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1.1 Why study étale cohomology?

Fix a field 𝑘, and let 𝑓 ∈ 𝑘[𝑥0,… ,𝑥𝑛+1] be a homogeneous irreducible polynomial
with ( d𝑓

d𝑥0
,… d𝑓

d𝑥𝑛+1
) ≠ (0,… ,0). Then the zero-set of 𝑓 over 𝑘, 𝑋(𝑘), determines a

subset of ℙ𝑛+1𝑘 , and very loosely speaking, the goal of algebraic geometry is to
understand 𝑋(𝑘).

One powerful method of studying 𝑋(𝑘) is through its invariants. For exam-
ple, if 𝑘 = ℂ, then 𝑋(ℂ) ⊂ ℙ𝑛+1ℂ is naturally a complex manifold of real dimension
2𝑛, and we can define the singular cohomology groups𝐻𝑖(𝑋(ℂ);ℤ) for 𝑖 = 0,… ,2𝑛.
Then

𝐻𝑖(𝑋(ℂ);ℚ) ..= 𝐻𝑖(𝑋(ℂ);ℤ)⊗ℚ

form ℚ-vector spaces, and 𝑏𝑖 ..= dimℚ𝐻
𝑖(𝑋(ℂ);ℚ) is called the 𝑖-th Betti number

of 𝑋(ℂ). The Euler characteristic of 𝑋(ℂ) is defined to be 𝜒(𝑋) ..=∑2𝑛
𝑖=0(−1)

𝑖𝑏𝑖.

Example 1.1. If deg𝑓 = 1, then 𝑋(ℂ) ≅ ℙ𝑛ℂ, and one can compute that

𝑏𝑖 = {
1 𝑖 ≤ 2𝑛 is even,
0 otherwise,

so the Euler characteristic of 𝑋(ℂ) is 𝑛+ 1.

Example 1.2. If 𝑛 = 1 and 𝑑 ..= deg𝑓 ≥ 2, then the Riemann surface 𝑋(ℂ) has
genus 𝑔 = (𝑑−1)(𝑑−2)

2 , meaning 𝑋(ℂ) is homeomorphic to a donut with 𝑔 holes or
a sphere with 𝑔 handles. One can show that (𝑏0, 𝑏1, 𝑏2) = (1,2𝑔,1), so 𝜒(𝑋) = 2−2𝑔.

For example, if 𝑑 = 3 then 𝑋 is an elliptic curve, with genus 𝑔 = 1 and Euler
characteristic 𝜒(𝑋) = 0.

These examples show that we can use topology to distinguish between differ-
ent 𝑋(𝑘) when 𝑘 = ℂ. However, if 𝑘 is a finite field there are no such topological
invariants. More precisely, if 𝑘 = 𝔽𝑞 where 𝑞 is a prime power, then 𝑋(𝑘) is a
finite set, and naively the only reasonable invariant we can define is the number
of points. Let 𝑁𝑟(𝑋) ..= #𝑋(𝔽𝑞𝑟) be the number of points of 𝑋 defined over 𝔽𝑞𝑟 .

Example 1.3. If 𝑋 = ℙ𝑛𝔽𝑞 , then it is straightforward (exercise!) to show that

𝑁𝑟(ℙ
𝑛
𝔽𝑞
) =

(𝑞𝑟)𝑛+1 − 1
𝑞𝑟 − 1 = (𝑞𝑟)𝑛 + (𝑞𝑟)𝑛−1…+𝑞𝑟 + 1 (1.1)

Example 1.4. Suppose 𝑋 is an elliptic curve over 𝔽𝑞𝑟 . Then Hasse’s theorem gives
a good estimate of each 𝑁𝑟:

|𝑁𝑟(𝑋) − 𝑞
𝑟 − 1| ≤ 2𝑞𝑟/2. (1.2)
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Figure 1: The value of #𝑋(𝔽𝑝) − 𝑝−1 as 𝑝 ranges between 1 and 1000, where 𝑋 is
the elliptic curve 𝑦2 = 𝑥3 − 2619𝑥 + 54486, with Hasse’s bound ±2√𝑝 in purple.

Weil found the following generalisation of Hasse’s result:

Theorem 1.5 (Weil). Let 𝑋 be a non-singular projective curve of genus 𝑔 defined
over 𝔽𝑞. Then there exist algebraic integers 𝑎1,… ,𝑎2𝑔 such that:

(i) For every 𝑟 ≥ 1,
𝑁𝑟(𝑋) = 𝑞

𝑟/2 + 2− (𝑎𝑟1 +…+ 𝑎𝑟2𝑔), (1.3)

(ii) the numbers {𝑎𝑖} are 𝑞-Weil numbers of weight 1, that is, |𝑎𝑖| = 𝑞1/2 for
1 ≤ 𝑖 ≤ 2𝑔.

One easily checks that this implies the Hasse-Weil theorem. Note that the
property of being a 𝑞-Weil number is quite restrictive; 𝑎𝑖 = 3±2𝑖√2 is an example
of such a number, when 𝑞 = 17.

Taking 𝑘 = ℚ, let’s assume furthermore that 𝑓 ∈ ℤ[𝑥0,… ,𝑥𝑛+1] and is primitive,
and suppose the reductionmod 𝑞, 𝑓 defines an irreducible and smooth𝑋(𝔽𝑞). For
convenience, we will denote such a model of 𝑋 by 𝒳. Then we have an informal
diagram

𝒳/ℤ

𝒳(𝔽𝑞)/𝔽𝑞 𝒳(ℂ)/ℂ?

(1.4)

It is natural to ask whether there is any interaction between the structures of
𝑋 over 𝔽𝑞 and ℂ, as indicated by the arrow marked “?”. For example, we might
hope that there is a connection between the invariants 𝑁𝑟 and 𝑏𝑖 or 𝜒. Note
that the structure on the left is fundamentally arithmetic, being defined mod 𝑞,
whereas the right hand side is topological.
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1.2 The Weil conjectures

A satisfactory answer to this question was conjectured by Weil, and is one of the
most stunning applications of étale cohomology. First we need to describe the
setup:

Definition 1.6. Let 𝑋/𝔽𝑞 be as in the previous section. The zeta function of 𝑋 is
the formal power series 𝜁(𝑋,𝑇) ∈ ℚ[[𝑇]] defined by

𝜁(𝑋,𝑇) = exp(∑
𝑟≥1

𝑁𝑟(𝑋)
𝑟 𝑇𝑟), (1.5)

where exp(𝑥) = ∑𝑛≥0 𝑥
𝑛/𝑛! is the formal exponential series.

Thismight look like an arbitrary definition at first, but note that 𝑑
𝑑𝛵 log𝜁(𝑋,𝑇) =

∑𝑁𝑟+1𝑇
𝑟, which is the generating function of 𝑁𝑟(𝑋).

Example 1.7. When 𝑋 = ℙ𝑛𝔽𝑞 , it is a fun exercise to show that

𝜁(ℙ𝑛,𝑇) = 1
(1 −𝑇)(1 − 𝑞𝑇)…(1 − 𝑞𝑛𝑇), (1.6)

(Hint: use eq. (1.1) and expand the resulting exponentials.)

Example 1.8. With a similar argument using Weil’s theorem 1.5, one can check
that if 𝑋 is a curve of genus 𝑔, then

𝜁(𝑋,𝑇) =
(1 − 𝑎1𝑇)…(1 − 𝑎2𝑔𝑇)

(1 −𝑇)(1 − 𝑞𝑇) . (1.7)

In both of the examples, we see that while 𝜁(𝑋,𝑇) is originally defined as
a power series, it is actually a rational function in 𝑇 defined over some finite
extension of ℚ. We also see that the degree of the numerator is the sum of the
odd Betti numbers, while the denominator has degree the sum of the even.

Theorem 1.9 (Weil conjectures). Let𝑋/𝔽𝑞 be a smooth projective variety of dimen-
sion 𝑛.

(I) 𝜁(𝑋,𝑇) is a rational function; in fact

𝜁(𝑋,𝑇) =
𝑄1𝑄3…𝑄2𝑛−1
𝑄0𝑄2…𝑄2𝑛

, (1.8)

where 𝑄𝑖 ∈ ℤ[𝑇] are given by 𝑄𝑖 ..= ∏
𝑏𝑖
𝑗=1(1 − 𝑎𝑖𝑗𝑇) for some 𝑏𝑖 ∈ ℕ and alge-

braic integers 𝑎𝑖𝑗.
(II) 𝜁(𝑋,𝑇) satisfies the functional equation 𝜁(𝑋,1/𝑞𝑛𝑇) = ±𝑞𝜒𝑛/2𝑇𝜒𝜁(𝑋,𝑇) and

𝜒 ..=∑(−1)𝑖𝑏𝑖.
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(III) The numbers 𝑎𝑖𝑗 are 𝑞-Weil numbers of weight 𝑖, meaning |𝑎𝑖𝑗| = 𝑞𝑖/2 for all
1 ≤ 𝑖,𝑗 ≤ 2𝑛.

(IV) If𝑋 has a “nice” model𝒳 defined over ℤ, then 𝑏𝑖 are precisely the Betti numbers
of 𝒳(ℂ).

(III) is referred to as the “Riemann hypothesis” for 𝜁(𝑋,𝑇), since it tells pre-
cisely where its zeroes and poles lie. Historically, the first progress on the Weil
conjectures was made by Dwork who proved (I) using 𝑝-adic analytic methods.
Another proof of this came with the full proof of the Weil conjectures through
the work of Grothendieck and Artin, and Deligne.

While it is astonishing that information about the topology of 𝒳(ℂ) deter-
mines the number of points when reducing modulo a prime, it is also possible to
obtain information the other way, through so-called “point counting”. In a sense,
this is a local-to-global principle; the “global” information about the topology of
𝒳(ℂ) is determined by “local data”.

Exercise. Let 𝐺(𝑙,𝑑) denote the complex Grassmannian (definition). Using theo-
rem 1.9, show that 𝑏𝑖(𝐺(𝑙,𝑑)) equals the number of paths on a grid from (0,0) to
(𝑙,𝑑 − 𝑙) with area 𝑖 (where we can only move right or up).

(0,0)

(𝑙,𝑑 − 𝑙)

Of course, these Betti numbers were known before the Weil conjectures were
established. However, for more complicated varieties the point-counting method
is sometimes one of the easiest ways of determining the topological structure.

1.3 You could have invented étale cohomology1

In the previous section we saw that several topological invariants of varieties over
ℂ defined in terms of cohomology were related to invariants over 𝔽𝑞. Weil sug-
gested that this could be possible using a “good” cohomology theory for varieties
over 𝔽𝑞.

Fix a topological space 𝑇 and an abelian group𝐴. We want to find a definition
of cohomology groups 𝐻•(𝑇,𝐴) which gives a meaningful answer in the context
of algebraic geometry.

1The title is a reference to Timothy Chow’s paper “You could have invented spectral se-
quences”, see here [Cho06].
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Example 1.10 (Singular cohomology). Choosing 𝐻•(𝑇,𝐴) to be singular coho-
mology doesn’t work in general, because there are too few continuous maps in
the Zariski topology.

Example 1.11 (Sheaf cohomology). Let 𝑋 be an irreducible scheme and 𝐴 the
locally constant sheaf 𝑋 ⊃ 𝑈↦ 𝐴. Then for any pair of open sets 𝑈,𝑉 ⊂ 𝑋 with
𝑈 ⊂ 𝑉 we have 𝐴(𝑉) ≅ 𝐴 ∼→𝐴(𝑈), and so in particular 𝐴 is flabby, which implies
that the sheaf cohomology groups 𝐻𝑖(𝑋,𝐴) vanish for 𝑖 > 0 (see [Har77, Ex. III
2.3]).

To remedy this, we first recall some sheaf theory: given a topological space 𝑇,
letOp/𝑇 be the category where the objects are open subsets of 𝑇, andmorphisms
are given by inclusions 𝑈 ↪ 𝑉 whenever 𝑈 ⊂ 𝑉 for 𝑈,𝑉 ∈ Op/𝑇. A presheaf
is a contravariant functor ℱ∶ Op/𝑇 → Ab, where Ab denotes the category of
abelian groups. A presheaf ℱ is a sheaf if it satisfies the sheaf condition: for any
𝑈 ∈ Op/𝑇 and any covering ⋃𝑖𝑈𝑖 of 𝑈 with 𝑈𝑖 ∈ Op/𝑇, we have an equaliser
diagram:

ℱ(𝑈)→∏
𝑖
ℱ(𝑈𝑖) ⇉∏

𝑖,𝑗
ℱ(𝑈𝑖 ∩𝑈𝑗). (1.9)

Since 𝑈𝑖 ↪ 𝑈, we have maps 𝜌𝑖 ∶ ℱ(𝑈) → ℱ(𝑈𝑖) which assemble to the first
map of the diagram: 𝑢 ↦ (𝜌𝑖(𝑢))𝑖. The double arrows are (𝑢𝑖)𝑖 ↦ (𝜌𝑖,𝑗(𝑢𝑖)) and
(𝑢𝑖)𝑖 ↦ (𝜌𝑖,𝑗(𝑢𝑗)), respectively, where 𝜌𝑖,𝑗 ∶ 𝑈𝑖 → 𝑈𝑖 ∩ 𝑈𝑗. Equation (1.9) being
an equaliser diagram in this case simply means that ℱ(𝑈) is the kernel of the
difference of the two maps on the right.

The crucial idea is that to define sheaves, we actually don’t need the full power
of a topology, but rather just the notion of coverings. Regarding 𝑈𝑖 ∩ 𝑈𝑗 as the
categorical fibre product 𝑈𝑖 ×𝛵 𝑈𝑗, we can replace Op/𝑇 with the category of
whose objects are topological spaces 𝑈 equipped with a local homeomorphism
𝑈→𝑇, and where morphisms are continuous maps which factor through these.
Let us denote this by Ét/𝑇. As before, a sheaf is any presheaf that satisfies the
equaliser condition, eq. (1.9).

Proposition 1.12. There is an equivalence of categories Sh(Op/𝑇) ∼−→ Sh(Ét/𝑇).

Proof.

We can summarise this by saying that the main conceptual leap required to
define étale cohomology was to replace open subsets and inclusions by coverings
and local homeomorphisms.

Of course, it remains to find a good notion of a “local homeomorphism”
between schemes.
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Attempt 1:

Let 𝑓∶ 𝑋→ 𝑌 be a morphism of schemes, and suppose wemimic the definition of
a local homeomorphism and require that for any 𝑥 ∈ 𝑋we can find a Zariski-open
neighbourhood 𝑈 such that 𝑓|𝑈 ∶ 𝑈 → 𝑓(𝑈) is an isomorphism onto an open
subscheme of 𝑌. This is too rigid; by analogy with covering spaces of Riemann
surfaces we would like the map 𝔾𝑚 →𝔾𝑚 defined by 𝑡 ↦ 𝑡𝑛 (this corresponds to
the map 𝑧 ↦ 𝑧𝑛 from ℂ× to itself) to be a “covering map” in a suitable sense.

However, an open set in 𝔾𝑚 is given by the complement of finitely many
closed points, and such an open set upstairs does not look like an open downstairs.

This example also rules out the requirement that 𝑓 should be an isomorphism
at the stalks. Indeed, looking at the stalk at 1, we easily see that the induced map
𝑘[𝑡, 𝑡−1](𝑡−1) → 𝑘[𝑡, 𝑡−1](𝑡−1) given by 𝑡 ↦ 𝑡𝑛 is not surjective. The slogan here is
that “stalks know too much about the global structure”. However, since we are
looking for a local condition, it makes sense to look for something defined in
terms of stalks.

Attempt 2:

Suppose that for all closed points 𝑥 ∈ 𝑋, we require the induced maps on com-
pletions 𝒪𝑌,𝑓(𝑥) →𝒪𝛸,𝑥 to be isomorphisms. One motivation behind this that the
completion 𝒪𝛸,𝑥 “knows less than 𝒪𝛸,𝑥” in some sense.
Exercise. Let 𝑘 be an algebraically closed field, and let 𝑓 ∶ 𝑋 → 𝑌 be a morphism
of smooth 𝑘-varieties (smooth separated integral finite-type 𝑘-schemes). Then the
following are equivalent:

(i) For all closed points 𝑥 in 𝑋, the map of local rings 𝒪𝑌,𝑓(𝑥) → 𝒪𝛸,𝑥 induces
an isomorphism 𝒪𝑌,𝑓(𝑥) →𝒪𝛸,𝑥 on the completions.

(ii) For all closed points 𝑥 in 𝑋, the morphism 𝑇𝑓 ∶ 𝑇𝑥𝑋→ 𝑇𝑓(𝑥)𝑌 on tangent
spaces is an isomorphism.

(iii) If 𝑘 = ℂ, 𝑓 ∶ 𝑋(ℂ) → 𝑌(ℂ) is a local isomorphism of smooth manifolds.

This gives rise to the notion of a morphism being formally étale, first coined
by Grothendieck. The roadmap for developing étale cohomology is now:
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(i) Develop a good theory of étale morphisms.
(ii) Develop sheaf theory in terms of covers, not opens.
(iii) Apply the two former to compute things.

Time permitting, we can look at other interesting applications.

2 Étale morphisms

Contents

2.1 Finite and quasi-finite morphisms . . . . . . . . . . . . . . . . . 8
2.2 Normalisations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Flat morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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2.5 Étale morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Finite and quasi-finite morphisms

Speaker: Andrés Ibáñez Núñes

In what follows, all rings are assumed to be Noetherian, and all schemes lo-
cally Noetherian, meaning that they can be covered by spectra of Noetherian
rings. Readers unhappy with this restriction of generality might find de Jong a
more pleasing resource.

We begin by recalling the notion of a finite morphism (cf. [Har77, II.3]).

Definition 2.1. Let 𝑓∶ 𝑋→ 𝑌 be a morphism of schemes. Then 𝑓 is finite if for
any affine open 𝑉 = Spec𝐵 ⊂ 𝑌, the preimage 𝑓−1(𝑉) = Spec𝐴 is affine2 and the
induced map 𝐵→𝐴 makes 𝐴 into a finitely generated 𝐵-module.

Example 2.2. All closed immersions are finite, because they locally correspond to
maps of the underlying rings of the form𝐴→𝐴/𝐼, and𝐴/𝐼 is a finitely generated
𝐴-module.

It is frequently useful to have a slightly weaker notion of finiteness:

Definition 2.3. Amorphism of schemes 𝑓∶ 𝑋→ 𝑌 is quasi-finite if it is of finite
type3 and if for any 𝑦 ∈ 𝑌, the preimage 𝑓−1(𝑦) is a discrete topological space.

2That is, 𝑓 is an affine morphism.
3i.e. for any 𝑉 = Spec𝛣 ⊂ 𝑌, 𝑓−1(𝑉) has a finite open affine cover {𝑈𝑖 = Spec𝛢𝑖} such that

each 𝛢𝑖 is a finitely generated 𝛣-algebra.
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In particular, this implies that the fibres are finite.

For convenience, we introduce the notion of a stable class:

Definition 2.4. Let𝒫 be a family of morphisms of schemes. 𝒫 is a stable class
if the following hold:

(i) 𝒫 contains all isomorphisms;
(ii) 𝒫 is stable under composition, meaning that if 𝑓∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍

are members of𝒫, then so if 𝑔 ∘ 𝑓;
( iii) 𝒫 is stable under base change, meaning that for any 𝑓∶ 𝑋→ 𝑌 in𝒫, if we

have a Cartesian square of the form

𝑍 𝑆

𝑋 𝑌

𝑓′

𝑓

(2.1)

then the morphism 𝑓′ is also a member of𝒫.4

(iv) 𝒫 is local on the target, that is, for every cover {𝑉𝑖} of 𝑌, 𝑓∶ 𝑋→ 𝑌 is in𝒫
if and only if the restrictions 𝑓|𝑓−1(𝑉𝑖) ∶ 𝑓

−1(𝑉𝑖) → 𝑉𝑖 are in𝒫.

Example 2.5. The class ofmorphisms of finite type form a stable class, as does the
classes of separated, of proper and of affine morphisms. It is an excellent exercise
to list all the types of morphisms of schemes you know and decide which of the
above conditions they satisfy.

Proposition 2.6. The collection of all finite morphisms form a stable class, and so
does the collection of quasi-finite morphisms.

Proof. This is more or less routine, and omitted from the talk. Details can be
found in [Mil80, Prop. 1.3].

Finite and quasi-finite morphisms into the spectrum of a field have a particu-
larly nice interpretation.

Proposition 2.7. Let 𝑘 be a field, and 𝑓∶ 𝑋 → Spec𝑘 a morphism of finite type.
Then the following are equivalent:

(i) 𝑓 is finite;
(ii) 𝑓 is quasi-finite;
(iii) 𝑋 is affine, and 𝑋 ≅ Spec𝐴 where 𝐴 is a finite dimensional 𝑘-algebra.

4Normally we would simply say the “the base change 𝑓′ ∶ 𝛸 ×𝑌 𝑆 is in𝒫”, but the category of
locally Noetherian schemes is not closed under fibre products, see this SO post.

9

https://math.stackexchange.com/questions/1154263/is-a-product-of-two-noetherian-schemes-over-spec-mathbb-z-a-noetherian-scheme


Proof. (𝑖) ⇒ (𝑖𝑖𝑖) follows directly from definitions.

(𝑖𝑖𝑖) ⇒ (𝑖𝑖): Note that 𝐴 is Artinian5 because any ideal of 𝐴 is 𝑘-vector space
and so a strictly decreasing sequence of ideals (i.e. vector spaces) 𝐼0 ⊃ 𝐼1 ⊃ … sta-
bilises in at most dim𝐼0 steps. The structure theorem for Artinian rings (cf.
[AM94, Thm. 8.7]) then implies that 𝐴 = ∏𝑛

𝑖=1𝐴𝑖 where each 𝐴𝑖 is an Artinian
local ring. In particular, for each 𝑖, Spec𝐴𝑖 consists of a single point. Now
Spec𝐴 =∏𝑛

𝑖=1𝐴𝑖 ≅ ⊔
𝑛
𝑖=1Spec𝐴𝑖, so 𝑓 is indeed quasi-finite.

