Étale cohomology reading seminar

Exercises for Week 6

Exercise 1. Let $i : Z \to X$ and $j : U \to X$ be complementary closed and open immersions, respectively.

(i) Let \mathcal{F} be an étale sheaf on U. Define a short exact sequence (natural in \mathcal{F})

$$0 \to j_! \mathcal{F} \to j_* \mathcal{F} \to C_{\mathcal{F}} \to 0$$

and express the cokernel $C_{\mathcal{F}}$ in terms of the 'six functors' from class. (ii) Compute $C_{\mathcal{F}}$ explicitly in the following situation(s):

- (for the geometrically minded) Let X = A¹_C be the complex affine line, and i : Z = Spec(C) → X the origin. Let F = O_U be the structure sheaf on U = A¹ \{0}.
- (for the arithmetically minded) Let X = Spec(Z_(p)) be the spectrum of the local ring of Z at some prime p, let i : Z = Spec(F_p) → X be the closed point, and F = O_U the structure sheaf on U = Spec(Q_p).
- (iii) Assume $\mathcal{F} = j^* \mathcal{G}$ is the restriction of some sheaf \mathcal{G} on X. How does \mathcal{G} compare to $j_* \mathcal{F}$? It's useful to attempt an answer in this generality but you might also want to consider the particular situations of the previous part.

Exercise 2 (Optional). (Milne, Exercise II.3.7) Let *X* be an integral scheme with generic point $g: \eta \to X$.

- (i) Show that if X is normal, then $g_*M_{\eta} = M_X$ for any constant sheaf M_{η} on η .
- (ii) Show that if X is a curve with a node $i: z \hookrightarrow X$, then there is an exact sequence,

$$0 \to M_X \to g_* M_\eta \to i_* M_z \to 0. \tag{1}$$

What is true in general? (Hint: write g as the composite $\eta \to X' \to X$ where X' is the normalisation of X.)