,

where

𝜉 ⌣ 𝜉′ = 0→ 𝐶→𝑋′𝑠 →…→𝑋′1 →𝑋𝑠 →…→𝑋1 →𝐴→ 0, (6.10)

the map 𝑋′1 →𝑋𝑟 being the natural composition 𝑋′1 →𝐵→𝑋𝑟. One then checks
that 𝜉 ⌣ 𝜉′ is actually an extension, hence a well-defined element of Ext𝑟+𝑠(𝐴,𝐶).

Returning to our situation, we take 𝒜 = Sh(𝑋ét,ℤ/𝑛ℤ), 𝐴 = ℤ, 𝐵 = 𝑗!ℱ and
𝐶 = 𝑗!𝜇𝑛. Since Ext are the derived functors of Hom, we have 𝐴 = Ext𝑟(ℤ,𝑗!ℱ) ≅
𝐻𝑟
𝑐 (𝑈,ℱ) and 𝐶 = Ext𝑟+𝑠(ℤ,𝑗!𝜇)𝑛 ≅ 𝐻𝑟+𝑠

𝑐 (𝑈,𝜇𝑛), and by the adjunction (𝑗∗, 𝑗!) we
find

𝐵 = Ext𝑠(𝑗!ℱ,𝑗!𝜇𝑛) ≅ Ext𝑠(ℱ,𝑗∗𝑗!𝜇𝑛) ≅ Ext𝑠(ℱ,𝜇𝑛). (6.11)

Altogether, this gives the pairing in eq. (6.6). Now we are ready to sketch the
main ideas of the proof of theorem 6.10.

Proof of a). We want to construct a canonical isomorphism 𝜂(𝑈) ∶ 𝐻2
𝑐 (𝑈,𝜇𝑛) ≅

ℤ/𝑛ℤ. First assume 𝑈 = 𝑋. Taking the long exact sequence in 𝐻•
𝑐 = 𝐻

• associated
to the Kummer sequence (example 3.36), we get

…→𝐻1(𝑋,𝔾𝑚)
⋅𝑛−→𝐻1(𝑋,𝔾𝑚) →𝐻2(𝑋,𝜇𝑛) →𝐻2(𝑋,𝔾𝑚) →𝐻2(𝑋,𝔾𝑚) → …

(6.12)
and we make a few observations:

• 𝐻𝑚(𝑋,𝔾𝑚) = 0 for all 𝑚 ≥ 2 by Tsen’s theorem.

• 𝐻1(𝑋,𝔾𝑚) ≅ Pic(𝑋) as in section 5.2.

• There is a natural short exact sequence 0 → Jac𝑘𝑋 → Pic(𝑋) → ℤ → 0,
where Jac𝑘(𝑋) is the Jacobian of 𝑋.

• There is a surjective multiplication map Jac𝑘𝑋→ Jac𝑘𝑋.

Therefore we have a commutative diagram
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0 0

Jac𝑘(𝑋) Jac𝑘(𝑋) 0

𝐻1(𝑋,𝔾𝑚) 𝐻1(𝑋,𝔾𝑚) 𝐻2(𝑋,𝜇𝑛) 0

0 ℤ ℤ ℤ/𝑛ℤ 0

0 0

⋅𝑛

(6.13)

and the snake lemma applied to the two bottom rows implies that the induced
dashedmap𝐻2(𝑋,𝜇𝑛) → ℤ/𝑛ℤ is an isomorphism. For general𝑈↪𝑋, let 𝑖 ∶ 𝑍 ..=
𝑋⧵𝑈→𝑍 be the natural inclusion, and recall that we have a short exact sequence

1→ 𝑗!𝑗
∗𝜇𝑛 →𝜇𝑛 → 𝑖∗𝑖

∗𝜇𝑛 →1, (6.14)

inducing a long exact sequence

…→𝐻𝑝(𝑋,𝑗!𝑗
∗𝜇𝑛) ≅ 𝐻

𝑝
𝑐 (𝑈,𝜇𝑛) →𝐻𝑝(𝑋,𝜇𝑛) →𝐻𝑝(𝑋, 𝑖∗𝑖

∗𝜇𝑛) →𝐻𝑝+1(𝑋,𝑗!𝑗
∗𝜇𝑛) → ….
(6.15)

We claim that 𝐻•(𝑋, 𝑖∗𝑖
∗𝜇𝑛) = 0: since 𝐻•(𝑋, 𝑖∗𝑖

∗𝜇𝑛) = 𝐻•(𝑍, 𝑖∗𝜇𝑛), and 𝑍 con-
sists of a finite collection of points, 𝑍 = ⨆Spec𝑘, Tsen’s theorem implies that
𝐻•(𝑍, 𝑖∗𝜇𝑛) = 0. Exactness of the long exact sequence and the proof for 𝑈 = 𝑋
then gives 𝐻𝑝

𝑐 (𝑈,𝜇𝑛) ≅ 𝐻
𝑝(𝑋,𝜇𝑛) ≅ ℤ/𝑛ℤ for all 𝑝.
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