(𝑖𝑖) ⇒ (𝑖) If 𝑓 is quasi-finite, then since 𝑋 is the preimage of the unique point
of Spec𝑘, the underlying topological space of 𝑋 is finite and discrete, and we
can write 𝑋 = ⊔𝑛𝑖=1Spec𝐴𝑖 where each 𝐴𝑖 is a finitely generated 𝑘-algebra and
a local ring. As before, 𝐴𝑖 is Artinian and Spec𝐴𝑖 consists of a single point,
so 𝑋 = Spec∏𝑛

𝑖=1𝐴𝑖 is the spectrum of a finite-dimensional 𝑘-algebra, so 𝑓 is
finite.

The following result explains the name “quasi-finite”.

Proposition 2.8. Finite morphisms are quasi-finite.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be finite. We know that 𝑓 is of finite type, and it remains
to show that the fibres are discrete. By definition of the fibre over 𝑦 ∈ 𝑌, we have
a Cartesian diagram

𝑓−1(𝑦) Spec𝜅(𝑦)

𝑋 𝑌

𝑓′

𝑓

(2.2)

where 𝜅(𝑦) = 𝒪𝑌,𝑦/𝔪𝑦 denotes the residue field of 𝑌 at 𝑦. The base change 𝑓′ of 𝑓
is finite by stability of finiteness under base change, and applying proposition 2.7
it is quasi-finite, hence has discrete fibres.

It is not difficult to see that the converse is false. For example, exercise 1 of the
exercise sheet ( [Mil80, Ex. I.1.6b]) shows that Dedekind domains with finitely
many primes are quasi-finite but never finite. Another example is the following:

Example 2.9. Fix a ring 𝐴, pick 𝑃 = 𝑎𝑛𝑇
𝑛 +… + 𝑎0 ∈ 𝐴[𝑇], set 𝐵 = 𝐴[𝑇]/(𝑃(𝑇))

and let 𝑓∶ Spec𝐵→ Spec𝐴 be the natural map. Then 𝑓 is finite if and only if 𝐵
is a finite 𝐴-module, which one checks is equivalent to 𝑇 being integral over 𝐴.
But this is true if and only if the leading coefficient 𝑎𝑛 of 𝑃 is a unit.

On the other hand, 𝑓 is quasi-finite if and only if for any 𝔭 ∈ Spec𝐴, 𝐵 ⊗𝛢
𝜅(𝔭) ≅ 𝜅(𝔭)[𝑇]/(𝑃(𝑇)) is a finite-dimensional over 𝜅(𝔭). This is equivalent to
requiring 𝑃 ≢ 0 (mod 𝔭) for all primes 𝔭 of 𝐴, i.e. that (𝑎0,…𝑎𝑛) = 𝐴. This shows
that being quasi-finite is weaker than being finite, in general.

5Meaning any descending chain of ideals stabilises in finitely many steps.
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2.2 Normalisations

Definition 2.10. A scheme𝑋 is normal if every stalk 𝒪𝛸,𝑥 is integrally closed (in
its field of fractions)6.

The notion of being normal seems to have its origins in arithmetic, and one
sees that Specℤ[√5] is not normal while Spec 12ℤ[√5] is. One nice property of
normal schemes is that every scheme naturally admits a “normalisation”:

Proposition 2.11. Let𝑋 be an integral scheme,𝐾 the function field of𝑋 and let 𝐿/𝐾
be a field extension. Then there exists a morphism of schemes 𝑓∶ 𝑋→𝑋 characterised
uniquely by the following properties:

(i) 𝑋 is normal,
(ii) 𝑓 is affine,
(iii) for any open affine set 𝑈 ⊂ 𝑋, 𝒪𝛸(𝑓

−1(𝑈)) is the integral closure of 𝒪𝛸(𝑈) in
𝐿.

Definition 2.12. The scheme 𝑋 is called the normalisation of 𝑋 in 𝐿, or simply
the normalisation of 𝑋 if 𝐿 = 𝐾.

Normalisations give rise to a large class of finite morphisms:

Proposition 2.13 ( [Mil80, Prop. I.1.1], EGA IV.7.8). Let 𝑋 be a normal scheme,
and 𝑓∶ 𝑋 → 𝑋 the normalisation of 𝑋 in 𝐿. If 𝐿/𝐾 is separable, or if 𝑋 is of finite
type over a field 𝑘, then 𝑓 is finite.

Proposition 2.14. Let 𝑋/𝑘 be an integral scheme of finite type over a field 𝑘, with
function field 𝐾. Then the normalisation 𝑋→𝑋 of 𝑋 in 𝐾 is finite.

Proof. We may assume 𝑋 is affine, 𝑋 ≅ Spec𝐴, where 𝐴 is an integral finite-
dimensional 𝑘-algebra. By theNoether normalisation theorem ( [AM94, Ex. 5.16]),
there exists a finite injective homomorphism 𝑘[𝑇1,… ,𝑇𝑛] → 𝐴, which extends to
𝑘[𝑇1,… ,𝑇𝑛] → 𝐴, where 𝐴 is the integral closure of 𝐴 in 𝐾. Since Spec𝑘[𝑇1,… ,𝑇𝑛]
is normal and 𝐾 is a finite extension of 𝑘(𝑇1,… ,𝑇𝑛), we have that 𝑘[𝑇1,… ,𝑇𝑛] → 𝐴
is finite by proposition 2.13, and so 𝐴→𝐴 is as well.

Example 2.15. Let 𝑘 be a field and

𝐴 =
𝑘[𝑥,𝑦]

𝑦2 − 𝑥3 − 𝑥2
, 𝑋 = Spec𝐴, (2.3)

a nodal cubic, singular at 𝑥 = 0.

6Recall that this means every element of Frac(𝒪𝛸,𝑥) which is a root of a monic polynomial
with coefficients in 𝒪𝛸,𝑥 must lie in 𝒪𝛸,𝑥.
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Figure 2: The nodal cubic given by 𝑦2 = 𝑥3 + 𝑥2

Consider the map 𝐴 → 𝑘[𝑧] defined by 𝑥 ↦ 𝑧2 − 1 and 𝑦 ↦ 𝑧3 − 𝑧 (check by
hand that this factors through quotient!). The formal computation 𝑧2 = 𝑦2/𝑥2 =
(𝑥3+𝑥2)/𝑥2 = 𝑥+1 shows that 𝑘[𝑧] is integral over𝐴. In fact, it holds that Spec𝑘[𝑧]
is the normalisation of 𝑋.

Removing a single point on𝑋 corresponds to localising 𝑘[𝑧] at (𝑧−𝑎), and we
have a natural morphism 𝐴 → 𝑘[𝑧](𝑧−𝑎). The corresponding map of schemes is
not finite, but quasi-finite, and factors as an open immersion followed by a finite
morphism. This is no coincidence:

Theorem 2.16 (Zariski’s main theorem). Let 𝑌 be quasi-compact, and 𝑓∶ 𝑋 → 𝑌
a separated and quasi-finite morphism. Then 𝑓 factors as 𝑋 𝑖−→ 𝑋′

𝑔
−→ 𝑌, where 𝑖 is an

open immersion and 𝑔 a finite morphism.

Remark. The condition that 𝑓 be separated is necessary, since a finite morphism
is affine, hence separated.

Proof. See [Mil80, Thm. I.1.8]. If we additionally assume that 𝑓 is projective,
then it is possible to deduce this from the Zariski main theorem in Hartshorne’s
book, [Har77, Cor. III.11.4].

This is a different version of Zariski’s main theorem from say, the one in
[Har77]. For a nice overview of results going by the name “Zariski’s main theo-
rem”, see [Mum67, Sec. III.9].

We end this section with a useful characterisation of finite morphisms:

Proposition 2.17. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The following are
equivalent:

(i) 𝑓 is finite,
(ii) 𝑓 is proper and quasi-finite,
(iii) 𝑓 is proper and affine.
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Proof. We first prove the equivalence (𝑖) ⇔ (𝑖𝑖):

(𝑖) ⇒ (𝑖𝑖)We already know finite morphisms are quasi-finite, so it remains to
prove properness. Recall that being proper means being separated, of finite type
and universally closed7. Finite morphisms are affine, hence separated ( [Har77,
Ex. II.5.17b]) and of finite type, so it remains to show that they are universally
closed. Since being finite is stable under base change, it suffices to show that 𝑓 is
closed. We reduce further to requiring 𝑓(𝑋) to be closed as follows:

If we know that 𝑓(𝑋) is closed for all finite morphisms 𝑓, then for any closed
set 𝑍 ⊂ 𝑋 we have a closed immersion 𝑍 → 𝑋, the composition 𝑍 → 𝑋

𝑓
−→ 𝑌 is

finite, so 𝑓(𝑍) is closed.

In this case we can reduce to the case where 𝑌 (and hence 𝑋) is affine, since
closedness can be checked locally. Then 𝑓 factors as 𝑋 = Spec𝐴 𝑢−→ Spec𝐵/𝐼 𝑣−→
Spec𝐵 = 𝑌, where 𝑢 is surjective by the lying-above theorem [AM94, Thm. 5.10],
and 𝑣 is a closed immersion. It follows that 𝑓(𝑋) is closed.

(𝑖𝑖) ⇒ (𝑖) Since finiteness is local on the target, we can assume that 𝑌 is quasi-
compact, so by Zariski’s main theorem we can factor 𝑓 as𝑋 𝑢−→𝑋′

𝑔
−→ 𝑌where 𝑢 is

an open immersion. We claim that 𝑢 is proper; from this it will follow that 𝑢 is a
closed immersion, so 𝑓 is a composition of finite morphisms, hence itself finite.

Indeed, let’s write 𝑢 as the composition 𝑋
(Id𝛸,𝑢)−−−−−→ 𝑋×𝑌 𝑋

′ pr2−−→ 𝑋′, where the
fibre product is taken over 𝑓. Then pr2 is proper, being the base change of 𝑓, and
we claim that (Id𝛸, 𝑢) is also proper. Indeed, we have a Cartesian diagram

𝑋 𝑋×𝑌𝑋
′

𝑋′ 𝑋′ ×𝑌𝑋
′

(Id𝛸,𝑢)

𝛥𝑔

(2.4)

which shows that (Id𝛸, 𝑢) is the base change of the diagonal morphism 𝛥𝑔, which
is a closed immersion since 𝑔 is separated. Being a closed immersion is stable
under base change, so we conclude that (Id𝛸, 𝑢) is indeed a closed immersion,
and this proves (𝑖).

(𝑖) ⇒ (𝑖𝑖𝑖) is now clear using (𝑖𝑖), and the converse follows from finiteness-
theorems of proper morphisms, see for example EGA II, 6.7.1.

2.3 Flat morphisms

Mumford eloquently describes flatness as “a riddle that comes out of algebra, but
which technically is the answer to many prayers” [Mum67, Sec. III.10]. One of
the solutions he offers is that a flat morphism “preserves linear structure”, and in

7Any base change of 𝑓 is closed.
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a continuously varying family of schemes we can recognise it by the statement
that the dimension of fibres remains constant as the parameter varies.

In the following, we adopt the convention of denoting a short exact sequence
of 𝐴-modules 0 →𝑀′ →𝑀→𝑀″ → 0 by 𝛴, and if 𝑁 is another 𝐴-module, let
𝛴⊗𝛢𝑁 denote the sequence

0→𝑀′ ⊗𝛢𝑁→𝑀⊗𝛢𝑁→𝑀″ ⊗𝛢𝑁→ 0. (2.5)

Definition 2.18. Amap of rings 𝜙 ∶ 𝐴→ 𝐵 is flat if for every short exact sequence
𝛴 of 𝐴-modules, 𝛴⊗𝛢 𝐵 is exact. A morphism of schemes 𝑓∶ 𝑋→ 𝑌 is flat if for
every 𝑥 ∈ 𝑋, the corresponding map of local rings 𝒪𝑌,𝑓(𝑥) →𝒪𝛸,𝑥 is flat.

Of course, one should check that these notions are compatible if 𝑋 and 𝑌 are
affine:

Proposition 2.19. A morphism of rings 𝜙 ∶ 𝐴 → 𝐵 is flat if and only if the corre-
sponding map Spec𝐵→ Spec𝐴 is flat.

Proof. This can be rephrased as saying that being flat is a local property, and this
is the content of [AM94, Prop. 2.19].

Proposition 2.20. Flat morphisms form a stable class.

Proof. This is mostly straightforward checking.

Example 2.21. Open immersions are flat, since each map of stalks is simply the
identity.

Another class of morphisms that shows up frequently in scheme theory is the
following:

Definition 2.22. A morphism 𝑓 ∶ 𝑋→ 𝑌 is faithfully flat if it is flat and surjec-
tive.

Proposition 2.23. For a flat morphism of rings 𝜙 ∶ 𝐴→ 𝐵, the following are equiv-
alent:

(i) For every 𝐴-module𝑀, if𝑀≠ 0 then𝑀⊗𝛢 𝐵 ≠ 0,
(ii) for every sequence𝛴 = 0→𝑀′ →𝑀→𝑀″ of𝐴-modules, exactness of𝛴⊗𝛢𝐵

implies the exactness of 𝛴.
(iii) the associated morphism Spec𝐵→ Spec𝐴 is faithfully flat,
(iv) for every maximal ideal 𝔪 ⊂ 𝐴, 𝜙(𝔪)𝐵 is a strict subset of 𝐵.

Checking condition (iv) immediately gives the following:

Corollary 2.24. A local homomorphism of local rings is faithfully flat.
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Corollary 2.25. If 𝑓 ∶ 𝑋 → 𝑌 is a flat morphism, then 𝑓(𝑋) is “closed under gen-
eralisation”. In other words, if 𝑓(𝑥) ∈ {𝑦} for some 𝑥 ∈ 𝑋, then 𝑦 = 𝑓(𝑥′) for some
𝑥′ ∈ 𝑋.

Proof. We have a commutative diagram

Spec𝒪𝛸,𝑥 Spec𝒪𝑌,𝑓(𝑥)

𝑋 𝑌

ℓ

𝑓

(2.6)

We can identify Spec𝒪𝑌,𝑓(𝑥) with the set of generalisations of 𝑓(𝑥). By corol-
lary 2.24, the map ℓ is faithfully flat hence surjective, so if 𝑓(𝑥) is in the closure
of 𝑦, then we can find 𝑥′ ∈ Spec𝒪𝛸,𝑥, which we can identify with a generalisation
of 𝑥. Commutativity of the diagram then implies 𝑓(𝑥′) = 𝑦.

The goal of setting up this machinery is to prove the following important
theorem:

Theorem 2.26 ( [Mil80],Thm. 1.1.8). If a morphism 𝑓 ∶ 𝑋 → 𝑌 of schemes is flat
and locally of finite type, then it is open.

Proof. To prove this, we will require Chevalley’s theorem:

Theorem (Chevalley). Let 𝑓∶ 𝑋→ 𝑌 be a morphism of finite type between Noethe-
rian schemes. If 𝐸 ⊂ 𝑋 is constructible8, then 𝑓(𝑋) ⊂ 𝑌 is also constructible.

We will not prove this here, but one reference is EGA IV, Thm. 1.8.4.

Assume that 𝑌 is quasi-compact (hence Noetherian), and that 𝑓 is of finite
type. Flatness being local on the source (exercise!), it suffices to show that 𝑓(𝑋)
is open, and Chevalley’s theorem then implies 𝑓(𝑋) is open. The result will then
follow from corollary 2.25 and the following lemma:

Lemma 2.27. Let 𝑌 be a Noetherian scheme and let 𝑆 ⊂ 𝑌 be a subset. Then 𝑆 is open
if and only if 𝑆 is constructible and stable under generalisation.

Details to be filled out.

2.4 Unramified morphisms

Speaker: Håvard Damm-Johnsen

8Recall that 𝛦 is constructible if it is a finite union of locally closed subsets.
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Recall that we are trying to find a nice notion of local isomorphism for
schemes. By local, we mean that it should be defined in terms of stalks, and
it is desirable to find a notion that holds over arbitrary rings, not just fields.

Example 2.28. Consider the affine scheme 𝑋 = Spec𝐴 where 𝐴 = 𝑘[𝑥,𝑦]/(𝑥𝑦),
regarded as a scheme over Spec𝑘[𝑥], and we denote by 𝑓 ∶ 𝑋→𝔸1𝑘 the associated
morphism. Geometrically, this is a cross along with the projection onto the 𝑥-
axis.

Heuristically, 𝑓 is not flat because of the “jump in dimension” of the fibre at
0 compared to the nearby fibres. In formal terms, note that 𝐴 is a PID, so flatness
is equivalent to being torsion-free [LE06, Cor. 1.2.5]. But the localisation 𝐴(𝑥,𝑦)
viewed as a 𝑘[𝑥](𝑥)-module has torsion because 𝑥𝑦 = 0. This demonstrates that
flatness should be a necessary condition for being étale. On the other hand, the
fibre of (𝑥) is the only place of non-flatness for 𝑓, so it should be étale elsewhere.

Example 2.29. Let’s return to the nodal cubic in example 2.15, this time with a
projection 𝑓 onto the 𝑥-axis.

This corresponds to the natural map 𝑘[𝑥] → 𝑘[𝑥,𝑦]/(𝑦2 − 𝑥3 − 𝑥2), and in-
tuitively 𝑓 should not be a local isomorphism at the singularity (0,0), because
locally there are “four branches” coming out of the point. Readers familiar with
Riemann surfaces might recognise this as a ramification point, in the context of
which 𝑓 locally looks like 𝑧 ↦ 𝑧2 near (0,0).
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For9 amap 𝑔 ∶ 𝑋→ 𝑌 of Riemann surfaces we have an associatedmapℳ(𝑌)→
ℳ(𝑋) of meromorphic function fields, and we can look at the subrings 𝒪𝑥 ⊂
ℳ(𝑋), 𝒪𝑔(𝑥) ⊂ ℳ(𝑌) of functions holomorphic at 𝑥 and 𝑔(𝑥), respectively, and 𝑔
induces a map 𝒪𝑔(𝑥) → 𝒪𝑥. Here 𝔪𝑔(𝑥) ⊂ 𝒪𝑔(𝑥), the ideal of functions vanishing
at 𝑥, is mapped into the corresponding ideal 𝔪𝑥 ⊂ 𝒪𝑥. We see that this is a map
of local rings, completely analogous to the map of stalks for 𝑓. Identifying the
ideal with its image, we see that 𝔪𝑔(𝑥)𝒪𝑥 = 𝔪

𝑒𝑥
𝑥 , where 𝑒𝑥 is the ramification index,

and corresponds to the “number of branches of 𝑔”. In this setting, 𝑔 is said to
be unramified at 𝑥 if 𝑒𝑥 = 1. This transfers almost verbatim to schemes, with the
additional requirement of separability.

Definition 2.30. A morphism 𝑓∶ 𝑋 → 𝑌 of schemes locally of finite type is
unramified at 𝑥 ∈ 𝑋 if the following two conditions hold:

(i) 𝔪𝑓(𝑥) generates the maximal ideal of 𝒪𝛸,𝑥, that is, 𝔪𝑓(𝑥)𝒪𝛸,𝑥 = 𝔪𝑥.
( ii) The corresponding field extension 𝜅(𝑥)/𝜅(𝑓(𝑥)), where 𝜅(𝑥) ..= 𝒪𝛸,𝑥/𝔪𝑥 and

𝜅(𝑓(𝑥)) ..= 𝒪𝑌,𝑓(𝑥)/𝔪𝑓(𝑥), is separable.

If 𝑓 is unramified at all 𝑥 ∈ 𝑋, we simply say it is unramified.

This definition is sometimes a bit unwieldy; fortunately the following makes
computations easier in practice.

Proposition 2.31. Let 𝑓 ∶ 𝑋→ 𝑌 be a morphism locally of finite type. The following
are equivalent:

(i) 𝑓 is unramified at 𝑥;
(ii) (𝛺𝛸/𝑌)𝑥 = 0;
(iii) The diagonal morphism 𝛥𝛸/𝑌 is an open immersion.

Proof. (𝑖𝑖𝑖) ⇒ (𝑖) is somewhat tedious, and we refer the eager reader to [Mil80,
Prop. I.3.5].

(𝑖) ⇒ (𝑖𝑖): The question is local, so assume that 𝑋 = Spec𝐴 and 𝑌 = Spec𝐵.
Let 𝔭 = 𝑥, 𝔮 = 𝑓(𝑥). Then we have a map 𝜙∶ 𝐵𝔮 →𝐴𝔭 which by hypothesis satisfies
𝜙(𝔮)𝐴𝔭 = 𝔭. It follows that 𝐴𝔭 ⊗𝛣𝔮 𝜅(𝔮) ≅ 𝜅(𝔭), so we have a Cartesian diagram

Spec𝜅(𝔭) Spec𝐴𝔭

Spec𝜅(𝔮) Spec𝐵𝔮

(2.7)

Now [Har77, Prop. II.8.2A] implies that 𝛺𝛢𝔭/𝛣𝔮 ⊗𝛢𝔭 𝜅(𝔭) = 𝛺𝜅(𝔭)/𝜅(𝔮), which van-
ishes identically by the hypothesis (see [Mum67, p.283] for a hint). Therefore,

9Thanks to George for bringing up this analogy!
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by Nakayama’s lemma, 𝛺𝛢𝔭/𝛣𝔮 = 0 since it is finitely generated over 𝐴𝔭. Next we
have “the first exact sequence”

𝛺𝛣𝔮/𝛣 ⊗𝐵𝔮𝐴𝔭 →𝛺𝛢𝔭/𝛣 →𝛺𝛢𝔭/𝛣𝔮 = 0→ 0, (2.8)

by [Har77, Prop. II.8.3A], which implies that 0 = 𝛺𝛢𝔭/𝛣 = (𝛺𝛸/𝑌)𝑥, which proves
our claim.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) As in the previous part we assume that 𝑋 and 𝑌 are affine, and
in this case 𝛥𝛸/𝑌 is the map of schemes associated to 𝑚∶ 𝐴⊗𝛣 𝐴→𝐴, defined by
𝑚(𝑎 ⊗ 𝑎′) = 𝑎𝑎′. Note that 𝑚 is surjective since 𝛥𝛸/𝑌 is a closed immersion, as
we are in an affine setting. Note that [Har77, Prop. II.8.1A], 𝛺𝛸/𝑌 = 𝐼/𝐼

2 where
𝐼 = ker𝑚, so by hypothesis 0 = (𝛺𝛸/𝑌)𝑥 = (𝐼/𝐼2)𝛥(𝔭) ≅ 𝐼𝛥(𝔭)/𝐼

2
𝛥(𝔭). Since 𝑓 is of

finite type, we can apply Nakayama’s lemma to deduce that 𝐼𝛥(𝔭) = 0. Now by
exercise 13.7.E in Vakil’s notes, 𝐼 vanishes in a neighbourhood of 𝑈 of 𝛥(𝑥), so
𝛥|𝛥−1(𝑈) ∶ 𝛥

−1(𝑈) →𝑈 is an isomorphism and in particular an open immersion.

Returning to the cubic in example 2.29, we compute the sheaf of relative
differentials

𝛺𝛢/𝑘[𝑥] =
𝐴𝑑𝑥+𝐴𝑑𝑦

(2𝑦𝑑𝑦 − (3𝑥2 + 2𝑥)𝑑𝑥)𝐴
, (2.9)

and one easily checks that the localisation at a prime 𝔭 ∈ Spec𝐴 is identically 0 if
and only if 𝔭 ≠ (𝑥,𝑦).

An easy consequence of the above criteria for being unramified is the follow-
ing:

Proposition 2.32. Unramified morphisms form a stable class.

The notion of ramification of schemes also extends the corresponding notion
in number theory, as the following example indicates:

Example 2.33. Recall that the prime elements of ℤ[𝑖] are given by

(i) primes 𝑝 ∈ ℤ where 𝑝 ≡ 3 (mod 4),
( ii) 𝑛+𝑚𝑖 if 𝑝 ..= 𝑛2 +𝑚2 is a prime with 𝑝 ≡ 1 (mod 4),
( iii) 1 + 𝑖.

(see e.g. [NS13, Thm. 1.4.]) To study the geometry of Specℤ[𝑖], let us consider
the fibres under the canonical map 𝑓 into Specℤ. Fix a prime (𝑝) ∈ Specℤ. Then

Specℤ[𝑖] ×Specℤ Spec𝜅(𝑝) = Spec(ℤ[𝑖] ⊗ℤ 𝔽𝑝) = Spec𝔽𝑝[𝑖],

and consider first the case where 𝑝 = 2. Since 𝔽𝑝[𝑖] ≅ 𝔽𝑝[𝑥]/(𝑥
2 + 1), this ring has

four elements. But via the automorphism 𝑥 ↦ 𝑥+ 1, we see that 𝔽2[𝑖] ≅ 𝔽[𝑥]/𝑥
2,
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so the fibre of 2, which consists of only the point (1 + 𝑖), is a fat point, since the
fibre is not a field.

Taking 𝑝 ≡ 3 (mod 4), we claim that the fibre of (𝑝) is a field. Indeed, 𝑥2 + 1
is irreducible in 𝔽𝑝[𝑥], hence generates a maximal ideal, so 𝔽𝑝[𝑥]/(𝑥

2 + 1) ≅ 𝔽𝑝2 .
On the other hand, if 𝑝 ≡ 1 (mod 4), then 𝑥2 + 1 is not irreducible over 𝔽𝑝, but
decomposes as the product of two linear factors 𝑃1(𝑥) and 𝑃2(𝑥). Then we have a
corresponding decomposition of the fibre, as 𝔽𝑝[𝑥]/𝑃1(𝑥) × 𝔽𝑝[𝑥]/𝑃2(𝑥) ≅ 𝔽𝑝 × 𝔽𝑝.

We can draw the picture as follows:

(2) (3) (5) (7)
(0)

(1 + 𝑖) (3)

(2 − 𝑖)

(2 + 𝑖)
(7)

(0)

Looking at the local rings, we see that ℤ(2) → ℤ[𝑖](𝑖+1) sends (2) to (1 + 𝑖)
2, so 𝑓

is ramified at 2.

Exercise. Using the fact that ℤ[√𝑑] is ramified precisely at primes dividing the
discriminant 4𝑑, try to draw pictures of Specℤ[√𝑑] for some squarefree 𝑑 ∈ ℤ,
including composite numbers.

2.5 Étale morphisms

The previous section hopefully convinced you that being flat and unramified are
necessary conditions for being a local isomorphism. It turns out that they are
also sufficient!

Proposition 2.34 (EGA IV 17.6.3). Let 𝑓 ∶ 𝑋→ 𝑌 be locally of finite type. Suppose
𝑥 ∈ 𝑋 satisfies 𝜅(𝑥) ≅ 𝜅(𝑓(𝑥)). Then 𝑓 is flat at 𝑥 and unramified at 𝑥 if and only if
the induced map 𝒪𝑌,𝑓(𝑥) →𝒪𝛸,𝑥 is an isomorphism.

Definition 2.35. A morphism 𝑓 ∶ 𝑋→ 𝑌 locally of finite type is étale at 𝑥 ∈ 𝑋 if
it is flat at 𝑥 and unramified at 𝑥. If it is étale at every 𝑥 ∈ 𝑋, we simply say that 𝑓
is étale.

An immediate consequence of proposition 2.20 and proposition 2.32 is the
following:

Proposition 2.36. Étale morphisms form a stable class.

Example 2.37. The nodal cubic and cross of examples 2.28 and 2.29 respectively,
are étale on the complements of the problematic points.
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Example 2.38. Fix a Noetherian ring 𝐴 and 𝑃(𝑥) ∈ 𝐴[𝑥]. It is natural to ask
when the morphism Spec𝐴[𝑥]/(𝑃(𝑥)) → Spec𝐴 is étale. It is easy to see that a
sufficient condition for flatness is that 𝑃 be monic, and in general, it turns out
that flatness is equivalent to the statement that the ideal of 𝐴 generated by the
coefficients of 𝑃 is generated by an idempotent.

To be unramified, we recall fromGalois theory that a necessary and sufficient
condition is that 𝑃(𝑥) is separable, that is, has no repeated roots. This is equiva-
lent to the statement that (𝑃(𝑥),𝑃′(𝑥)) = 1, where 𝑃′(𝑥) is the formal derivative
of 𝑃, and we can rephrase this as saying that 𝑃′(𝑥) ∈ (𝐴[𝑥]/𝑃(𝑥))×. Here the
map Spec𝐴[𝑥]/(𝑃(𝑥)) → Spec𝐴 is a special case of what we call a standard étale
morphism.

Definition 2.39. Let 𝐴 be a Noetherian ring, 𝑃(𝑥) ∈ 𝐴[𝑥] be a monic polyno-
mial, 𝐵 ..= 𝐴[𝑥]/(𝑃(𝑥)) and fix 𝑏 ∈ 𝐵 such that 𝑃′(𝑥) ∈ 𝐵[𝑏−1]×. A standard étale
morphism is a morphism of the form Spec𝐵[𝑏−1] → Spec𝐴.

The reason for the name is that all étale morphisms locally look like standard
étale morphisms.

Theorem 2.40. Let 𝑓∶ 𝑋 → 𝑌 be a morphism locally of finite type. Then 𝑓 is étale
at 𝑥 ∈ 𝑋 if and only if there exist affine open neighbourhoods 𝑈 containing 𝑥 and 𝑉
containing 𝑓(𝑥) such that 𝑓|𝑈 ∶ 𝑈→ 𝑉 is a standard étale morphism.

Proof. See [Mil80, Thm. 1.3.14], or [Sta21, Section 02GH] for a slightly more
modern treatment.

Corollary 2.41. A morphism 𝑓∶ 𝑋 → 𝑌 locally of finite type is étale at 𝑥 ∈ 𝑋 if
and only if there exist affine open neighbourhoods 𝑈 ≅ Spec𝑅 containing 𝑥 and 𝑉 ≅
Spec𝑆 containing 𝑓(𝑥) such that

𝑅 ≅
𝑆[𝑇1,… ,𝑇𝑛]
(𝑃1,… ,𝑃𝑛)

and det(
𝜕𝑃𝑖(𝑇1,… ,𝑇𝑛)

𝜕𝑇𝑗
)
𝑖,𝑗

∈ 𝑅× (2.10)

This is frequently referred to as the “Jacobian criterion” for étale morphisms,
and should be seen as an analogue of the implicit function theorem from differ-
ential geometry.

Proof. ⇐ To show that 𝑓 is unramified at 𝑥, it suffices to show that (𝛺𝑅/𝑆)𝑥 = 0.
By definition,

𝛺𝑅/𝑆 =
⟨𝑑𝑇1,… ,𝑑𝑇𝑛⟩𝑅

⟨ 𝜕𝛲𝑖𝜕𝛵1𝑑𝑇1 +…+ 𝜕𝛲𝑖
𝜕𝛵𝑛
𝑑𝑇𝑛 ∶ 𝑖 = 1,… ,𝑛⟩𝑅

, (2.11)

and since det( 𝜕𝛲𝑖(𝛵1,…,𝛵𝑛)𝜕𝛵𝑗
)
𝑖,𝑗
∈ 𝑅×, the quotient is related to 𝑑𝑇1,… ,𝑑𝑇𝑛 by the linear

transformation corresponding to the Jacobian matrix. Since this is invertible, we
are quotienting by everything, and in particular the stalk at 𝑥 vanishes identically.
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Flatness at 𝑥 follows from an argument similar to (but slightly more involved
than) the example above, see [Mum67, Thm. III.10.3’] for more details.

⇒ By theorem 2.40, we can find affine open neighbourhoods 𝑈 ≅ Spec𝑅 and
𝑉 ≅ Spec𝑆 such that 𝑅 ≅ ( 𝑆[𝛵]𝛲(𝛵))[𝑏

−1] for some 𝑏 ∈ 𝑆[𝛵]
𝛲(𝛵) such that 𝑃′(𝑇) ∈ 𝑅×. Now

note that 𝑏−1 is a zero of the polynomial 𝑏𝑈− 1 ∈ 𝑆[𝛵]
𝛲(𝛵) [𝑈], and so

𝑅 = 𝑆[𝑇,𝑈]
(𝑃(𝑇),𝑏𝑈− 1) . (2.12)

It remains to check that the corresponding Jacobian matrix is invertible. But

det(
𝜕𝛲(𝛵)
𝜕𝛵

𝜕𝛲(𝛵)
𝜕𝑈 = 0

𝜕(𝑏𝑈−1)
𝜕𝛵

𝜕(𝑏𝑈−1)
𝜕𝑈

) = 𝑃′(𝑇) ⋅ 𝑏, (2.13)

which is in𝑅× by assumption. This actually proves the slightly stronger statement
that we can take 𝑛 = 2.

An easy consequence of this is the following:

Corollary 2.42. Let 𝑓 ∶ 𝑋→ 𝑌 be étale. Then

(i) dim𝒪𝛸,𝑥 = dim𝒪𝑌,𝑓(𝑥) for all 𝑥 ∈ 𝑋;
(ii) if 𝑌 is normal, then 𝑋 is normal;
(iii) if 𝑌 is regular, then 𝑋 is regular.

Recall from the guiding examples in the beginning of this section that on the
complement of a closed set, 𝑓 was étale. This is no accident; the “problematic
points” always form a closed set, as the following proposition shows.

Proposition 2.43. Let 𝑓∶ 𝑋→ 𝑌 be locally of finite type. Then the étale locus, mean-
ing the set of points 𝑥 ∈ 𝑋 at which 𝑓 is étale, is an open set.

Proof. Evidently the étale locus is the intersection of the set of flat points and the
set of unramified points. The flat locus is open by commutative algebra (see EGA
IV Thm. 11.3.1 or [MR89, §24]), and the unramified locus is open since it is cut
out by the different ideal sheaf, as explained in the exercises for this week.

A useful result for later is the following:

Proposition 2.44. Let 𝑓∶ 𝑋→ 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of schemes such that
𝑔𝑓 is étale and 𝑔 is unramified. Then 𝑓 is étale.
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Proof. We apply the trick of factoring 𝑓 as pr2𝛤𝑓 from proposition 2.17. Recall
that the graph morphism 𝛤𝑓 is defined as the base change of the diagonal mor-
phism 𝛥𝑔,

𝑋 𝑋×𝑍 𝑌 𝑌

𝑌 𝑌 ×𝑍 𝑌

𝛤𝑓

𝑓

pr2

𝛥𝑔

and since 𝑔 is unramified, proposition 2.31 implies that 𝛥𝑔 is an open immersion,
hence étale. Now 𝛤𝑓 is étale, since étale is stable under base change.

Similarly, the morphism pr2 arises from the usual Cartesian diagram

𝑋×𝑍 𝑌 𝑌

𝑋 𝑍

pr2

𝑔

𝑔𝑓

and since the composition 𝑔𝑓 is étale, so is its base change pr2. Since being étale
is stable under composition, this proves our result.

3 Étale sheaves

Contents

3.1 Sites and Grothendieck topologies . . . . . . . . . . . . . . . . . 22
3.2 Étale sheaves over a field . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Henselian rings & étale stalks of the structure sheaf . . . . . . . . 27
3.4 Stalks of étale sheaves . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Operations on sheaves . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Sites and Grothendieck topologies

Speaker: Martin Ortiz Ramirez

Recall from section 1.3 that for the purpose of defining sheaves, we don’t need
a full topology but rather a notion of open covers. In the context of schemes, we
do this by viewing an open subset 𝑈 ⊂ 𝑋 as an open immersion 𝑈 ↪ 𝑋, 𝑈∩𝑉
as 𝑈 ×𝛸 𝑉, and so on. The axioms required to define a sheaf turn out to be the
following:
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Definition 3.1. Let C be a category. AGrothendieck topology T on C consists
of collections of distinguished maps {𝑈𝑖 →𝑈}𝑖∈ℐ, coverings of𝑈, for each 𝑈 ∈ C,
satisfying the following axioms:10

(i) If 𝑈𝑖 →𝑈 and 𝑈𝑗 →𝑈 are coverings, then 𝑈𝑖 ×𝑈𝑈𝑗 →𝑈 is also a covering.
(ii) If {𝑈𝑖 → 𝑈}𝑖∈ℐ and {𝑈𝑖𝑗 → 𝑈𝑖}𝑗∈𝒥 are coverings of 𝑈 and 𝑈𝑖 respectively,

then {𝑈𝑖𝑗 →𝑈}(𝑖,𝑗)∈ℐ×𝒥 is a covering of 𝑈.
( iii) The set consisting of the identity map {𝑈→𝑈} is a covering.

We call the pair (C,T) a site.

Example 3.2. If 𝑋 is any topological space, then the category U(𝑋) of open
subsets where arrows are given by inclusions forms a site, with coverings are
given by collections of open inclusions {𝜙𝑖 ∶ 𝑈𝑖 →𝑈}𝑖∈ℐ such that ⋃𝑖𝜙𝑖(𝑈𝑖) = 𝑈
(“surjective families”).

If 𝑋 is a scheme, then this is called the Zariski site, denoted by 𝑋Zar.

Example 3.3. The small étale site on a scheme 𝑋, 𝑋ét, is the category of étale
𝑋-schemes 𝑌 → 𝑋. Note that if 𝑌 → 𝑋 and 𝑍 → 𝑋 are étale 𝑋-schemes and
𝑌→ 𝑍 is a morphism of𝑋-schemes, that is, a morphism of schemes such that the
diagram

𝑌 𝑍

𝑋

(3.1)

commutes, then proposition 2.44 implies that 𝑌→ 𝑍 is also étale.

Since every open immersion is étale, there is a natural inclusion of 𝑋Zar into
𝑋ét.

Recall that a presheaf on a categoryCwith values inC′ is a contravariant func-
tor C → C′, and a morphisms of presheaves is simply a natural transformation
of functors.

Definition 3.4. A sheaf on a site T is a presheaf ℱ∶ C → C′ such that for all
coverings {𝑈𝑖 →𝑈}𝑖∈ℐ, the diagram

ℱ(𝑈)→∏
𝑖∈ℐ

ℱ(𝑈𝑖) ⇉ ∏
(𝑖,𝑗)∈ℐ×ℐ

ℱ(𝑈𝑖 ×𝑈𝑈𝑗) (Sh)

is an equaliser diagram, which was defined after eq. (1.9) in the introduction. We
will refer to this as the sheaf condition.

Amorphism of sheaves on T is a morphism of presheaves, that is, a natural
transformation.

10Note: the name “Grothendieck pre-topology” is frequently found in the literature. See this
for an explanation of the differences.
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Aswith sheaves on a topological space, we refer to themapsℱ(𝜙) as restriction
maps, and the corresponding category is denoted by Sh(T). Unless specified, we
assume that C′ = Ab, the category of abelian groups.

Definition 3.5. A sheaf on the small étale site 𝑋étis called an étale sheaf.

Note that every étale sheaf is necessarily also a sheaf for the Zariski site, which
is the same as a sheaf in the traditional sense. While it is not always easy to check
if a presheaf is a sheaf, the following proposition gives a useful criterion:

Proposition 3.6. Let ℱ be a presheaf on the category of étale 𝑋-schemes. Then ℱ
is an étale sheaf if and only if it is a sheaf on the Zariski site and for any covering
𝑉→𝑈 of affine étale 𝑋-schemes, the following is an equaliser diagram:

ℱ(𝑈)→ℱ(𝑉)⇉ℱ(𝑉 ×𝑈 𝑉). (3.2)

In other words, we need only check on affine étale coverings consisting of a single map.

Proof.

Example 3.7. Given an étale map 𝑈 → 𝑋, define 𝒪𝛸ét
(𝑈) = 𝛤(𝑈,𝒪𝑈). This is

a Zariski sheaf because it coincides with the structure sheaf when 𝑈 ↪ 𝑋 is an
open immersion, and we want to show that it is an étale sheaf by checking the
criterion above. If Spec𝐴→ Spec𝐵 is a morphism of 𝑋-schemes, then we need
to check that

𝐴→ 𝐵⇉𝐵⊗𝛢 𝐵 (3.3)
is an equaliser diagram. Here the double arrow corresponds to 𝑏 ↦ 𝑏 ⊗ 1 and
𝑏 ↦ 1⊗𝑏. Since the category of rings is additive, this is equivalent to exactness of

0→ 𝐴→𝐵 𝑏↦𝑏⊗1−1⊗𝑏−−−−−−−−−−→ 𝐵⊗𝛢 𝐵, (3.4)

which follows from the fact that Spec𝐴→ Spec𝐵 is faithfully flat.

Example 3.8. Let𝑍 be an𝑋-scheme, and consider the presheaf𝑈↦ Hom𝛸(𝑈,𝑍).
It is not difficult to check that this is in fact a sheaf on 𝑋Zar, and we claim that it
is an étale sheaf. For affine 𝑍 ≅ Spec𝑅, the exactness of the equaliser diagram

𝑍(𝐴)→ 𝑍(𝐵) ⇉ 𝑍(𝐵⊗𝛢 𝐵) (3.5)

follows from exactness of eq. (3.4), since the associated diagram of rings is

Hom(𝑅,𝐴) → Hom(𝑅,𝐵) ⇉ Hom(𝑅,𝐵⊗𝛢 𝐵). (3.6)

This extends to not necessarily affine 𝑍 through a standard patching argument.

For a concrete example, taking

𝑍 = Spec ℤ[𝑡, 𝑡
−1]

(𝑡𝑛 − 1) ×Specℤ𝑋

we obtain 𝜇𝑛, which is the usual group scheme with 𝜇𝑛(𝑈) = ker(𝛤(𝑈,𝒪𝑈)
𝑠↦𝑠𝑛−−−→

𝛤(𝑈,𝒪𝑈)) of 𝑛-th roots of unity.
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Example 3.9. Let 𝑋 be a quasi-compact scheme, 𝐴 an abelian group, and let 𝐴
denote the presheaf which sends 𝑈 to the set of functions 𝑈→𝐴 which are con-
stant on each connected component. We recognise this as the sheafification of the
constant presheaf 𝑈 ↦ 𝐴.11 The sheaf 𝐴 is called the constant sheaf associated
to 𝐴.

Example 3.10. Anologously to the Zariski case, we can define a locally constant
sheaf ℱ for the étale topology by requiring that for some covering {𝑈𝑖 →𝑈}𝑖∈ℐ,
ℱ|𝑈𝑖 is constant for all 𝑖 ∈ ℐ. We will see an example of a locally constant non-
constant étale sheaf in the next section.

3.2 Étale sheaves over a field

Let𝐺 be a group. By a𝐺-module, we mean a module of the associated group ring,
ℤ[𝐺] which consists of finite formal sums of elements of 𝑔, with multiplication
given by the group operation. If 𝐺 is a compact topological group, then we say a
𝐺-module𝑀 is discrete if the stabiliser of each element of𝑀 is an open subgroup
of 𝐺. This is equivalent to endowing𝑀 with the discrete topology and requiring
the action of 𝐺 to be continuous.

Example 3.11. If 𝑘 is a field, then we can consider a separable closure 𝑘sep, which
by definition is the union of all finite separable extensions of 𝑘 inside a fixed
algebraic closure 𝑘alg. It is not difficult to show that 𝑘sep is a Galois extension,
and we let 𝐺 ..= Gal(𝑘sep/𝑘).

𝐺 is an example of a profinite group, a topological group isomorphic to an
inverse limit of finite groups viewed as discrete topological groups: a fundamental
result in Galois theory states that Gal(𝑘sep/𝑘) = lim←−−Gal(𝐿/𝑘), where 𝐿 runs over
finite Galois extensions of 𝑘. Moreover, any subextension of 𝑘sep is naturally a
discrete 𝐺-module.

In this section, the goal is to prove the following theorem:

Theorem 3.12 ( [Mil80, Thm. II.1.9] ). Let 𝑘 be a field, 𝑘sep a fixed separable closure,
and 𝐺 ..= Gal(𝑘sep/𝑘). There is an equivalence of categories between the category of
étale sheaves on Spec𝑘 and the category of discrete 𝐺-modules.

To prove this, it is convenient to introduce the notion of an étale algebra over
𝑘, which is a finite product of finite separable extensions of 𝑘. A ring 𝐴 is an étale
algebra if and only if the map Spec𝐴 → Spec𝑘 is étale. Étale 𝑘-algebras form a
category Algét(𝑘) with morphisms given by 𝑘-algebra maps.

If ℱ is a presheaf on 𝑋ét where 𝑋 = Spec𝑘, then by composing with the
functor Spec we can naturally identify ℱ with a covariant functor Algét(𝑘) →
Ab.

11We have not proved this, but there is a sheafification functor on the category of étale sheaves.
See [Sta21, Section 00W1] for more details.
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Lemma 3.13. With notation as above, a presheaf ℱ is an étale sheaf if and only if
the following two conditions hold:

(i) ℱ(∏𝐴𝑖) = ⨁ℱ(𝐴𝑖) for all finite sets of étale algebras {𝐴𝑖};
(ii) for all finite Galois extensions 𝐿′/𝐿 with 𝐿/𝑘 a finite separable extension, the

fixed set ofℱ(𝐿′) under the action of Gal(𝐿′/𝐿) equalsℱ(𝐿).

Explicitly, Gal(𝐿′/𝐿) acts on ℱ(𝐿) by (𝜎,𝑥) ↦ ℱ(𝜎)(𝑥) for 𝑥 ∈ ℱ(𝐿).

Proof. In light of proposition 3.6, ℱ is a Zariski sheaf if and only ℱ(∏𝐴𝑖) =
⨁ℱ(𝐴𝑖) for all étale algebras 𝐴𝑖 because any𝑈→ Spec𝑘 is discrete. If this holds,
then by passing to restrictions we see that ℱ is étale if and only if for any pair
𝐿′/𝐿 of finite separable extensions of 𝑘, the diagram

ℱ(𝐿) →ℱ(𝐿′) ⇉ℱ(𝐿′ ⊗𝐿 𝐿
′) (3.7)

is an equaliser. If 𝐿′/𝐿 is Galois, it is easy to deduce the equalityℱ(𝐿) = ℱ(𝐿′)Gal(𝐿′/𝐿)

from eq. (3.7), hence proving necessity.

Conversely, we first prove thatℱ(𝐿) = ℱ(𝐿′)Gal(𝐿′/𝐿) is equivalent to exactness
of eq. (3.7) for Galois extensions.

(⇐) We have natural maps

𝐿′ 𝐿′ ⊗𝐿 𝐿
′ 𝐿′

𝑥↦1⊗𝑥

𝑥↦𝑥⊗1

𝜓𝜎 (3.8)

where 𝜓𝜎 ∶ 𝑥⊗𝑦 ↦ 𝑥𝜎(𝑦) for fixed 𝜎 ∈ Gal(𝐿′/𝐿). If 𝑧 ∈ ℱ(𝐿′) is in the equaliser of
eq. (3.7), then ℱ(𝜎)(𝑧) = 𝑧, as required.

(⇒) If 𝑧 ∈ ℱ(𝐿′)Gal(𝐿′/𝐿), then 𝜓𝜎 is an isomorphism, so ℱ(𝜓𝜎) is injective,
which proves the exactness of eq. (3.7).

Finally, to show that exactness of eq. (3.7) for Galois extensions implies ex-
actness for general extensions, consider the diagram

ℱ(𝐿) ℱ(𝐿′) ℱ(𝐿′ ⊗𝐿 𝐿
′)

ℱ(𝐿) ℱ(𝐿″) ℱ(𝐿″ ⊗𝐿 𝐿
″)

Id (3.9)

where 𝐿″/𝐿′ is the Galois closure of an arbitrary finite separable extension 𝐿′ over
𝐿. By assumption the bottom line is exact, andℱ(𝐿) →ℱ(𝐿″) andℱ(𝐿) →ℱ(𝐿′)
are easily seen be injective. A standard diagram chase then gives exactness of the
top row.
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We now turn to the construction of the functors of theorem 3.12. Supposeℱ
is an étale sheaf and let 𝐺 ..= Gal(𝑘sep/𝑘). Let𝑀ℱ

..= lim−−→ℱ(𝑘′) where 𝑘′ runs over
finite separable extensions of 𝑘. It is straightforward to check that the images
of the inclusions ℱ(𝑘 ↪ 𝑘′) assemble to an injective system of abelian groups.
Moreover, this is compatible with the action of 𝐺 on eachℱ(𝑘′), giving rise to an
action of 𝐺 on𝑀ℱ. Thus𝑀ℱ is a 𝐺-module, and it is a good exercise to convince
oneself that it is discrete.

Conversely, given𝑀∈ Mod(𝐺), define a presheaf

ℱ𝛭 ∶ Algét(𝑘) → Ab by ℱ𝛭(𝐴) = HomMod(𝐺)(ℱ(𝐴),𝑀). (3.10)

Here ℱ(𝐴) ..= HomAlg(𝑘)(𝐴,𝑘
sep). By the fundamental theorem of Galois the-

ory, for a finite separable extension 𝑘′/𝑘 we have ℱ(𝑘′) ≅ 𝐺/Gal(𝑘sep/𝑘) as 𝐺-
modules. It follows that 𝐹𝛭(𝑘

′) ≅𝑀Gal(𝑘sep/𝑘′). Note thatℱ𝛭 satisfies the criteria
in lemma 3.13 for being an étale sheaf:

(i) ℱ𝛭(∏𝑘𝑖) = ⨁ℱ𝛭(𝑘𝑖) for finite collections of separable extensions 𝑘𝑖/𝑘 by
the standard properties of Hom;

( ii) For 𝑘″/𝑘′ finite Galois, ℱ𝛭(𝑘
″)Gal(𝑘″/𝑘′) = ℱ𝑚(𝑘

′) by the discussion above.

Exercise. Show that𝑀↦𝐹𝛭 is fully faithful and essentially surjective.

This proves theorem 3.12.

3.3 Henselian rings & étale stalks of the structure sheaf

Speaker: Jay Swar

When we first meet sheaves on topological spaces, a fundamental feature is
that isomorphisms can be detected on the level of stalks. It is natural to ask
whether the same holds for sheaves on sites, and in particular on the small étale
site. First we need to extend the notion of points in a way which is compatible
with our idea of coverings as distinguished 𝑋-schemes.

Definition 3.14. Let𝑋 be a scheme. A geometric point 𝑥 is a map 𝑥 ∶ Spec𝛺→
𝑋, where 𝛺 is some separably closed field.

By definition, a geometric point 𝑥 specifies a point 𝑥 ∈ 𝑋 along with an em-
bedding 𝜅(𝑥) ↪ 𝛺. Note that for any étale covering 𝑈 whose image contains 𝑥,
the diagram

Spec𝛺 𝑈

𝑋
𝑥

(3.11)
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commutes. Such a 𝑈 is called an étale neighbourhood, and by abuse of notation
we write 𝑥 ∈ 𝑈. We can now take the injective limit of sections over such étale
neighbourhoods, giving the following definition:

Definition 3.15. The étale stalk of 𝑋 at a geometric point 𝑥 is given by

𝒪𝛸,𝑥 ..= lim−−→
𝑈∋𝑥

𝒪𝑈(𝑈). (3.12)

Example 3.16. If 𝑋 = Spec𝑘 for some field 𝑘 and 𝑥 ∶ Spec𝛺→𝑋 is a geometric
point, then 𝒪𝛸,𝑥 ≅ 𝛺.

The étale stalk satisfies many of the same properties as the usual stalk:

Proposition 3.17. Let 𝑋 be a scheme, 𝑥 a geometric point and let 𝜅(𝑥) denote the
residue field of 𝒪𝛸,𝑥.

(i) 𝒪𝛸,𝑥 is a local ring.
(ii) 𝒪𝛸,𝑥 is Noetherian.
(iii) dim𝒪𝛸,𝑥 = dim𝒪𝛸,𝑥, that is, the Krull dimension of the étale stalk is the same

as that of the usual stalk.
(iv) every monic coprime factorisation in 𝜅(𝑥) lifts to a factorisation in 𝒪𝛸,𝑥.
(v) 𝜅(𝑥) is separably closed.

The last two properties do not hold for Zariski stalks, but are useful features
of étale stalks.

Definition 3.18. A local ring which satisfies (iv) is said to be Henselian, and is
strictly Henselian if it additionally obeys (v).

The Zariski stalks are not Henselian in general, so this is really a feature of the
étale stalks. This is ample motivation to study Henselian local rings in general.

Proposition 3.19. A local ring𝐴withmaximal ideal𝔪 and residue field 𝜅 isHenselian

if and only if for all 𝑓1,… ,𝑓𝑛 ∈ 𝑅[𝑥1…,𝑥𝑛] with det(
𝜕𝑓𝑖
𝜕𝑥𝑗
) ≠ 0, every common root of

the reductions 𝑓1,… ,𝑓𝑛 ∈ 𝜅[𝑥1,… ,𝑥𝑛] lifts to a common root in 𝑅.

This is reminiscent of Newton’s method, or Hensel’s lemma from which
Henselian rings get their name.

Given any local ring, there is a canonical way to construct an associated
Henselian ring, its Henselisation.

Proposition 3.20 ( [Sta21, Lemma 04GN]). Let 𝐴 be a local ring. There exists a
Henselian local ring 𝐴ℎ and 𝐴→ 𝐴ℎ a local homomorphism such that for any local
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homomorphism 𝜙∶ 𝐴 → 𝐵 where 𝐵 is a Henselian local ring, there exists a unique
local homomorphism 𝐴ℎ →𝐵 such that the diagram commutes:

𝐴ℎ

𝐴 𝐵

∃! (3.13)

Recognising this as a universal property, the usual argument shows that 𝐴ℎ is
unique up to unique isomorphism.

Proof. The idea here is to define a category consisting of pairs (𝑆,𝔮), where 𝑆 is
a ring equipped with an étale ring map 𝑆 → 𝐴, and 𝔮 ⊂ 𝑆 is a prime lying above
𝔪, the maximal ideal of 𝐴. Morphisms in this category are given by 𝐴-algebra
morphisms 𝜙 ∶ 𝑆 → 𝑆′ such that 𝜙−1(𝔮′) = 𝔮. Then we can set 𝐴ℎ ..= lim−−→(𝑆,𝔮)

𝑆,
which exists because colimits exist in the category of rings. One also checks that
this is Henselian; details are provided in the link above.

Definition 3.21. The ring 𝐴ℎ is called the Henselisation of 𝐴.

With suitable modification to the argument in proposition 3.20, namely by
considering instead triples (𝑆,𝔮,𝛼) where 𝛼 is a fixed map 𝜅(𝔮) → 𝜅sep, we get a
strictly Henselian ring 𝐴𝑠ℎ, called the strict Henselisation of 𝐴.

Example 3.22 (Exercise). If 𝐴 = ℤ(𝑝), then the strict Henselisation of 𝐴 equals
the integral closure of ℤ(𝑝) in ℤ𝑝.

Example 3.23 (Exercise). Let 𝑘 be algebraically closed, and 𝐴 = 𝒪𝔸𝑘,𝑥 where 𝑥 is
the origin, corresponding to the prime ideal (𝑥1,… ,𝑥𝑛). Then 𝐴

ℎ = 𝑘[[𝑥1,… ,𝑥𝑛]] ∩
𝑘(𝑥1,… ,𝑥𝑛)

alg.

Exercise (“You should probably google this”). Let 𝑋 be a variety over an alge-
braically closed field 𝑘, 𝑃 ∈ 𝑋 a non-singular point, and 𝑈 some Zariski open
neighbourhood of 𝑃. Then there exists an étale map 𝜙∶ 𝑈→𝔸𝑛𝑘 sending 𝑃 to 0.

Lemma 3.24. Let 𝑘 be algebraically closed, and let 𝑋 and 𝑌 be 𝑘-varieties. If 𝑋→𝑌
is an étale map, then the induced map 𝒪𝑌,𝑓(𝑥) →𝒪𝛸,𝑥 is an isomorphism.

Combining this with the previous, we get the following:

Corollary 3.25. Étale stalks at non-singular points of 𝑘-varieties are isomorphic to
the ring in example 3.23.

This is explained by the following proposition:

Proposition 3.26. Let𝑋 be a scheme, and 𝑥 a geometric point of𝑋 with underlying
point 𝑥 ∈ 𝑋. Then 𝒪𝛸,𝑥 ≅ (𝒪𝛸,𝑥)

𝑠ℎ.
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Example 3.27 (“Henselisation does not commute with fibre products”). Let 𝐿
be a field of characteristic 0. Then 𝒪𝛸,𝑥 = 𝐿, which contains more arithmetic
information than just 𝐿 ≅ 𝒪𝛸,𝑥. On the other hand, if 𝐿/𝑘 is Galois, then

(𝒪𝛸,𝑥)
ℎ ⊗𝑘 𝑘 =∏

𝑖
𝑘, (3.14)

so in particular is not the strict Henselisation of 𝑘.

Theorem 3.28 (Artin approximation). Let {𝑓𝑖(𝑥1,… ,𝑥𝑛, 𝑦1,… ,𝑦𝑛)}𝑖 ⊂ 𝑘[𝑥1,… ,𝑥𝑛, 𝑦1,… ,𝑦𝑛]
be a collection of polynomials, and let �̂�𝑖 be power series in 𝑥𝑖, i.e. �̂�𝑖 ∈ 𝑘[[[]]𝑥1,… ,𝑥𝑛],
for 𝑖 = 1,… ,𝑛. If 𝑓𝑖(𝑥1,… ,𝑥𝑛, �̂�1,… , �̂�𝑛) = 0 for all 𝑖, then there is a collection of poly-
nomials 𝑦1,… ,𝑦𝑛 ∈ 𝑘[𝑥1,… ,𝑥𝑛] such that

𝑓(𝑥1,… ,𝑥𝑛, 𝑦1,… ,𝑦𝑛) = 0 and 𝑦𝑖 ≡ �̂�𝑖 (mod (𝑥1,… ,𝑥𝑛)
𝑛), (3.15)

for all 𝑖 = 1,… ,𝑛.

3.4 Stalks of étale sheaves

Speaker: Martin Gallauer

Let𝑋 be a locally Noetherian scheme,ℱ a Zariski sheaf on𝑋, and fix a point
𝑥 ∈ 𝑋. The usual stalk ofℱ at 𝑥 can be described as the colimit lim−−→𝑈

ℱ(𝑈), where
𝑈 runs over Zariski covers 𝑈 𝜄−→𝑋 such that

𝑈

Spec𝜅(𝑥) 𝑋

𝜄

𝑥

(3.16)

commutes. If we identify 𝑈 with an open subset of 𝑋, then this reduces to the
requirement that 𝑥 ∈ 𝑈. However, eq. (3.16) is much more amenable to generali-
sation in the relative setting.

Definition 3.29. Let 𝑋 be a scheme,ℱ a presheaf on 𝑋ét, and 𝑥 ∶ Spec𝜅(𝑥) → 𝑋
a geometric point of 𝑋. The stalk of ℱ at 𝑥 is the object

ℱ𝑥 ..= lim−−→
(𝑈,𝑢)

ℱ(𝑈), (3.17)

where 𝑈 ranges over étale schemes 𝑈 → 𝑋 along with geometric points 𝑢 of 𝑈
such that the associated diagrams

𝑈

Spec𝜅(𝑥) 𝑋𝑥

𝑢 (3.18)

commute.
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A pair (𝑈,𝑢) is frequently referred to as an étale neighbourhood of 𝑥.
Remark. (i) If ℱ is a presheaf valued in C, where C is the category of abelian

groups, rings or modules, then ℱ𝑥 is an object of C; this is equivalent to n
the statement that (⋅)𝑥 ∶ ℱ ↦ ℱ𝑥 is a map Sh(𝑋ét) → C. In fact, (exercise!)
it naturally determines a functor.

(ii) In the situation above, the colimit eq. (3.17) is filtered12, and it follows
(exercise!) that (⋅)𝑥 is an exact functor.

(iii) The stalk ℱ𝑥 only depends on the choice of separable closure 𝜅(𝑥) up to
isomorphism.

Proposition 3.30. A sequence of étale sheaves ℱ → 𝒢 → ℋ is exact if and only if
for every geometric point 𝑥 of 𝑋, the associated sequenceℱ𝑥 →𝒢𝑥 →ℋ𝑥 is exact.

Proof sketch. This is mostly a formal verification. The key point is to reduce to
the following statement: If 𝑈→𝑋 is étale, 𝒫 ∈ Sh(𝑋ét), 𝑠 ∈ 𝒫(𝑈) and 𝑠𝑥 = 0 for
all geometric points 𝑥 of 𝑋, then 𝑠 = 0. Let’s prove this:

Since 𝑠𝑥 = 0, by definition there exists some étale neighbourhood 𝑉𝑢 →𝑈 of
𝑢 such that 𝑠|𝑉𝑢 = 0.

𝑉𝑢

𝑈

Spec𝜅(𝑥) 𝑋

𝑢

𝑣

(3.19)

But then the collection (𝑉𝑢 →𝑈)𝑢 is an étale covering, and so 𝑠 = 0 by the sheaf
condition.

Recall that if ℱ = 𝒪𝛸 and 𝑥 is any geometric point of 𝑋 with image 𝑥, then
𝒪𝛸,𝑥 = (𝒪𝛸,𝑥)

𝑠ℎ. These fit into a diagram

𝒪𝛸,𝑥 𝒪ℎ𝛸,𝑥 𝒪𝑠ℎ𝛸,𝑥 ≅ 𝒪𝛸,𝑥

𝒪𝛸,𝑥

(3.20)

Another important feature of stalks in the étale topology is that they admit a nat-
ural Galois action. More precisely, if 𝜅(𝑥)/𝜅(𝑥) is the separably closed field exten-
sion associated to a geometric point 𝑥 andℱ an étale sheaf, then𝐺 ..= Gal(𝜅(𝑥)/𝜅(𝑥))
acts onℱ𝑥 as follows: for any 𝜎 ∈ 𝐺, a triple (𝑈,𝑢, 𝑠)where (𝑈,𝑢) is an étale neigh-
bourhood of 𝑥 and 𝑠 ∈ ℱ(𝑈) is sent to the triple (𝑈,𝑢 ∘ 𝜎, 𝑠).

12i.e. the colimit over a filtered category, see here.
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Exercise. Check that this induces an action on the stalk ℱ𝑥 = lim−−→(𝑈,𝑢)
ℱ(𝑈).

As a consequence, the functor (⋅)𝑥 is actually a functor Sh(𝑋ét) → Mod(𝐺),
the category of 𝐺-modules; it is easy to verify that morphisms are automatically
𝐺-equivariant.
Exercise. Prove that this is in fact an equivalence of categories, by showing that
(⋅)𝑥 coincides with the functor of theorem 3.12.

3.5 Operations on sheaves

Speaker: Eduardo de Lorenzo Poza

In this section we prove that many of the operations on sheaves generalises
from the usual setting. First we need to extend our notion of a continuous map:

Definition 3.31. Let (C′/𝑋′)𝛦′ and (C/𝑋)𝛦 be sites of schemes 𝑋 and 𝑋′, and
𝜋∶ 𝑋′ →𝑋 a morphism of schemes. We say that 𝜋 is a continuous map of sites
if the following conditions hold:

(i) If 𝑌 ∈ C, then 𝑌(𝛸′) ..= 𝑌 ×𝛸𝑋
′ ∈ C′.

( ii) In the Cartesian diagram

𝑈(𝛸′) 𝑈

𝑋′ 𝑋

𝑓′ 𝑓

𝜋

(3.21)

if 𝑓 ∈ 𝐸, then the base change 𝑓′ is in 𝐸′.

Here (i) is an analogue of the property that preimages of open sets are open,
and by abuse of notation we write 𝜋−1(𝑌) ..= 𝑌(𝛸′) = 𝑌 ×𝛸 𝑋

′. On the other hand,
(ii) ensures that we don’t run into trouble when pulling back covers.

Note that since base change preserves surjectivity (see eg. [Sta21, Lemma
01S1]) a continuous map of sites takes coverings to coverings.

Example 3.32. Any morphism𝑋′ →𝑋 induces a continuous map of sites𝑋′ét →
𝑋ét; this is a direct consequence of proposition 2.44.

Definition 3.33. Let 𝜋∶ 𝑋′𝛦′ →𝑋𝛦 be a continuous map of sites, andℱ′ a presheaf
on𝑋′𝛦′ . The direct image presheaf 𝜋𝑝ℱ

′ is the presheaf on𝑋𝛦 defined by 𝜋𝑝ℱ
′(𝑈) ..=

ℱ′(𝑈 ×𝛸𝑋
′).

Note that if ℱ′ is a sheaf, then so is 𝜋𝑝ℱ
′. In fact, the map 𝜋𝑝 is a functor

pSh(𝑋′𝛦′) → pSh(𝑋𝛦). While it is not hard to check that 𝜋𝑝 preserves exactness,
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it is not true for the restriction to the full subcategory of sheaves, 𝜋∗ ∶ Sh(𝑋′𝛦′) →
Sh(𝑋𝛦).

As in the case of sheaves on a topological space we can also pull a sheaf on 𝑋
back along 𝑋′ →𝑋:

Definition 3.34. Let 𝜋 ∶ 𝑋′𝛦′ → 𝑋𝛦 be a continuous map of sites. The inverse
image functor is the functor 𝜋𝑝 ∶ pSh(𝑋𝛦) → pSh(𝑋′𝛦′) given by the left adjoint
of 𝜋𝑝.

The existence of such a functor follows from a general category-theoretical
argument, and more details can be found in [Mil80, II.2.2].

In the étale topology, we can give a more explicit construction of 𝜋𝑝: For
ℱ ∈ pSh(𝑋ét), let 𝜋

𝑝ℱ(𝑈′) ..= lim−−→(𝑔,𝑈)
ℱ(𝑈), where the colimit is taken over pairs

(𝑔,𝑈) fitting into a commuting diagram

𝑈′ 𝑈

𝑋′ 𝑋

𝑔

𝜋

(3.22)

These form a direct system with morphisms ℎ ∶ 𝑈1 →𝑈2 fitting into the commu-
tative diagrams

𝑈′ 𝑈2

𝑈1

𝑋′ 𝑋

𝑔2

𝑔1 ℎ

𝜋

(3.23)

One can check by hand that this indeed defines a sheaf on 𝑋′ét, and that it is left
adjoint to 𝜋𝑝. Note that for general sites 𝑋𝛦 and 𝑋′𝛦′ the functor 𝜋𝑝 does not
preserve the sheaf condition. See [Mil80, §II.2] for further details.

Proposition 3.35. Let 𝜋∶ 𝑋′𝛦′ →𝑋𝛦 be a continuous map of sites.

(i) The functor 𝜋𝑝 ∶ pSh(𝑋′𝛦′) → pSh(𝑋𝛦) is exact;
(ii) the functor 𝜋𝑝 ∶ pSh(𝑋𝛦) → pSh(𝑋′𝛦′) is right exact;
(iii) the functor 𝜋𝑝 ∶ Sh(𝑋𝛦) → pSh(𝑋′𝛦′) is also left exact in the étale topology.

Proof. (i) follows directly from definition; simply check every étale 𝑈→𝑋. ( ii)
follows from adjointness. Finally, (iii) follows from the fact that 𝜋𝑝ℱ(𝑈′) is a
cofiltered colimit in Ab, and these are exact by a general category-theoretic argu-
ment.
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Example 3.36 (The Kummer sequence). Recall that the étale sheaf 𝜇𝑛 from ex-
ample 3.7 is represented by

Spec ℤ[𝑡, 𝑡
−1]

(𝑡𝑛 − 1) ×Specℤ𝑋. (3.24)

This can equivalently be realised as the kernel sheaf of the map 𝔾𝑚 →𝔾𝑚, where
𝔾𝑚 is the multiplicative group scheme represented by 𝔾𝑚,𝛸 ..= Specℤ[𝑡, 𝑡−1] × 𝑋;
explicitly we have 𝔾𝑚(𝑈) = 𝛤(𝒪𝑈,𝑈)

×. The corresponding sequence

0→ 𝜇𝑛 →𝔾𝑚
𝑠↦𝑠𝑛−−−→𝔾𝑚 →0 (3.25)

need not be exact in general. This is called the Kummer sequence.
Exercise. Suppose 𝑛 is invertible everywhere on 𝑋.

( i) Show that the Kummer sequence is not exact on Zariski sheaves.
(ii) Show that the Kummer sequence is not exact on Zariski presheaves.
(iii) Show that the Kummer sequence is exact in the category of étale sheaves.

Example 3.37 (The Artin-Schreier sequence). Let 𝑋 be a scheme over a field of
characteristic 𝑝, and let 𝔾𝑎 be the sheaf on 𝑋ét given by 𝔾𝑎(𝑈) = 𝛤(𝒪𝑈,𝑈). Then
we have a sequence

0→ ℤ/𝑝ℤ→𝔾𝑎
𝐹−Id−−−−→𝔾𝑎 →0, (3.26)

where 𝐹 is the Frobenius map on 𝔾𝑎. This is called the Artin-Schreier sequence.
As with the Kummer sequence, this is not exact on the right in the categories
of Zariski sheaves or presheaves, but it is exact in the category of étale sheaves,
essentially because the polynomial 𝑇𝑝 −𝑇 is separable (exercise!).

Just like with topological spaces, there is a canonical way of producing a sheaf
on any site from a given presheaf.

Theorem 3.38. Let 𝑋𝛦 be a site. For any presheaf𝒫 ∈ pSh(𝑋𝛦), there exists a sheaf
𝒫𝑎 ∈ Sh(𝑋𝛦) such that for any sheaf ℱ ∈ Sh(𝑋𝛦) and morphism of presheaves𝒫→
ℱ, there exists a unique morphism of sheaves𝒫𝑎 →ℱ so that the following diagram
commutes:

𝒫𝑎

𝒫 ℱ

∃!𝑎 (3.27)

For a proof, see [Mil80, Thm. II.2.11] or [Sta21, Section 00W1].

Since 𝑎 is defined by a universal property, the standard argument shows that
ℱ𝑎 is unique up to unique isomorphism. In fact, the construction is functorial.

Definition 3.39. The functor ℱ↦ℱ𝑎 is called the sheafification functor.
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One important fact about sheafification is that it preserves stalks: for any
geometric point 𝑥 on 𝑋, we have that (ℱ𝑎)𝑥 = ℱ𝑥.

Proposition 3.40. Let 𝑋𝛦 be a site.

(i) Sheafification is functorial, and the sheafification functor 𝑎 is left adjoint to the
inclusion functor Sh(𝑋𝛦) ↪ pSh(𝑋𝛦). Moreover, the functor 𝑎 is exact.

(ii) For a sequence of sheaves 0 → ℱ → 𝒢 → ℋ → 0, exactness on the left in
Sh(𝑋𝛦) is equivalent to left exactness as a sequence of presheaves. This is also
equivalent to left exactness on the level of sections; if 𝑋𝛦 = 𝑋ét, then this is also
equivalent to left exactness on stalks.

(iii) Amorphism in Sh(𝑋𝛦) is surjective if and only if it is surjective on sections. If
𝑋𝛦 = 𝑋ét, then this is equivalent to surjectivity on stalks.

(iv) Limits in Sh(𝑋𝛦) coincide with limits in pSh(𝑋𝛦); a colimit in Sh(𝑋𝛦) is the
sheafification of a colimit in pSh(𝑋𝛦)

(v) The category Sh(𝑋𝛦) is abelian and has arbitrary direct sums and products;
filtered colimits respect exactness.

With the axioms from Grothendieck’s Tohoku paper, (v) can be rephrased as
“Sh(𝑋𝛦) satisfies AB5, AB3* (but not AB4*)”.13

Let 𝜋∶ 𝑋′ → 𝑋 be a continuous map of sites. Recall that we defined the
functor 𝜋∗ as the restriction of 𝜋𝑝 to the category of sheaves. This fails for 𝜋𝑝

because 𝜋𝑝ℱ is generally not a sheaf even if ℱ is. However, we can mend this by
sheafifying:

Definition 3.41. Let 𝜋∶ 𝑋′ →𝑋 be a continuous map of sites. The functor

𝜋∗ ∶ Sh(𝑋𝛦) → Sh(𝑋′𝛦′), ℱ ↦ 𝜋∗ℱ ..= (𝜋𝑝ℱ)𝑎 (3.28)

is called the pullback along 𝜋, or inverse image functor.

By the universal property of sheafification, it is easy to see that (𝜋∗,𝜋
∗) form

an adjoint pair. Since 𝜋∗ is not exact in general, neither is 𝜋∗. However, by
proposition 3.35 𝜋𝑝 is for the étale site, and so 𝜋∗ is as well, being a composition
of left exact functors, Sh ↪ pSh 𝜋𝑝−−→ pSh 𝑎−→ Sh.

For the remainder of the section, we fix a scheme 𝑋 equipped with the étale
topology. Moreover, if 𝑗 ∶ 𝑈 ↪ 𝑋 is an open immersion, we tend to identify
𝑈 with its image in 𝑋. The following proposition tells us how pullbacks and
pushforwards interact with stalks.

Proposition 3.42 ( [Mil80, Cor. II.3.5]). Let 𝑋 and 𝑋′ be schemes.
13AB4* states that an arbitrary product of exact sequences is exact, which is false in general.

For some counterexamples, see here.
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(i) For any 𝜋∶ 𝑋′ → 𝑋, ℱ ∈ Sh(𝑋ét), and 𝑥′ a geometric point on 𝑋′. Then
(𝜋∗ℱ)𝑥′ = ℱ𝜋(𝑥′).

(ii) If 𝑗 ∶ 𝑈 → 𝑋 is an open immersion, ℱ ∈ Sh(𝑈ét), and 𝑥 a geometric point on
𝑋 such that 𝑥 ∈ 𝑈, then (𝑗∗ℱ)𝑥 = ℱ𝑥.

(iii) If 𝑖 ∶ 𝑍 → 𝑋 is a closed immersion, ℱ ∈ Sh(𝑍ét), and 𝑥 a geometric point on
𝑋, then

(𝑖∗ℱ)𝑥 = {
ℱ𝑥 if 𝑥 ∈ 𝑍,
0 if 𝑥 ∉ 𝑍.

(3.29)

(iv) If 𝜋∶ 𝑋′ →𝑋 is finite andℱ′ ∈ Sh(𝑋′), then (𝜋∗ℱ′)𝑥 =⨁𝑥′↦𝑥(ℱ
′
𝑥)
𝑑(𝑥′), where

𝑑(𝑥′) = [𝜅(𝑥′) ∶ 𝜅(𝑥)]sep, for any geometric point 𝑥 of 𝑋.

Definition 3.43. Let 𝑗 ∶ 𝑈 ↪ 𝑋 be an open immersion of schemes, and fix 𝒫 ∈
pSh(𝑈ét). Define

𝒫!(𝑉) ..= {
𝒫(𝑉) if 𝜙(𝑉) ⊂ 𝑈 for an étale morphism 𝜙∶ 𝑉→𝑋,
0 otherwise.

(3.30)

This is called “𝒫 lower shriek”.

If 𝑓∶ 𝒫 → 𝒫′ is a morphism of presheaves, then we obtain an associated
morphism 𝒫! →𝒫′

! by “extending 𝑓 by 0 outside 𝑈”; thus 𝒫↦𝒫! is a functor.
We can upgrade this to a functor of sheaves by precomposing with the inclusion
Sh ↪ pSh and postcomposing with sheafification.

Definition 3.44. Let 𝑈↪𝑋 be an open immersion of schemes. The extension
by 0-functor 𝑗! ∶ Sh(𝑈ét) → Sh(𝑋ét) is given by ℱ↦ 𝑗!ℱ ..= (ℱ!)

𝑎.

It is a straightforward exercise using the universal property of sheafification
to show that (𝑗!, 𝑗

∗) form an adjoint pair.

Proposition 3.45. If 𝑗 ∶ 𝑈 ↪ 𝑋 is an open immersion, ℱ ∈ Sh(𝑈ét) and 𝑥 a geo-
metric point of 𝑋, then (𝑗!ℱ)𝑥 = ℱ𝑥 if 𝑥 ∈ 𝑈, and 0 otherwise.

Definition 3.46. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion and 𝑗 ∶ 𝑈 = 𝑋 ⧵ 𝑍 → 𝑋
an open immersion. We define a category 𝑇(𝑋) consisting of triples (ℱ1,ℱ2,𝜙)
where ℱ1 ∈ Sh(𝑍ét),ℱ2 ∈ Sh(𝑈ét) and 𝜙∶ ℱ1 → 𝑖∗𝑗∗ℱ2 is a morphism in Sh(𝑍ét).

Theorem 3.47 ( [Mil80, Thm. II.3.10]). Fix 𝑖 ∶ 𝑍 → 𝑋 a closed immersion and
𝑗 ∶ 𝑈 = 𝑋⧵𝑍→𝑋 an open immersion. There is an equivalence of categories

Sh(𝑋ét) → 𝑇(𝑋)
ℱ↦ (𝑖∗ℱ,𝑗∗ℱ,𝜙ℱ)

𝜓 ↦ (𝑖∗𝜓,𝑗∗𝜓).
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Definition 3.48. Let 𝑋 be a scheme, 𝑌 ↪ 𝑋 a subscheme and ℱ ∈ Sh(𝑋ét). We
say that ℱ has support in 𝑌 if ℱ𝑥 = 0 for every geometric point 𝑥 with image in
𝑋⧵𝑌.

From the previous theorem we deduce the following:

Corollary 3.49 ( [Mil80, Cor. II.3.11]). With notation as above, there is an equiv-
alence of categories between Sh(𝑍ét) and the full subcategory of sheaves on 𝑋 with
support in 𝑍.

Proof (sketch). The main idea here is to show that sheaves with support in 𝑍 are
equivalent to the subcategory of 𝑇(𝑋) given by (𝑖∗ℱ,0,0).

Definition 3.50. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion and 𝑗 ∶ 𝑈 = 𝑋 ⧵𝑍→𝑋 an
open immersion. Then we have functors

Sh(𝑍ét) Sh(𝑋ét) Sh(𝑈ét)
𝑖∗

𝑖∗

𝑖!

𝑗∗

𝑗∗

𝑗!

(3.31)

which using the equivalence in corollary 3.49 are given explicitly as follows:

𝑖∗ ∶ ℱ1 ↤ (ℱ1,ℱ2,𝜙), 𝑗! ∶ (0,ℱ2, 0) ↤ ℱ2,
𝑖∗ ∶ ℱ1 ↦ (ℱ1, 0,0), 𝑗∗ ∶ (ℱ1,ℱ2,𝜙) ↦ ℱ2, (3.32)

𝑖! ∶ ker𝜙 ↤ (ℱ1,ℱ2,𝜙), 𝑗∗ ∶ (𝑖
∗𝑗∗ℱ2,ℱ2, Id) ↤ ℱ2.

Proposition 3.51 ( [Mil80, Prop. II.3.14]). Keeping the notation from the previous
definition, we have the following:

(i) For the top four functors in eq. (3.32), each forms an adjoint pair with the one
immediately below.

(ii) The functors 𝑖∗, 𝑖∗, 𝑗
∗ and 𝑗∗ are exact.

(iii) The functors 𝑖∗, 𝑗∗ and 𝑗! are fully faithful.

4 Cohomology
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4.1 Cohomology on sites

Speaker: Lukas Kofler

We assume some familiarity with the cohomological machinery used in alge-
braic geometry, and only give a quick summary here to fix notations. Further
details can be found in [Har77, Chap. III].

Let𝒜 be an abelian category, and recall that an object 𝐼 of𝒜 is injective if the
functor Hom(−,𝐼) is exact. We say 𝒜 has enough injectives if for every element of
𝒜 there exists an injection 𝐴↪ 𝐼 where 𝐼 is injective.

Proposition 4.1 ( [Mil80, Prop. III.1.1]). The category of sheaves valued in abelian
groups on a site has enough injectives.

In any abelian category 𝒜 along with a left exact functor 𝐹∶ 𝒜→𝒜′, we can
form right derived functors 𝑅𝑖𝐹, 𝑖 ≥ 0, in the usual manner. These are charac-
terised by the properties 𝑅0𝐹 = 𝐹, 𝑅𝑖𝐹(𝐼) = 0 for any injective object 𝐼, and that
every short sequence in 𝒜 gives a long exact sequence in cohomology in 𝒜′.

Example 4.2. The global sections functor 𝛤(𝑋,−) ∶ Sh(𝑋ét) → Ab is left exact, and
we define 𝐻𝑖(𝑋,−) ..= 𝑅𝑖𝛤(𝑋,−) to be the corresponding cohomology functors.

Example 4.3. The inclusion Sh(𝑋ét) ↪ pSh(𝑋ét) is left exact by proposition 3.40
(i), and the cohomology functors are denoted by 𝐻𝑖(−).

Example 4.4. For a fixed sheafℱ ∈ Sh(𝑋ét), the functor Hom(−,ℱ) is left exact,
and the right derived functors are denoted by Ext𝑖Sh(𝛸ét)

(ℱ,−).

Example 4.5. Similarly, for ℱ,𝒢 ∈ Sh(𝑋ét) we can define the hom-sheaf by

ℋℴ𝓂(ℱ,𝒢) ∶ 𝑈 ↦ Hom(ℱ|𝑈,𝒢|𝑈). (4.1)

This gives a left exact functor ℋℴ𝓂(ℱ,−) ∶ Sh(𝑋ét) → Sh(𝑋ét), with right de-
rived functors ℰ𝓍𝓉𝑖(ℱ,−).

Example 4.6. For a continuous map of sites 𝜋∶ 𝑋′𝛦′ →𝑋𝛦, the pushforward 𝜋∗ is
left exact, and the right derived functors 𝑅𝑖𝜋∗ are called higher direct images.

4.2 Spectral sequences

Spectral sequences have a reputation for being somewhat arcane objects, and so
we begin the section gently with some motivation:

Suppose we have a double complex {𝐸𝑝,𝑞0 }𝑝,𝑞≥0 in an abelian category 𝒜; that
is, a collection of objects 𝐸0,00 ,𝐸1,00 ,𝐸0,10 ,… along with maps

𝑑ℎ ∶ 𝐸
𝑝,𝑞
0 →𝐸𝑝+1,𝑞0 and 𝑑𝑣 ∶ 𝐸

𝑝,𝑞
0 →𝐸𝑝,𝑞+10 (4.2)
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satisfying 𝑑2ℎ = 0 = 𝑑2𝑣 and 𝑑ℎ𝑑𝑣 = −𝑑𝑣𝑑ℎ. These arise naturally in algebraic ge-
ometry, say from taking resolutions of complex, or complexes of filtered objects.
From this double complex we construct the total complex 𝐸•0 with 𝐸𝑘0 ..=⨁𝑖𝐸

𝑖,𝑘−𝑖,
the direct sum along the 𝑘-th antidiagonal. This is becomes a complex with the
differential 𝑑 ..= 𝑑ℎ +𝑑𝑣.

It is natural to ask whether one can find the cohomology of the total complex
by computing cohomology of the complexes in the horisontal or vertical direc-
tions separately. Taking cohomology of 𝐸•,•0 first in the vertical direction under
the action of 𝑑𝑣, we define

𝐸𝑝,𝑞1
..= ker𝑑𝑝,𝑞𝑣

im𝑑𝑝,𝑞−1𝑣
. (4.3)

This gives a new double complex, where the action of the induced maps 𝑑𝑣 is
trivial. However, the induced maps 𝑑ℎ ∶ 𝐸

𝑝,𝑞
1 → 𝐸𝑝+1,𝑞1 are well-defined (check!)

and non-zero in general. By convention they are denoted 𝑑1, and 𝐸
•,•
1 is called the

first page. We can now take its cohomology under 𝑑1, and the resulting double
complex is denoted by 𝐸•,•2 , called the second page.

Now, one might think that we are done at this point, and should be able to
say something about the cohomology of the total complex. In fact, if the only
non-zero columns of 𝐸•,•2 are given by 𝑝 and 𝑝+1, then we have an exact sequence

0→ 𝐸𝑝,𝑞2 →𝐻𝑝+𝑞(𝐸•) → 𝐸𝑝+1,𝑞−12 →0, (4.4)

so we have computed 𝐻𝑛(𝐸•) “up to extension”.

However, in general there is a new non-zero differential on 𝐸•,•2 , 𝑑2 ∶ 𝐸
𝑝,𝑞
2 →

𝐸𝑝+2,𝑞−12 constructed by the following diagram chase:

Take 𝑥 ∈ 𝐸𝑝,𝑞2 and lift it to 𝑥′ ∈ 𝐸𝑝,𝑞1 . Then 𝑑1(𝑥
′) = 0 in 𝐸𝑝+1,𝑞1 , so for a lift

𝑥″ ∈ 𝐸𝑝,𝑞0 of 𝑥′, 𝑑ℎ(𝑥
″) is in the image of 𝑑𝑣, say 𝑑ℎ(𝑥

″) = 𝑑𝑣(𝑦) for 𝑦 ∈ 𝐸
𝑝+1,𝑞−1
0 .

Now 𝑑ℎ(𝑦) ∈ 𝐸
𝑝+2,𝑞−1
0 and 𝑑𝑣𝑑ℎ(𝑦) = −𝑑ℎ𝑑𝑣(𝑦) = −𝑑2ℎ(𝑥

″) = 0, so 𝑑ℎ(𝑦) ∈ ker𝑑𝑣,
determining an element of 𝐸𝑝+2,𝑞−11 . Since 𝑑1𝑑ℎ)(𝑦) = 0, this factors through to an
element of 𝐸𝑝+2,𝑞−12 , which is the desired image of 𝑥.

Now that we have defined the map, it is not too difficult to check that it is
well-defined and a differential, and in fact this construction generalises to higher
differentials 𝑑𝑟 ∶ 𝐸

𝑝,𝑞
𝑟 →𝐸𝑝+𝑟,𝑞−𝑟+1𝑟 . This leads to the following definition:

Definition 4.7. A (cohomological, first quadrant) spectral sequence consists of

(i) objects 𝐸𝑝,𝑞𝑟 ∈ 𝒜 for all 𝑝,𝑞,𝑟 ≥ 0,
( ii) morphisms 𝑑𝑟 ≡ 𝑑

𝑝,𝑞
𝑟 ∶ 𝐸𝑝,𝑞𝑟 →𝐸𝑝+𝑟,𝑞−𝑟+1𝑟 satisfying 𝑑2𝑟 = 0,

( iii) isomorphisms ker𝑑𝑝,𝑞𝑟 / im𝑑𝑝−𝑟,𝑞−𝑟+1𝑟 ≅ 𝐸𝑝,𝑞𝑟+1.

The collection {𝐸𝑝,𝑞𝑟 }𝑝,𝑞≥0 is called the 𝑟-th page of the spectral sequence.
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• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

𝐸0 and 𝐸1.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

𝐸2 and 𝐸3.

Note that since 𝐸𝑝,𝑞𝑟 all lie in the upper quadrant, we eventually take the co-
homology of 0 → 𝐸𝑝,𝑞𝑟 → 0, the zeroes lying in the second and fourth quadrant
respectively. When this happens, we evidently have 𝐸𝑝,𝑞𝑟 = 𝐸𝑝,𝑞𝑟+1 = …, and we write
𝐸𝑝,𝑞𝑟 = 𝐸𝑝,𝑞∞ .

Theorem 4.8. For each 𝑛 ≥ 0, there is a decreasing filtration on𝐻𝑛(𝐸•),

𝐻𝑛 = 𝐹0𝐻𝑛 ⊃ … ⊃ 𝐹𝑛+1𝐻𝑛 = 0, (4.5)

such that gr𝑝𝐻
𝑛 = 𝐸𝑝,𝑛−𝑝∞ .14

In particular, we have that ⨁𝑛
𝑝=0𝐸

𝑝,𝑛−𝑝
∞ = gr𝐻𝑛. We write 𝐸𝑝,𝑞0 ⇒ 𝐻𝑝+𝑞(𝐸•)

and say that the spectral sequence converges to 𝐻𝑝+𝑞(𝐸•).

Note that we have not quite computed the cohomology of the total complex,
but if for some 𝑟 ≥ 2we have that 𝐸•,•𝑟 has only one non-zero column or row, then
we can read off 𝐻𝑛(𝐸•) directly. In this case we say that the spectral sequence
collapses, or degenerates, at page 𝑟. In most applications, spectral sequences
already collapse at 𝐸1 or 𝐸2.

A powerful feature of spectral sequences is that we can flip the roles of 𝑑ℎ
and 𝑑𝑣 while still converging to the cohomology of the graded complex. For
convenience, let �̂� denote the original spectral sequence and �⃗� the one with 𝑑ℎ
and 𝑑𝑣 swapped, and let’s look at some applications:

14Recall that the 𝑝-th graded part of the filtered object 𝐹•𝛨𝑛 is given by the quotient
𝐹𝑝+1𝛨𝑛/𝐹𝑝𝛨𝑛, which is the 𝑝-th summand of gr𝛨𝑛 ..=⨁𝑘≥0𝐹

𝑘+1𝛨𝑛/𝐹𝑘𝛨𝑛.
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Example 4.9 (Five lemma). Suppose we have the following diagram

𝐹 𝐺 𝐻 𝐼 𝐽

𝐴 𝐵 𝐶 𝐷 𝐸

𝛼 𝛽 𝛾 𝛿 𝜖 (4.6)

where the rows are exact, and 𝛼,𝛽,𝛿 and 𝜖 are isomorphisms. The five lemma states
that in this case 𝛾 is an isomorphism as well. We can show this using a spectral
sequence argument: view the diagram in eq. (4.6) as �⃗�𝑝,𝑞0 , and take horisontal
cohomology to get �⃗�𝑝,𝑞1 , which since the rows are exact looks as follows:

? 0 0 0 ?

? 0 0 0 ?

(4.7)

Now the cohomology of the total complex vanishes in the degrees corresponding
to 𝐻 → 𝐶. The spectral sequence converges at the 2nd page since there are no
more arrows between non-zero objects to draw there.

Now let’s look at the vertical cohomology. The first page, �̂�𝑝,𝑞1 , looks as
follows:

0 0 ? 0 0

0 0 ? 0 0

(4.8)

and 𝛾 being an isomorphism is equivalent to the vanishing of the two question
marks here. Note that the spectral sequence converges on this page, and so since
the question marks correspond to the same pieces of the cohomology which van-
ished by the previous computation, we conclude that 𝛾 is indeed an isomorphism.
This proves the claim.

Example 4.10 (Long exact sequence in cohomology). Using spectral sequences
we can also deduce the long exact sequence in cohomology from a short exact
sequence of objects. Suppose

0→ 𝐴→𝐵→𝐶→ 0 (4.9)

is an exact sequence. In horisontal cohomology the sequence converges on the
first page because the sequence is exact. On the other hand, �̂�𝑝,𝑞1 is given by

0 𝐻2(𝐴) 𝐻2(𝐵) 𝐻2(𝐶) 0

0 𝐻1(𝐴) 𝐻1(𝐵) 𝐻1(𝐶) 0

0 𝐻0(𝐴) 𝐻0(𝐵) 𝐻0(𝐶) 0

𝛼2 𝛽2

𝛼1 𝛽1

𝛼0 𝛽0

(4.10)
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and the next page looks like this:

0 ker𝛼2 ker𝛽2/ im𝛼2 coker𝛽2 0

0 ker𝛼1 ker𝛽1/ im𝛼1 coker𝛽1 0

0 ker𝛼0 ker𝛽0/ im𝛼0 coker𝛽0 0

(4.11)

The sequence converges on the next page, and so we conclude that every entry
on the next page is 0. In particular, ker𝛽𝑖/ im𝛼𝑖 = 0 and ker𝛼𝑖+1 ≅ coker𝛽𝑖 for all
𝑖 ≥ 0. This gives the connecting homomorphism 𝐻𝑖(𝐶) → 𝐻𝑖+1(𝐴) along with
exactness everywhere in the long exact sequence.

Exercise. Prove the snake lemma using spectral sequences: given a commutative
diagram with exact rows

0 𝐸 𝐹 𝐺 0

0 𝐴 𝐵 𝐶 0

𝛼 𝛽 𝛾 (4.12)

prove the exactness of the sequence

0→ ker𝛼→ ker𝛽→ ker𝛾→ coker𝛼→ coker𝛽→ coker𝛾→ 0. (4.13)

Next we turn to study properties of spectral sequences. For convenience, we
consider only sequences 𝐸 = �̂�, with 𝑑0 vertical. We will also abstract slightly and
let 𝐸•,• converge to any family of filtered objects 𝐸𝑛 ∈ 𝒜 such that 𝐹0𝐸𝑛 = 𝐸𝑛 and
𝐹𝑛+1𝐸𝑛 = 0. As usual we then have 𝐸𝑝,𝑞∞ ≅ gr𝑝𝐸

𝑝+𝑞.

Note that 𝐸𝑝,𝑞𝑟+1 is a subquotient of 𝐸
𝑝,𝑞
𝑟 for all 𝑝,𝑞,𝑟; this gives rise to a sequence

of quotient maps
𝐸𝑛,00 →𝐸𝑛,01 →…→𝐸𝑛,0∞ . (4.14)

The natural composite 𝐸𝑛,00 →𝐸𝑛 is called an edge morphism. In a similar manner
we construct an edge morphism 𝐸𝑛 →𝐸0,𝑛0 .

Exercise. Show that the following sequence is exact:

0→ 𝐸1,02 →𝐸1 →𝐸0,12
𝑑−→ 𝐸2,02 →𝐸2. (4.15)

This is called the five term exact sequence.

Example 4.11. The Hochschild-Serre spectral sequence in group cohomology
computes the group cohomology of a group 𝐺 in terms of a subgroup𝐻 and the
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quotient 𝐺/𝐻. In this case, the five term exact sequence is simply the inflation-
restriction sequence

0→𝐻1(𝐺/𝐻,𝐴𝛨) →𝐻1(𝐺,𝐴) →𝐻1(𝐻,𝐴)𝐺/𝛨 →𝐻2(𝐺/𝐻,𝐴𝛨) →𝐻2(𝐺,𝐴).
(4.16)

We round off the section with a theorem, the “chain rule for derived func-
tors”, which we will put to good use later:

Theorem 4.12 (The Grothendieck spectral sequence). Let A,B and C be abelian
categories, with A and B having enough injectives. Suppose we are given left exact
functors A 𝐺−→ B 𝐹−→ C such that for any injective object 𝐼 ∈ A, 𝑅𝑖𝐹(𝐼) = 0 for 𝑖 >
0. Then there exists a convergent (first quadrant, cohomological) spectral sequence
starting on the page 2:

𝐸𝑝,𝑞2 = (𝑅𝑝𝐹)(𝑅𝑞𝐺)(𝐴) ⇒ 𝑅𝑝+𝑞(𝐹𝐺)(𝐴). (4.17)

For a proof of this, see [Wei94, Sec. 5.8].

4.3 Étale cohomology groups

Speaker: George Robinson

Étale cohomology and Galois cohomology

Let 𝑘 be a field, 𝑋 = Spec𝑘 and for the remainder of the section, 𝐺 ..= Gal(𝑘sep/𝑘)
for some fixed separable closure 𝑘sep of 𝑘.

Recall from theorem 3.12 that Sh(𝑋ét) is equivalent to Mod(𝐺), the cate-
gory of discrete 𝐺-modules. Explicitly, for 𝑀 ∈ Mod(𝐺) we have a sheaf ℱ𝛭
whose sections over a finite separable extension 𝑘′/𝑘 are given by 𝑀𝐺′ , the ele-
ments of 𝑀 fixed by 𝐺′ = Gal(𝑘sep/𝑘′). In the equivalence, the functor 𝛤(𝑋,−)
simply becomes the covariant functor (−)𝐺 ∶ Mod(𝐺) → Ab, which sends a 𝐺-
module 𝑀 to the 𝐺-invariant submodule 𝑀𝐺. Taking derived functors shows
that 𝐻•

ét(𝑋,ℱ𝛭) = 𝐻•
Gal(𝐾,𝑀), that is, the derived functors of 𝛤(𝑋,−) in the

étale topology are precisely Galois cohomology.

Example 4.13. With 𝑋 = Spec𝑘 as above, suppose𝑀 is a trivial 𝐺-module, that
is, 𝑀 is an abelian group with the trivial action of 𝐺, 𝑔 ⋅ 𝑚 = 𝑚 for all 𝑔 ∈ 𝐺 and
𝑚 ∈ 𝑀. Then 𝐻0(𝐺,𝑀) = 𝑀, and from the definition of a cocycle we see that
𝐻1(𝐺,𝑀) = Hom(𝐺,𝑀).

This is already nontrivial, as for example

𝐻1(Gal(ℚ/ℚ),ℤ/2ℤ) = Hom(Gal(ℚ/ℚ),ℤ/2ℤ)
≅ {extensions of degree dividing 2} ≅ ℚ×/(ℚ×)2. (4.18)
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An important theorem whose geometric analogue we will encounter later, is
the following:

Theorem 4.14 (Hilbert’s theorem 90). If 𝑘 is a perfect field, then𝐻1(𝐺,𝑘
×
) = 0.

We can apply this to the Kummer sequence (example 3.36) to compute the
cohomology of 𝜇𝑛 regarded as a Galois module:

Example 4.15. Applying Galois cohomology to the sequence

0→ 𝜇𝑛(𝑘) → 𝑘
× 𝑥↦𝑥𝑛−−−−→ 𝑘

×
→0 (4.19)

gives the following (rather short) long exact sequence in cohomology,

0→ 𝜇𝑛(𝑘)
𝐺 = 𝜇𝑛(𝑘) → 𝑘× → 𝑘× →𝐻1(𝐺,𝜇𝑛) →𝐻1(𝐺,𝑘

×
) = 0, (4.20)

where the last equality is Hilbert’s theorem 90. We sometimes write this as
𝐻1(𝐺,𝜇𝑛) = 𝑘×/(𝑘×)𝑛. Note that this generalises the previous example, since for
𝑘 = ℚ, 𝐺 acts trivially on 𝜇2 = {±1} ≅ ℤ/2ℤ.

Taking limits in two different ways gives the two identities

𝐻1(𝐺,𝜇𝑝∞) = 𝑘
× ⊗ℚ𝑝/ℤ𝑝 and 𝐻1(𝐺,ℤ𝑝(1)) = 𝑘

× ⊗̂ ℤ𝑝, (4.21)

where 𝜇𝑝∞ ..= lim−−→𝑛
𝜇𝑝𝑛 and ℤ𝑝(1) ..= lim←−−𝑛𝜇𝑝𝑛 .

Example 4.16. Similarly, if 𝐸 is an elliptic curve over 𝑘, then multiplication by
𝑝 gives an exact sequence

0→ 𝐸[𝑝](𝑘) → 𝐸(𝑘) → 𝐸(𝑘) → 0, (4.22)

and the corresponding long exact sequence gives rise to

0→ 𝐸(𝑘)/𝑝𝐸(𝑘) →𝐻1(𝐺,𝐸[𝑝]) →𝐻1(𝐺,𝐸(𝑘))[𝑝] → 0, (4.23)

which is the starting point for the definition of Selmer groups, the Tate-Shafarevich
group and so on.

Cohomological dimension

Definition 4.17. Let 𝐺 be a profinite group. We say 𝐺 has (𝑝-)cohomological
dimension at most 𝑛 if for any (𝑝-)torsion 𝐺-module 𝑀, we have 𝐻𝑖(𝐺,𝑀) = 0
for 𝑖 > 𝑛. The (𝑝-)cohomological dimension of 𝐺, cd(𝐺) (resp. cd𝑝(𝐺)) is the
minimal such 𝑛.

Given a field 𝑘, we tend to write cd(𝑘) ..= cd(𝐺) where 𝐺 = Gal(𝑘sep/𝑘).

The following facts are useful in computation. For proofs, see [Ser02, §I.3].
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Theorem 4.18. Let 𝐺 be any profinite group.

(i) cd(𝐺) = sup𝑝 𝑐𝑑𝑝(𝐺), where 𝑝 runs over the prime numbers.
(ii) For any 𝑝-Sylow subgroup 𝐺𝑝 of 𝐺, we have cd𝑝𝐺 = cd𝑝𝐺𝑝.15

(iii) Let𝐻 be a pro-𝑝 group.16 Then cd(𝐻) ≤ 𝑛 if and only if𝐻𝑛(𝐻,ℤ/𝑝ℤ) = 0.

Corollary 4.19. For any finite field 𝔽𝑞, we have cd(𝔽𝑞) = 1.

Proof. Note that 𝐺 = Gal(𝔽sep
𝑞 /𝔽𝑞) ≅ ℤ̂. The unique 𝑝-Sylow subgroup of ℤ̂ is ℤ𝑝

(since ℤ̂ ≅∏𝑝ℤ𝑝 ) so by (i) and (ii) we get that

cd(𝔽𝑞) = cd(ℤ̂) = sup
𝑝

cd𝑝(ℤ𝑝). (4.24)

A standard computation shows that 𝐻0(ℤ𝑝,ℤ/𝑝ℤ) = 𝐻1(ℤ𝑝,ℤ/𝑝ℤ) = ℤ/𝑝ℤ. On
the other hand, 𝐻2(ℤ𝑝,ℤ/𝑝ℤ) classifies isomorphism classes of extensions

0→ ℤ/𝑝ℤ→ 𝐸→ ℤ𝑝 →0, (4.25)

and by looking at the preimage of the toplogical generator of ℤ𝑝, it is not too
hard to see that 𝐸 necessarily splits, that is, 𝐻2(ℤ𝑝,ℤ/𝑝ℤ) = 0, whence our result
follows.

A more difficult result is the following:

Theorem 4.20. If 𝑘 is a number field and 𝑝 prime, then

cd𝑝(𝑘) = {
2 if 𝑝 > 2 or 𝑘 is totally imaginary,
∞ if 𝑝 = 2 and 𝑘 is totally real.

(4.26)

The issue here is that a real embedding gives rise to an element of order 2 in
the Galois group, and by the Hochschild-Serre spectral sequence we can produce
a nontrivial element of 𝐻𝑖(𝐺,ℤ/2ℤ) via 𝐻𝑖(𝐶2,ℤ/2ℤ), where 𝐶2 is the subgroup
generated by complex conjugation. See [Ser02, §II.4.4] for a proof.

Higher direct images

We now return to cohomology on sites in general. Recall from section 4.1 that
given a continuous map of sites 𝜋∶ 𝑋′𝛦′ →𝑋𝛦, the higher direct images are 𝑅𝑛𝜋∗(−),
the right derived functors of the pushforward 𝜋∗ ∶ Sh(𝑋′𝛦′) → Sh(𝑋𝛦).

15For 𝐺 profinite, a 𝑝-Sylow subgroup is a subgroup of maximal index not divisible by 𝑝 (for
more detail, see [Ser02, §I.1.4])

16A projective limit of 𝑝-groups, groups of order a power of 𝑝.
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Intuitively, higher direct images aim to describe the fibres of the top space 𝑋′

in terms of the cohomology of the base space. More precisely, if 𝑋 is a single
point, then 𝑅𝑛𝜋∗(−) is simply cohomology of the global sections functor. For
general 𝑋, the idea is that we patch together the cohomology of the fibres 𝑋′𝑥 as
𝑥 varies in 𝑋. For example, a theorem of Grothendieck states that under suitably
nice conditions, 𝑅𝑛𝜋∗(ℱ) vanishes for 𝑛 greater than the maximal dimension of
the fibres.17

𝑋′

𝑋

𝜋

𝑈×𝛸𝑋
′

𝑈

Proposition 4.21 ( [Mil80, III.1.13]). With 𝜋 as above, ℱ ∈ Sh(𝑋′𝛦′), 𝑅
𝑛𝜋∗ℱ is

isomorphic to the sheafification of the presheaf

𝑈↦𝐻𝑛(𝑈 ×𝛸𝑋
′,ℱ|𝑈×𝛸𝛸′). (4.27)

Proof. Recall that 𝜋∗ = 𝑎𝜋𝑝𝑖, where 𝑎 is the sheafification functor and 𝑖 ∶ Sh(𝑋′𝛦′) ↪
pSh(𝑋′𝛦′) is the inclusion functor. From proposition 3.35, 𝜋𝑝 is exact, and so is
𝑎 by proposition 3.40. The main issue is the failure of exactness of 𝑖. Now fix
an injective resolution ℱ→ℐ• – we can always do so since Sh(𝑋′𝛦′) has enough
injectives – and note that by exactness,

𝑅𝑛𝜋∗ℱ =𝐻𝑛(𝑎𝜋𝑖𝐼•) = 𝑎𝜋𝑝𝐻
𝑛(𝑖𝐼•). (4.28)

But the presheaf in eq. (4.27) is precisely the one we are applying 𝑎 to, and this
proves our claim.

With some additional work, one can prove the following stronger result on
the small étale site, which states that the cohomology of the fibres is isomorphic
to the stalks of the higher direct image functors.

Theorem 4.22 ( [Mil80, Thm. III.1.15]). Let 𝜋∶ 𝑌 → 𝑋 be a quasi-compact mor-
phisms of schemes, and ℱ ∈ Sh(𝑌ét). Let 𝑥 be a geometric point of 𝑋, set 𝑖 ∶ 𝑋 ..=
Spec𝒪𝛸,𝑥 →𝑋 and ℱ̃ ..= 𝑖∗ℱ. Then

(𝑅𝑛𝜋∗ℱ)𝑥 ≅ 𝐻
𝑛(𝑌 ×𝛸𝑋,ℱ̃). (4.29)

17See this M.SE post for a precise statement.
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Proof sketch. The idea of the proof is to reduce to the case of 𝑈 affine, then use
what Milne calls a “highly technical result” from EGA which allows us to pass
the limit inside the cohomology groups. Then

(𝑅𝑛𝜋∗ℱ)𝑥 ≅ lim−−→
𝑈
𝐻𝑛(𝑈 ×𝛸 𝑌,ℱ|𝑈×𝛸𝑌)

≅ 𝐻𝑛(lim−−→
𝑈
𝑈×𝛸 𝑌, lim−−→

𝑈
ℱ|𝑈×𝛸𝑌) (4.30)

= 𝐻𝑛(𝑌 ×𝛸𝑋,ℱ̃),

where the first isomorphism follows from the preceding proposition, and the
second is the highly technical result.

The following is one of the most famous applications of the Grothendieck
spectral sequence:

Theorem 4.23 (Leray spectral sequence). Let 𝜋∶ 𝑋′𝛦′ → 𝑋𝛦 be a continuous map
of sites, and ℱ ∈ Sh(𝑋′𝛦′). Then we have a spectral sequence beginning on the second
page,

𝐻𝑝(𝑋𝛦,𝑅
𝑞𝜋∗ℱ)⇒𝐻𝑝+𝑞(𝑋′𝛦′ ,ℱ) (4.31)

Proof. We give a quick proof in the case where 𝑋𝛦 = 𝑋ét, and refer to [Mil80,
Thm. III.1.18] for (not much) more detail. For the étale site, 𝜋∗ has an ex-
act left adjoint so preserves injectives. Thus it satisfies the conditions for the
Grothendieck spectral sequence (theorem 4.12), which immediately gives the re-
sult.

4.4 Cohomology with supports

Speakers: George Robinson and George Cooper

One important application of the six functor setup of section 3.5 is to define
an algebro-geometric analogue of the theory of cohomology with compact sup-
port for manifolds. For the remainder of the section, let 𝑖 ∶ 𝑍 → 𝑋 be a closed
immersion, and 𝑗 ∶ 𝑈 = 𝑋⧵𝑍→𝑋 be the corresponding open immersion.

Definition 4.24. The functor

𝛤(𝑍,𝑖!(−)) ∶ Sh(𝑋ét) → Ab, ℱ ↦ ker(ℱ(𝑋)→ℱ(𝑈)) (4.32)

is left exact, and𝐻𝑛
𝑍(−) ..= 𝑅𝑛𝛤(𝑍,𝑖!(−)) is called the 𝑛-th cohomology with sup-

port in 𝑍.

As the name suggests, 𝐻𝑛
𝑍(−) is a cohomological delta-functor. Cohomology

with support in 𝑍 relates to usual sheaf cohomology as follows:
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Lemma 4.25 ( [Mil80, Prop. III.1.25]). With notation as above, there exists a long
exact sequence

…→𝐻𝑟
𝑍(𝑋ét,ℱ) →𝐻𝑟(𝑋ét,ℱ) →𝐻𝑟(𝑈ét,ℱ) →𝐻𝑟+1

𝑍 (𝑋ét,ℱ) → …, (4.33)

which is natural in 𝑋, 𝑍 andℱ.

Proof. There is a natural isomorphism Hom𝛸(ℤ𝛸ℱ)
∼→ 𝛤(𝑋ét, 𝑖

!ℱ). In particu-
lar, 𝐻𝑝

𝑍(𝑋ét,−) ≅ Ext𝑝𝛸(ℤ𝛸,−).

Now, recall that we have an adjunction between 𝑗∗ and 𝑗!, Hom𝛸(𝑗!𝑗
∗ℤ𝛸,ℱ) ≅

Hom𝛸(𝑗
∗ℤ𝛸, 𝑗

∗ℱ), so Ext𝛸(𝑗!ℎ∗ℤ𝛸,ℱ) ≅ 𝐻𝑟(𝑈ét,ℱ). We have a short exact se-
quence (see [Mil80, Rmk. II.3.13]),

0→ 𝑗!𝑗
∗ℤ𝛸 →ℤ𝛸 → 𝑖∗𝑖

∗ℤ𝛸 →0, (4.34)

and since Hom𝛸 is left exact, the sequence

0→ Hom𝛸(𝑖∗𝑖
∗ℤ𝛸,ℱ) → Hom𝛸(ℤ𝛸,ℱ) → Hom𝛸(𝑗!𝑗

∗ℤ𝛸,ℱ) (4.35)

is exact. Therefore we have isomorphisms Hom𝛸(𝑖∗𝑖
∗ℤ𝛸,ℱ) ≅ 𝛤(𝑋ét, 𝑖

!ℱ), so the
long exact sequence in Ext• gives the corresponding for 𝐻•

𝑍, proving our claim.

Theorem 4.26 (The Excision Theorem). Let 𝜋∶ 𝑋′ →𝑋 be étale, 𝑍′ ⊂ 𝑋′ be closed
and assume

(i) 𝑍 ..= 𝜋(𝑍′) is closed, and the restriction 𝜋|𝑍′ ∶ 𝑍
′ →𝑍 is an isomorphism;

(ii) 𝜋(𝑋′ ⧵𝑍′) ⊂ 𝑋 ⧵𝑍.

Then for anyℱ ∈ Sh(𝑋ét), we have𝐻
𝑟
𝑍(𝑋ét,ℱ) ≅ 𝐻

𝑟
𝑍′(𝑋

′
étℱ|𝛸′).

Informally, this says that if we modify 𝑋 away from 𝑍, the cohomology with
support in 𝑍,𝐻𝑟

𝑍, is unchanged. This is an algebro-geometric version of a similar
statement from algebraic topology.

Proof. By assumption (i), we have a commutative diagram

𝑈′ 𝑋′ 𝑍′

𝑈 𝑋 𝑍

𝑗′

𝜋 ≅

𝑖′

𝑗 𝑖

(4.36)

where the undefined objects and maps are the natural ones. From this and the
exact sequence in eq. (4.34) (with ℱ in place of ℤ𝛸 ) the diagram

0 𝛤𝑍′(𝑋
′,𝜋∗ℱ) 𝛤(𝑋′,𝜋∗ℱ) 𝛤(𝑈′,𝜋∗ℱ)

0 𝛤𝑍(𝑋,ℱ) 𝛤(𝑋,ℱ) 𝛤(𝑈,ℱ)

𝜙 (4.37)
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commutes. Since 𝜋∗ is exact and preserves injectives, it suffices to prove the state-
ment for 𝑟 = 0, which amounts to showing that 𝜙 is an isomorphism.

Let’s first prove that 𝜙 is injective: If 𝑠 ∈ 𝛤𝑍(𝑋,ℱ) maps to 0, then 𝑠 restricts
to 0 in 𝛤𝑍(𝑋

′,ℱ) and also in 𝛤(𝑈,ℱ), since 𝑠 is supported on 𝑍. Since {𝑋′ →
𝑋,𝑈→𝑋} is an étale cover, 𝑠 = 0 by the sheaf condition.

Next we show surjectivity: if 𝑠′ ∈ 𝛤𝑍′(𝑋
′,𝜋∗ℱ), then the idea is to glue the

image of 𝑠′ in 𝛤(𝑋′,𝜋∗ℱ) and 0 ∈ 𝛤(𝑈,ℱ) to obtain an element of 𝛤(𝑋,ℱ) which
vanishes outside 𝑍, hence pulls back to 𝛤𝑍(𝑋,ℱ). But the two agree on 𝑋′ ×𝛸𝑈 ⊂
𝑈′, and so indeed glue to a global section on 𝑋.

Corollary 4.27. If 𝑥 ∈ 𝑋 is a closed point and ℱ ∈ Sh(𝑋ét), then we have isomor-
phisms𝐻𝑟

{𝑥}(𝑋,ℱ) ≅ 𝐻
𝑟(Spec𝒪sh

𝛸,𝑥,ℱ).

Proof. Apply the theorem to étale neighbourhoods of 𝑥, and take the limit using
[Mil80, Lemma III.1.16].

5 First computations

Contents
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5.4 Étale and complex cohomology . . . . . . . . . . . . . . . . . . 56

5.1 Čech cohomology

Speaker: George Cooper

In this section we restrict our attention to étale sheaves, although several ar-
guments remain true for general sites.

We can develop the machinery of Čech cohomology for the étale topology
by analogy with the Zariski case, replacing 𝑈∩𝑉 with 𝑈×𝛸 𝑉. However, some
care must be taken; for example, 𝑈×𝛸𝑈 ≠ 𝑈 in general.

Fix a scheme 𝑋, an étale presheaf ℱ on 𝑋, and let 𝒰 = {𝑈𝑖
𝜙𝑖−→ 𝑋}𝑖∈ℐ an étale

cover of 𝑋. For 𝑝 > 0 and 𝑖0,… , 𝑖𝑝 ∈ ℐ, set 𝑈𝑖0,…,𝑖𝑝
..= 𝑈𝑖0 ×𝛸 … ×𝛸 𝑈𝑖𝑝 . Then the

natural projections onto the factors give rise to a map

pr�̂� ∶ 𝑈𝑖0,…,𝑖𝑝 →𝑈𝑖0,…,�̂�𝑗,…,𝑖𝑝 , 0 ≤ 𝑗 ≤ 𝑝, (5.1)
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where �̂�𝑗 means that the 𝑖𝑗-component is omitted. Next, let

�̌�𝑝(𝒰,ℱ) ..= ∏
(𝑖0,…,𝑖𝑝)

ℱ(𝑈𝑖0,…,𝑖𝑝) (5.2)

and note that the projections pr�̂� induce natural maps res𝑗 = ℱ(pr�̂�), which we
use to define

𝑑 = 𝑑𝑝 ∶ �̌�𝑝(𝒰,ℱ)→ �̌�𝑝+1(𝒰,ℱ) by 𝑑𝑝(𝑠𝑖0,…,𝑖𝑝)
𝑝+1

∑
𝑗=0

(−1)𝑗 res𝑗(𝑠𝑖0,…,�̂�𝑗,…,𝑖𝑝+1).

(5.3)
One then checks that 𝑑𝑝+1𝑑𝑝 = 0 for all 𝑝 ≥ 0, so (�̌�•(𝒰,ℱ),𝑑•) forms a complex,
and we can take cohomology, giving �̌�𝑝(𝒰,ℱ) ..= ker𝑑𝑝+1/ im𝑑𝑝. Then it follows
directly from the definition that �̌�0(𝒰,ℱ) = 𝛤(𝑋ét,ℱ).

Note that �̌�•(𝒰,ℱ) depends on the choice of covering 𝒰; to remove this de-
pendency, we introduce the notion of a refinement:

Definition 5.1. A covering𝒱 = {𝑉𝑗 →𝑋}𝑗∈𝒥 is a refinement of𝒰 = {𝑈𝑖 →𝑋}𝑖∈ℐ
if there exists a map 𝜏 ∶ ℐ → 𝒥 such that for all 𝑗 ∈ 𝒥, there exists a map 𝜂𝑗 such
that triangle

𝑉𝑗 𝑈𝜏(𝑗)

𝑋

𝜂𝑗

(5.4)

commutes.

Such a refinement gives maps

𝜏𝑝 ∶ �̌�𝑝(𝒰,ℱ)→ �̌�𝑝(𝒱,ℱ), 𝜏𝑝(𝑠)𝑗0,…,𝑗𝑝 = res𝜂𝑗0×…×𝜂𝑗𝑝
(𝑠𝜏(𝑗0),…,𝜏𝑗𝑝) (5.5)

where 𝑠 = 𝑠𝑖0,…,𝑖𝑝 ∈ �̌�
𝑝(𝒰,ℱ). One then checks that 𝜏𝑑 = 𝑑𝜏, so 𝜏 induces a map

on cohomology, 𝜌 = 𝜌(𝒱,𝒰,𝜏).

Lemma 5.2 ( [Mil80, III.2.1]). The map 𝜌 does not depend on the choice of 𝜏 and 𝜂𝑗.

Thus we can talk about a map 𝜌 = 𝜌(𝒱,𝒰) ∶ �̌�•(𝒰,ℱ) → �̌�•(𝒱,ℱ). If 𝒲 is
a refinement of 𝒱, then it is also a refinement of 𝒰 (check!) and one can verify
that 𝜌(𝒲,𝒰) = 𝜌(𝒲,𝒱)𝜌(𝒱,𝒰).

Definition 5.3. The 𝑝-th Čech cohomology group of (𝑋,ℱ) (for the étale topol-
ogy) is given by

�̌�𝑝(𝑋ét,ℱ) ..= lim−−→
𝒰
�̌�𝑝(𝒰,ℱ), (5.6)

where the injective limit is taken over the poset of coverings 𝒰 with maps 𝜌 as
above.
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Remark. If𝑈→𝑋 is an étale map andℱ a presheaf on the big étale site𝑋Ét, then
the assignment

𝑈↦ �̌�𝑝(𝑈,ℱ) = lim−−→
𝒰
�̌�𝑝(𝒰,ℱ) (5.7)

where𝒰 runs over coverings of𝑈, is naturally a presheaf on𝑋Ét, denoted ℋ̌
𝑝(𝑋Ét,ℱ).

Proposition 5.4 ( [Mil80, III.2.3-5]). Fix 𝑈→𝑋 étale, and an étale covering𝒰 of
𝑈.

(i) For each 𝑝 ≥ 0, �̌�𝑝(𝒰/𝑈,−) ∶ pSh(𝑋ét) → Ab is isomorphic to the 𝑝-th right
derived functor of𝐻0(𝒰/𝑈,−).

(ii) For each 𝑝 ≥ 0, �̌�𝑝(𝑈,−) ∶ pSh(𝑋ét) → Ab is isomorphic to the 𝑝-th right
derived functor of𝐻0(𝑈,−).

(iii) For each 𝑝 ≥ 0, �̌�𝑝(𝑋ét,−) ∶ Sh(𝑋ét) → Ab is isomorphic to the 𝑝-th right
derived functor of 𝛤(𝑋ét,−) if and only if for everyℱ ∈ Sh(𝑋ét) there exists a
long exact sequence in Čech cohomology.

Using spectral sequences, we can compute étale cohomology groups from
Čech cohomology groups:

Proposition 5.5 ( [Mil80, III.2.7]). Let 𝑈 → 𝑋 be étale, 𝒰 a covering of 𝑈, and
ℱ ∈ Sh(𝑋ét). Then we have spectral sequences starting on the second page as follows:

(i) �̌�𝑝(𝒰/𝑈,ℋ𝑞(ℱ)) ⇒ �̌�𝑝+𝑞(𝑈,ℱ).
(ii) �̌�𝑝(𝒰,ℋ𝑞(ℱ)) ⇒ �̌�𝑝+𝑞(𝑈,ℱ).

This essentially an application of the Grothendieck spectral sequence, see
Milne for more details.

Corollary 5.6. For anyℱ ∈ Sh(𝑋ét) and 𝑈→𝑋 étale, there are isomorphisms

�̌�0(𝑈,ℱ) ∼−→𝐻0(𝑈,ℱ) and �̌�1(𝑈,ℱ) ∼−→𝐻1(𝑈,ℱ) (5.8)

It is natural to ask whether we have isomorphisms in general; under mild
conditions this is indeed the case:

Theorem 5.7 ( [Mil80, Thm. III.2.17]). Let 𝑋 be a quasi-compact scheme, and sup-
pose that any finite subset of 𝑋 is contained in some affine open set.18 Then for every
𝑝 ≥ 0 andℱ ∈ Sh(𝑋ét), we have natural isomorphisms

�̌�𝑝(𝑋,ℱ) ∼−→𝐻𝑝(𝑋,ℱ). (5.9)

The proof is quite technical, and can be found in Milne’s book. A further
discussion on when derived cohomology and Čech cohomology differ can be
found in the following link: MO.

18For example, this includes projective schemes over an affine scheme.
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5.2 Cohomology of the multiplicative group scheme

Speaker: Mike Daas

In this section, the goal is to compute 𝐻1(𝑋ét,𝔾𝑚) when 𝑋ét is a sufficiently
nice scheme of dimension 1. To do so, we first need to recall the language of
divisors on schemes:

Let 𝑋 be a regular integral quasi-compact scheme with function field 𝑘, let
𝑔 ∶ Spec𝑘 → 𝑋 denote the structure morphism, and denote by 𝑅(𝑈) the collec-
tion of rational functions on𝑈, for any𝑈→𝑋 is étale. Recall from example 3.36
that 𝔾𝑚,𝛸 ..= Specℤ[𝑡, 𝑡−1] × 𝑋. Note that 𝑅(𝑈)× = 𝛤(𝑈,𝑔∗𝔾𝑚,𝛫), and the natural
map 𝛤(𝑈,𝒪×𝑈) → 𝑅(𝑈)× induces an injection 𝑟 ∶ 𝔾𝑚,𝛫 →𝑔∗𝔾𝑚,𝑘.

Definition 5.8. The sheaf of Cartier divisors is the cokernel Div𝑋 ..= coker𝑟 =
𝑔∗𝔾𝑚,𝑘/𝑟(𝔾𝑚,𝑘).

On the other hand, the notion of a Weil divisor extends naturally to schemes
as follows: let 𝑋1 denote the set of points of 𝑋 of codimension 1. Then all the
local rings 𝒪𝛸,𝑥 are discrete valuation rings, and we denote by 𝑖𝑥 ∶ {𝑥} ↪ 𝑋 the
natural inclusion of a point 𝑥 into 𝑋.

Definition 5.9. The sheaf of Weil divisors is the sheaf 𝐷𝛸 ..=⨁𝑥∈𝛸1
𝑖𝑥∗ℤ.

Under the conditions above, it is a standard result from scheme theory (eg. [Har77,
Prop. II.6.11]) that𝐷𝛸 ≅ Div𝑋, and we use the two interchangeably; for example,
by definition of Div𝑋, 𝐷𝛸 fits into an exact sequence

0→𝔾𝑚,𝛸 →𝔾𝑚,𝑘 →𝐷𝛸 →0. (5.10)

Using the long exact sequence, we can therefore compute the cohomology of
𝔾𝑚,𝛸 in terms of the cohomology of 𝔾𝑚,𝑘 and 𝐷𝛸. For the latter, since cohomol-
ogy commutes with direct sums, it suffices to determine the cohomology of 𝑖𝑥∗ℤ
for all points 𝑥 ∈ 𝑋1. The Leray spectral sequence (theorem 4.23) for 𝑖𝑥∗ and ℤ is

𝐻𝑝(𝑋ét,𝑅
𝑞𝑖𝑥∗ℤ)⇒𝐻𝑝+𝑞(𝑥,ℤ). (5.11)

The right hand side is easier to compute explicitly. Let 𝜅(𝑥) be the residue
field at 𝑥 and 𝐺𝑥 ..= Gal(𝜅(𝑥)sep/𝜅(𝑥)). We claim that

𝐻𝑖(𝑥,ℤ) = {
𝛤(𝑋,ℤ) = ℤ for 𝑖 = 0,
0 for 𝑖 = 1,
𝐻2(𝑥,ℤ) ↪ Homcts(𝐺𝑥,ℚ/ℤ) for 𝑖 = 2.

(5.12)

Here the bottom line means that we can identify 𝐻2(𝑥,ℤ) with a subgroup of
Homcts(𝐺𝑥,ℚ/ℤ).
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By using the equivalence Sh(Spec𝜅(𝑥)ét) ≅ Mod(𝐺𝑥), we can translate this to a
computation inGalois cohomology. Indeed, we have that𝐻1(𝑥,ℤ) ⊂ Homcts(𝐺𝑥,ℤ)
which vanishes since continuous homomorphisms factor through finite subgroups
of ℤ, and the only such is {0}; for 𝑖 = 2, we use the long exact sequence arising
from

0→ ℤ→ℚ→ℚ/ℤ→ 0 (5.13)

along with the fact that𝐻2(𝐺𝑥,ℚ) = 0 sinceℚ is an injective object, to show that
𝐻2(𝑥,ℤ) ↪ Homcts(𝐺𝑥,ℚ/ℤ). An application of proposition 4.21 shows that
𝑅1𝑖𝑥∗ℤ = 0.

𝐻0(𝑋ét,𝑅
2𝑖𝑥∗ℤ) 𝐻1(𝑋ét,𝑅

2𝑖𝑥∗ℤ) 𝐻2(𝑋ét,𝑅
2𝑖𝑥∗ℤ)

𝐻0(𝑋ét,𝑅
1𝑖𝑥∗ℤ) = 0 𝐻1(𝑋ét,𝑅

1𝑖𝑥∗ℤ) = 0 𝐻2(𝑋ét,𝑅
1𝑖𝑥∗ℤ) = 0

𝐻0(𝑋ét, 𝑖𝑥∗ℤ) = ℤ 𝐻1(𝑋ét, 𝑖𝑥∗ℤ) 𝐻2(𝑋ét, 𝑖𝑥∗ℤ)

The 𝐸2-page of the spectral sequence 𝐻
𝑝(𝑋ét,𝑅

𝑞𝑖𝑥∗ℤ)⇒𝐻𝑝+𝑞(𝑥,ℤ).

The spectral sequence19 implies that

𝐻𝑖(𝑥, 𝑖𝑥∗ℤ) = {
𝛤(𝑋,𝑖𝑥∗ℤ) = ℤ for 𝑖 = 0,
0 for 𝑖 = 1,
𝐻2(𝑥, 𝑖𝑥∗ℤ)↪ Homcts(𝐺𝑥,ℚ/ℤ) for 𝑖 = 2.

(5.14)

and since cohomology commutes with direct sums,

𝐻𝑖(𝑋ét,𝐷𝛸) = {
⨁𝑥∈𝛸1

ℤ for 𝑖 = 0,
0 for 𝑖 = 1,
𝐻2(𝑋ét,𝐷𝛸) ↪⨁𝑥∈𝛸1

Homcts(𝐺𝑥,ℚ/ℤ) for 𝑖 = 2.
(5.15)

On the other hand, the Leray spectral sequence associated to 𝑔 ∶ Spec𝑘 → 𝑋
and 𝔾𝑚 is given by

𝐻𝑝(𝑋ét,𝑅
𝑞𝑔∗𝔾𝑚,𝛫) ⇒𝐻𝑝+𝑞(Spec𝑘,𝔾𝑚). (5.16)

19Explicitly, one argues as follows: In degree 1, we know one of the two terms vanishes, and
the other one does not admit nontrivial boundary maps. The result in degree 1 must be zero, so
both terms on the E2-page in degree 1 must be zero.

In degree 2, we just include one of the objects in the sequence in degree 2 into the total complex:
again no boundary maps reach the term we are looking at and the total complex can be recovered
from the degree 2 terms by some kind of filtration.
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Recall from theorem 4.22 that the stalk of 𝑅𝑞𝑔∗𝔾𝑚,𝑘 at a geometric point 𝑥 is
given by𝐻𝑞(Frac𝒪𝛸,𝑥,𝔾𝑚). ByHilbert’s theorem 90, we know that𝐻1(Frac𝑂𝛸,𝑥,𝔾𝑚) =
0, so 𝑅1𝑔∗𝔾𝑚,𝛫 = 0. By a similar argument as for ℤ, by passing to Galois coho-
mology we find that

𝐻0(𝑋ét, 𝑔∗𝔾𝑚,𝑘) = 𝐻
0(𝑘,𝔾𝑚) = 𝑘

× and 𝐻0(𝑋ét, 𝑔∗𝔾𝑚,𝑘) ↪𝐻2(𝑘,𝔾𝑚,𝑘). (5.17)

The long exact sequence associated to eq. (5.10) then becomes

0→ 𝛤(𝑋ét,𝒪
×
𝛸) → 𝑘× → ⨁

𝑥∈𝛸1
𝑖𝑥∗ℤ→𝐻1(𝑋ét,𝔾𝑚) → 0

0→𝐻2(𝑋,𝔾𝑚) →𝐻2(𝑘,𝔾𝑚,𝑘). (5.18)

In particular, we can identify 𝐻1(𝑋ét,𝔾𝑚) with the quotient Div𝛸 /(𝑘×/𝒪×𝛸) =
Pic(𝑋).

Stronger results:

Suppose now dim𝑋 = 1, and that 𝜅(𝑥) is perfect for every 𝑥 ∈ 𝑋. Then 𝒪𝛸,𝑥 is a
Henselian discrete valuation ring with algebraically closed residue field, and we
set 𝑘𝑥 ..= Frac𝒪𝛸,𝑥. We claim that 𝐻2(𝑘𝑥,𝔾𝑚) = 0. Indeed, by [Ser02, II.2.2] we
can identify𝐻2(𝑘𝑥,𝔾𝑚)with the Brauer groupBr(𝑘𝑥) of 𝑘𝑥, that is, the group of 𝑘𝑥-
algebras 𝐴with centre equal to 𝑘𝑥, and whose only two-sided ideals are the trivial
ones. The group operation is given by the tensor product, −⊗𝑘𝑥 −. The valuation
on 𝑘𝑥 extends uniquely (by Henselian-ness) to a valuation on any 𝐴 ∈ Br(𝑘𝑥),
and we can then produce a subfield 𝐿′ ⊂ 𝐴 with [𝐴 ∶ 𝑘𝑥] = [𝐿′ ∶ 𝑘𝑥]

2. 𝐿′/𝑘𝑥 is
unramified, so 𝐿′ = 𝑘𝑥 hence 𝐴 = 𝑘𝑥. See [Ser95, §XII.2] for more details.

Now, since the stalk of 𝑅2𝑔∗𝔾𝑚,𝑘 at 𝑥 is given by 𝐻2(𝑘𝑥,𝔾𝑚), and all stalks
vanish, we conclude that 𝑅2𝑔∗𝔾𝑚,𝑘 = 0. The points 𝑥 ∈ 𝑋1 are all closed, so the
functors 𝑖𝑥∗ are all exact by proposition 3.51.

It follows that𝐻2(𝑋ét, 𝑔∗𝔾𝑚,𝑘) = 𝐻
2(Spec𝑘,𝔾𝑚), and as before we get isomor-

phisms 𝐻𝑞(𝑋ét, 𝑖𝑥∗ℤ) ≅ 𝐻
𝑞(𝑥,ℤ), whence we obtain an exact sequence

0 𝐻2(𝑋ét,𝔾𝑚) 𝐻2(𝑘,𝔾𝑚,𝑘) ⨁𝑥∈𝛸1
Homcts(𝐺𝑥,ℚ/ℤ)

𝐻3(𝑋ét,𝔾𝑚) 𝐻3(𝑘,𝔾𝑚,𝑘)
(5.19)

If we additionally assume that𝑋 is “excellent” (a technical condition wewon’t
define, see [Sta21, Section 07QS] – a scheme is excellent if it can be covered by
spectra of excellent rings), then 𝑘𝑥 is quasi-algebraically closed field: any polyno-
mial over it whose number of variables is greater than its degree has a root.
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Example 5.10. The Chevalley–Warning theorem ( [Ser73, Thm. I.3]) states that
any finite field 𝔽𝑞 is quasi-algebraically closed.

With 𝑋 as above, for any closed point 𝑥 ∈ 𝑋 we have 𝐻𝑞(𝑘𝑥,𝔾𝑚) = 0 hence
𝑅𝑞𝑔∗𝔾𝑚 = 0 for 𝑞 > 0, and this gives the long exact sequence

… 𝐻𝑟(𝑋ét,𝔾𝑚) 𝐻𝑟(𝑘,𝔾𝑚,𝑘) ⨁𝑥∈𝛸1
𝐻𝑟−1(𝐺𝑥,ℚ/ℤ)

𝐻𝑟+1(𝑋ét,𝔾𝑚) 𝐻𝑟+1(𝑘,𝔾𝑚,𝑘) …
(5.20)

For example, if 𝑋 is a smooth algebraic curve over an algebraically closed field,
then 𝑘 is 𝐶1 by Tsen’s theorem ( [Sta21, Theorem 03RD]). Since we also have that
𝐻𝑟(𝐺𝑥,ℚ/ℤ) = 0 for 𝑟 ≥ 1, as 𝑘𝑥 is algebraically closed, we deduce from the long
exact sequence that 𝐻𝑟(𝑋ét,𝔾𝑚) = 0 for all 𝑟 ≥ 2.

5.3 Comparing topologies

In this section, we take a brief pause from the gritty computations to answer
the question “how do we compare cohomology groups defined with respect to
different Grothendieck topologies on a site?” We don’t give any proofs, but refer
the eager reader to Milne’s book.

Proposition 5.11 ( [Mil80, Prop. III.3.1]). Let (𝐶′/𝑋)𝛦 be aGrothendieck topology,
let 𝐶 ⊂ 𝐶′ be a subcategory and suppose 𝑓∶ (𝐶′/𝑋)𝛦 → (𝐶/𝑋)𝛦 is the map induced
by the inclusion functor 𝐶↪𝐶′. For any sheavesℱ′ on (𝐶′/𝑋)𝛦 andℱ on (𝐶/𝑋)𝛦,
we have

𝐻𝑖(𝑋,𝑓∗ℱ
′) ≅ 𝐻𝑖(𝑋,ℱ′) and 𝐻𝑖(𝑋,ℱ) ≅ 𝐻𝑖(𝑋,𝑓∗ℱ′), (5.21)

for all 𝑖 ≥ 0.

In particular, we can pass freely between the small and big étale sites when
computing étale cohomology groups.

Definition 5.12. Let (𝐶1/𝑋)𝛦1 and (𝐶2/𝑋)𝛦2 be sites where 𝐶1 ⊃ 𝐶2 and 𝐸1 ⊃ 𝐸2.
If for every covering in the 𝐸1-topology there exists a covering in 𝐸2 which refines
it and vice versa, then we say that 𝐸1 and 𝐸2 admit mutual refinements.

Proposition 5.13 ( [Mil80, Prop. III.3.3]). Suppose 𝐸1 and 𝐸2 as above are stable
classes, cf. definition 2.4. Let 𝑓∶ (𝐶1/𝑋)𝛦1 → (𝐶2/𝑋)𝛦2 be the natural map. If 𝐸1 and
𝐸2 admit mutual refinements, then

𝐻𝑖(𝑋𝛦2 ,𝑓∗ℱ) ≅ 𝐻
𝑖(𝑋𝛦1 ,ℱ), (5.22)

for any sheafℱ ∈ Sh(𝑋𝛦1) and 𝑖 ≥ 0.

55

https://stacks.math.columbia.edu/tag/03RD


We can use this to restrict from the class of étale morphisms to the class of
étale morphisms of finite type, or to the class of separated étale morphisms, or
even to affine étale morphisms (exercise! – this amounts to showing that suitable
mutual refinements exist). In a similar fashion we can reduce a problem from
the class of smooth morphisms to the class of étale morphisms: the key point in
showing this is that every smooth morphism admits a section étale-locally. The
following shows that we can also restrict our attention to finite subcoverings:

Proposition 5.14 ( [Mil80, Prop. III.3.5]). Suppose (𝐶/𝑋)𝛦 is a Noetherian site,
meaning that every covering has a finite subcovering, i.e. a covering consisting of
finitely many elements. Let 𝐸𝑓 denote the category of finite subcoverings. Then the
categories of sheaves (resp. presheaves) on 𝑋𝛦 and 𝑋𝛦𝑓 are canonically equivalent. In
particular, cohomology is preserved when passing from one to the other.

5.4 Étale and complex cohomology

In this section, for a scheme 𝑋 over Specℂ, we let 𝐻𝑖(𝑋(ℂ),−) denote the usual
singular cohomology. If étale cohomology is indeed a “good” cohomology the-
ory, then it should coincide with singular cohomology under suitably nice con-
ditions. The goal of this section is to prove the following theorem:

Theorem 5.15. Let𝑋 be a smooth scheme over Specℂ and𝑀 a finite abelian group.
Then

𝐻𝑖(𝑋(ℂ),𝑀) ≅ 𝐻𝑖(𝑋ét,𝑀), (5.23)

for all 𝑖 ≥ 0.

Example 5.16. Note that it is crucial to assume 𝑀 is finite; for example, if 𝑋 is
an elliptic curve, we have

𝐻1(𝑋(ℂ),ℤ) = ℤ2 but 𝐻1(𝑋ét,ℤ) = Homcts(𝜋1(𝑋),ℤ) = 0, (5.24)

the latter because 𝜋1(𝑋) is a profinite group, by the same argument as in sec-
tion 5.2.

Proof (sketch). For 𝑖 = 0, this amounts to showing that the numbers of compo-
nents of 𝑋 and 𝑋(ℂ) agree. This follows from a reduction to the case of 𝑋 being
a projective curve, and then an appeal to Riemann-Roch. For details, see [Sha13,
§VII.2].

For 𝑖 = 1, we use the fact that𝐻1(𝑋ét,𝑀) is in bijective correspondence with
the set of Galois coverings with automorphism group equal to 𝑀; see [Mil00,
Props. 11.1 & 11.3]. On the other hand, since 𝐻1(𝑋(ℂ),𝑀) classifies analytic
covering spaces with automorphism group 𝑀, the case follows from the follow-
ing theorem:
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Theorem 5.17 (Riemann existence theorem). Let 𝑋→ Specℂ be locally of finite
type. Then there is an equivalence of categories

{finite étale covers 𝑌→𝑋}↔ {analytic covering spaces 𝑌an →𝑋an},
𝑌 ↦ 𝑌an. (5.25)

Finally, for 𝑖 > 1, let 𝑋cx be the site on 𝑋an where coverings are given by
local isomorphisms of complex analytic spaces. Since for any complex-open
𝑈 ⊂ 𝑋(ℂ) the map 𝑈 ↪ 𝑋(ℂ) is a local isomorphism, we have a natural map
𝑋cx →𝑋(ℂ)top, where 𝑋(ℂ)top denotes the site generated by the complex topol-
ogy of 𝑋(ℂ). It is not difficult to see that these admit mutual refinements, so by
proposition 5.14,

𝐻𝑖(𝑋cx,𝑀) ≅ 𝐻𝑖(𝑋top,𝑀). (5.26)

By the implicit function theorem (cf. exercise sheet 1), for 𝑈 → 𝑋 étale that
associated map 𝑈an → 𝑋an is a local isomorphism, giving rise to a map of sites
𝑓∶ 𝑋cx →𝑋ét. This gives rise to a Leray spectral sequence

𝐻𝑖(𝑋ét,𝑅
𝑗𝑓∗ℱ)⇒𝐻𝑖+𝑗(𝑋cx,ℱ). (5.27)

If we can show that𝑅𝑗𝑓∗ℱ = 0 for 𝑗 > 0, then the spectral sequence degenerates and
we are done. By proposition 4.21, 𝑅𝑗𝑓∗ℱ is the sheafification of𝑈↦𝐻𝑗(𝑈cx,ℱ).
The final ingredient in the proof is the following lemma, which relies on quite
heavy machinery, namely [Mil80, VI.4.2 & 5.1]. We refer the reader to Milne’s
book for a proof.

Lemma 5.18 ( [Mil80, III. 3.15]). For a locally constant sheaf ℱ ∈ Sh(𝑋cx) with
finite fibres and 𝑖 > 0, fix 𝛾 ∈ 𝐻𝑖(𝑋cx,ℱ). For any 𝑥 ∈ 𝑋(ℂ), there exists an étale
morphism 𝑈→𝑋 whose image contains 𝑥 with 𝛾|𝑈cx

= 0.

In particular, for our constant sheaf 𝑀, we have that 𝐻𝑖(𝑈cm,𝑀) = 0 and
upon sheafifying this gives that 𝑅𝑗𝑓∗ℱ = 0, as required.
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6 Cohomology of curves
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6.1 Constructible sheaves

Speaker: Håvard Damm-Johnsen

In this section, we assume as always that all schemes are locally Noetherian,
and sheaves are assumed to be valued in Ab or Mod(ℤ/𝑛ℤ), although most of the
results extend to sheaves valued in modules over an arbitrary Noetherian ring.

Keymotivation: wewant a “nice” category for coefficient systems of schemes.
Issue: the category of locally constant sheaves is not well-behaved, in particular,
not closed under pushforward.

20Martial Gaillard-Grenadier, CC BY-SA 3.0, https://creativecommons.org/licenses/
by-sa/3.0, via Wikimedia Commons.
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Example 6.1. Let 𝐺 be a finite abelian group, and let 𝑖 ∶ 0 ↪𝔸1ℂ be the inclusion
of 0 = Specℂ corresponding to the origin. Then 𝑖∗𝐺 is the skyscraper sheaf, and
is not locally constant: if 𝑈 → 𝔸1ℂ is etale with 0 in its image, then the stalk of
𝑖∗𝐺 at 0 is different from the stalk away from 0 so 𝑖∗𝐺 not constant on any etale
covering.

Recall that a sheaf ℱ is locally constant on a scheme 𝑋 if there exists some
étale covering {𝜙 ∶ 𝑈→𝑋} such that ℱ|𝑈 ..= 𝜙∗ℱ is a constant sheaf.

We first define constructible sheaves on a Noetherian scheme:

Definition 6.2. Let 𝑋 be a Noetherian scheme. A sheaf ℱ ∈ Sh(𝑋ét) is con-
structible if there exists a finite partition 𝑋 = ⨆𝑖𝑍𝑖 where 𝑍𝑖 are locally closed
subschemes of 𝑋, and ℱ|𝑍𝑖 is locally constant with finite stalks.

We frequently shorten “locally constant with finite stalks” to “finite locally
constant”. The reason for restricting our attention to such sheaves is that co-
homology with infinite coefficient sheaves is frequently ill-behaved, as in exam-
ple 5.16.
Remark. In [Mil80, §V.1], Milne defines constructible sheaves via algebraic spaces,
while we loosely follow the approach of [Sta21, Section 05BE], albeit in lesser
generality.

Constructible sheaves extend the class of locally constant sheaves by allowing
them to vary along closed subschemes. We can think of these as “locally locally
constant sheaves”, and by taking the trivial partition it is clear that any locally
constant sheaf with finite stalks is constructible.

Lemma 6.3. Let𝑋 beNoetherian. Thenwe can check constructibility Zariski-locally.

Proof. Wewant to show that ifℱ|𝑈𝑖 is constructible for some Zariski-open cover-
ing 𝑋 =⋃𝑖𝑈𝑖, then ℱ is constructible. Since 𝑋 is quasi-compact, we can assume
{𝑈𝑖} is finite. If 𝑈𝑖 = ⊔𝑗𝑍𝑖𝑗 with ℱ𝑍𝑖𝑗 locally constant with finite stalks, then we
have a decomposition 𝑋 = ⋃𝑖𝑗𝑍𝑖𝑗. By the usual topological argument, this can
be refined to a disjoint union 𝑋 = ⊔𝑖′𝑍

′
𝑖′ with ℱ|𝑍′

𝑖′
finite locally constant.

This allows us to extend the definition of constructibility to arbitrary locally
Noetherian schemes in a natural way.

Proposition 6.4 ( [Sta21, Tag 095H]). Let 𝑓 ∶ 𝑋′ →𝑋 be a finite étale morphism,
andℱ′ ∈ Sh(𝑋′ét) a constructible sheaf. Then 𝑓∗ℱ

′ is also constructible.

This is somewhat technical, and in the interest of time we won’t go into de-
tails. The full subcategory of Sh(𝑋ét) consisting of constructible sheaves retains
several good properties:

Theorem 6.5. The category of constructible sheaves is closed under closed under tak-
ing kernels, cokernels, extensions and tensor products, and is abelian.
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Tate twists

Tate twists are a nifty device for stating Poincaré duality without making a choice
of an orientation. See this link for a less vague explanation.

Fix now a scheme𝑋 such that 𝑛 is invertible in every residue field of𝑋. Then
we saw in exercise sheet 3 that 𝜇𝑛 is locally isomorphic to the constant sheaf ℤ/𝑛ℤ,
and we regard 𝜇𝑛 as a locally free sheaf of ℤ/𝑛ℤ-modules of rank 1 on 𝑋ét.

Lemma 6.6. If ℱ is a locally free and constructible sheaf with values in ℤ/𝑛ℤ, then
so is its dual,ℱ∨ ..= ℋℴ𝓂ℤ/𝑛ℤ(ℱ,ℤ/𝑛ℤ).

Proof. Choose an étale covering {𝑈→𝑋} such thatℱ|𝑈 is free; thenℱ∨|𝑈 is also
free. By lemma 6.3 we can check constructibility locally, where it is immediate.

In particular, we can consider the dual of 𝜇𝑛. Let

(ℤ/𝑛ℤ)(𝑟) ..= {
𝜇⊗𝑟𝑛 if 𝑟 > 0,
ℤ/𝑛ℤ if 𝑟 = 0,
(𝜇⊗(−𝑟)𝑛 )∨ if 𝑟 < 0.

(6.1)

This is a sheaf of ℤ/𝑛ℤ-modules by the previous lemma.

Definition 6.7. Let ℱ be a sheaf of ℤ/𝑛ℤ-modules, and fix 𝑟 ∈ ℤ. The 𝑟-th Tate
twist of ℱ is ℱ(𝑟) ..= ℱ⊗ (ℤ/𝑛ℤ)(𝑟).

Proposition 6.8. Letℱ be a constructible sheaf. Thenℱ(𝑟) is locally isomorphic to
ℱ.

6.2 Poincaré duality

A very readable introduction to this is Tony Feng’s notes.

The intuition for Poincaré duality is most easily seen in the case of a real
compact 𝑛-manifold𝑀. Recall that for each for each 0 ≤ 𝑘 ≤ 𝑛, the cup product

𝐻𝑘(𝑀;ℝ) ×𝐻𝑛−𝑘(𝑀;ℝ)→𝐻𝑛(𝑀;ℤ) (6.2)

defines a non-degenerate bilinear map.

Theorem 6.9 (Classical Poincaré duality). Let𝑀 be an orientable compact mani-
fold of real dimension 𝑛. Then a choice of an orientation on𝑀 defines a trace map

∫
𝛭
∶ 𝐻𝑛(𝑀;ℝ)→ℝ, (6.3)

which in turn gives an identification

𝐻𝑖(𝑀;ℝ) ≅ (𝐻𝑛−𝑖(𝑀;ℝ))∨ ≅ 𝐻𝑛−𝑖(𝑀;ℝ). (6.4)
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Since we don’t have a canonical way of orienting our schemes, we ought to
study the above when 𝑀 is not oriented. In that case we need to add extra con-
ditions on the coefficient ring; for example, we always have Poincaré duality for
cohomology with coefficients in ℤ/2ℤ. This is done by introducing an orienta-
tion sheaf, whose analogue in the sheaf setting is 𝜇⊗𝑟. Postponing some essential
definitions, we give the statement of Poincare duality for algebraic curves:

Theorem 6.10 (Poincaré duality for curves, [Mil80, Thm. V.2.1]). Let 𝑋 be a
smooth projective curve over an algebraically closed field 𝑘, and suppose 𝑛 ∈ ℤ is in-
vertible in 𝑘.

(a) If𝑈 ⊂ 𝑋 is a non-empty open subscheme, then there is a canonical isomorphism

𝜂(𝑈) ∶ 𝐻2
𝑐 (𝑈,𝜇𝑛)

∼−→ ℤ/𝑛ℤ. (6.5)

(b) For any constructible sheaf ℱ of ℤ/𝑛ℤ-modules on 𝑈ét, the groups 𝐻
𝑟
𝑐 (𝑈,ℱ)

and Ext𝑟Sh(𝑈ét,ℤ/𝑛ℤ)
(ℱ,𝜇𝑛) are finite for all 𝑟 and vanish for 𝑟 > 2. The pairing

𝐻𝑟
𝑐 (𝑈,ℱ) ×Ext𝑟Sh(𝑈ét,ℤ/𝑛ℤ)

(ℱ,𝜇𝑛) →𝐻2
𝑐 (𝑈,𝜇𝑛) ≅ ℤ/𝑛ℤ (6.6)

is non-degenerate.

Remark. The assumption that 𝑘 be algebraically closed is necessary; however
there are analogues for other fields, for example Tate-Poitou duality in Galois
cohomology, and more generally Artin-Verdier duality for Spec𝒪𝛫, when 𝐾 is a
number field. There are also many generalisations of Poincaré duality, in partic-
ular Verdier duality, see for example [KS13].

Speaker: Andrés Ibáñez Núñes

Let us first explain the cohomology groups 𝐻𝑐:

Definition 6.11. Let 𝑗 ∶ 𝑈 ↪ 𝑋 be an open immersion, and ℱ ∈ Sh(𝑈ét). Then
𝐻•
𝑐 (𝑈,ℱ) ..= 𝐻•(𝑋,𝑗!ℱ) is called cohomology with compact support.

We can define this more generally for 𝑈 → Spec𝑘 separated of finite type:
by Nagata compactification ( [Sta21, Theorem 0F41] or Brian Conrad’s notes), it
factors as

𝑈 𝑋

Spec𝑘

𝑗

(6.7)

where 𝑗 is an open immersion and 𝑋→ Spec𝑘 is proper, and one can check that
𝐻•
𝑐 (𝑈,ℱ) is independent of the choice of compactification𝑋. One can also check

that given a short exact sequence of sheaves on 𝑈, there is a corresponding long
exact sequence in 𝐻•

𝑐 .
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Next, let’s define the pairing of eq. (6.6):21 for transparency, fix an abelian
category 𝒜 with enough injectives, and let 𝐴,𝐵 and 𝐶 be objects in 𝒜. It is well-
known (see e.g. Wikipedia) that Ext𝑟(𝐴,𝐵) classifies “𝑟-extensions”

0→ 𝐵→𝑋𝑟 →…→𝑋1 →𝐴→ 0 (6.8)

up to equivalence, and if

𝜉 = 0→ 𝐵→𝑋𝑟 →…→𝑋1 →𝐴→ 0 and 𝜉′ = 0→ 𝐶→𝑋′𝑠 →…→𝑋′1 →𝐵→ 0

are elements of Ext𝑟(𝐴,𝐵) and Ext𝑠(𝐵,𝐶) respectively, then there is a natural
pairing

Ext𝑛(𝐴,𝐵)×Ext𝑚(𝐵,𝐶) → Ext𝑛+𝑚(𝐴,𝐶) (6.9)
(𝜉,𝜉′) ↦ 𝜉⌣ 𝜉′,

where

𝜉 ⌣ 𝜉′ = 0→ 𝐶→𝑋′𝑠 →…→𝑋′1 →𝑋𝑠 →…→𝑋1 →𝐴→ 0, (6.10)

the map 𝑋′1 →𝑋𝑟 being the natural composition 𝑋′1 →𝐵→𝑋𝑟. One then checks
that 𝜉 ⌣ 𝜉′ is actually an extension, hence a well-defined element of Ext𝑟+𝑠(𝐴,𝐶).

Returning to our situation, we take 𝒜 = Sh(𝑋ét,ℤ/𝑛ℤ), 𝐴 = ℤ, 𝐵 = 𝑗!ℱ and
𝐶 = 𝑗!𝜇𝑛. Since Ext are the derived functors of Hom, we have 𝐴 = Ext𝑟(ℤ,𝑗!ℱ) ≅
𝐻𝑟
𝑐 (𝑈,ℱ) and 𝐶 = Ext𝑟+𝑠(ℤ,𝑗!𝜇)𝑛 ≅ 𝐻𝑟+𝑠

𝑐 (𝑈,𝜇𝑛), and by the adjunction (𝑗∗, 𝑗!) we
find

𝐵 = Ext𝑠(𝑗!ℱ,𝑗!𝜇𝑛) ≅ Ext𝑠(ℱ,𝑗∗𝑗!𝜇𝑛) ≅ Ext𝑠(ℱ,𝜇𝑛). (6.11)

Altogether, this gives the pairing in eq. (6.6). Now we are ready to sketch the
main ideas of the proof of theorem 6.10.

Proof of a). We want to construct a canonical isomorphism 𝜂(𝑈) ∶ 𝐻2
𝑐 (𝑈,𝜇𝑛) ≅

ℤ/𝑛ℤ. First assume 𝑈 = 𝑋. Taking the long exact sequence in 𝐻•
𝑐 = 𝐻

• associated
to the Kummer sequence (example 3.36), we get

…→𝐻1(𝑋,𝔾𝑚)
⋅𝑛−→𝐻1(𝑋,𝔾𝑚) →𝐻2(𝑋,𝜇𝑛) →𝐻2(𝑋,𝔾𝑚) →𝐻2(𝑋,𝔾𝑚) → …

(6.12)
and we make a few observations:

• 𝐻𝑚(𝑋,𝔾𝑚) = 0 for all 𝑚 ≥ 2 by Tsen’s theorem.

• 𝐻1(𝑋,𝔾𝑚) ≅ Pic(𝑋) as in section 5.2.

• There is a natural short exact sequence 0 → Jac𝑘𝑋 → Pic(𝑋) → ℤ → 0,
where Jac𝑘(𝑋) is the Jacobian of 𝑋.

21I found the explanation on Wikipedia a lot more intuitive than the one from the talk, so I
decided to type up that.
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• There is a surjective multiplication map Jac𝑘𝑋→ Jac𝑘𝑋.

Therefore we have a commutative diagram

0 0

Jac𝑘(𝑋) Jac𝑘(𝑋) 0

𝐻1(𝑋,𝔾𝑚) 𝐻1(𝑋,𝔾𝑚) 𝐻2(𝑋,𝜇𝑛) 0

0 ℤ ℤ ℤ/𝑛ℤ 0

0 0

⋅𝑛

(6.13)

and the snake lemma applied to the two bottom rows implies that the induced
dashedmap𝐻2(𝑋,𝜇𝑛) → ℤ/𝑛ℤ is an isomorphism. For general𝑈↪𝑋, let 𝑖 ∶ 𝑍 ..=
𝑋⧵𝑈→𝑍 be the natural inclusion, and recall that we have a short exact sequence

1→ 𝑗!𝑗
∗𝜇𝑛 →𝜇𝑛 → 𝑖∗𝑖

∗𝜇𝑛 →1, (6.14)

inducing a long exact sequence

…→𝐻𝑝(𝑋,𝑗!𝑗
∗𝜇𝑛) ≅ 𝐻

𝑝
𝑐 (𝑈,𝜇𝑛) →𝐻𝑝(𝑋,𝜇𝑛) →𝐻𝑝(𝑋, 𝑖∗𝑖

∗𝜇𝑛) →𝐻𝑝+1(𝑋,𝑗!𝑗
∗𝜇𝑛) → ….
(6.15)

We claim that 𝐻•(𝑋, 𝑖∗𝑖
∗𝜇𝑛) = 0: since 𝐻•(𝑋, 𝑖∗𝑖

∗𝜇𝑛) = 𝐻•(𝑍, 𝑖∗𝜇𝑛), and 𝑍 con-
sists of a finite collection of points, 𝑍 = ⨆Spec𝑘, Tsen’s theorem implies that
𝐻•(𝑍, 𝑖∗𝜇𝑛) = 0. Exactness of the long exact sequence and the proof for 𝑈 = 𝑋
then gives 𝐻𝑝

𝑐 (𝑈,𝜇𝑛) ≅ 𝐻
𝑝(𝑋,𝜇𝑛) ≅ ℤ/𝑛ℤ for all 𝑝.
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