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Abstract

Lattices have a long history of use in number theory, and have in
recent times found applications in cryptography. Out of the 26 second-
round candidates for the NIST post-quantum cryptography competition, 9
base their security on conjecturally computationally hard problems about
lattices. For optimisation, several proposed lattices are ideal lattices, which
have rich number-theoretic structure. In this report, we investigate whether
the Arakelov class group, which parameterises certain ideal lattices up
to isometry, can provide avenues of attack on the aforementioned hard
problems. This idea was first introduced in [4].
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1 Lattices

1.1 Introduction to lattices

A lattice L of rank n is a discrete subgroup of Rn isomorphic to Zn. The
requirement that a discrete subgroup L be isomorphic to Zn is equivalent to the
quotient group Rn/L being compact; in that case we say that L is cocompact.
Lattices arise naturally in several classical problems in number theory, for
example in the study of quadratic forms, cf. [2, Section 1.4].

For any basis B = {b1, . . . , bn} of Rn, the Z-span of B defines a lattice.
Conversely, for any lattice we can find a collection of n linearly independent
elements in L, hence a basis for Rn. This shows that there is a correspondence
between lattices of dimension n and the collection of invertible n× n-matrices
over R, Gln(R). Explicitly, we send a basis b1, . . . , bn to the matrix [b1, . . . , bn]

t,
which we recall is invertible by basic linear algebra.

However, not all bases determine different lattices; for example, if n = 1, any
lattice takes the form bZ = {bn : n ∈ Z} for some non-zero real number b, and
we see that the lattices determined by b = 1 and b = −1 give the same subgroup
of R. This phenomenon extends to higher dimensions, as the following lemma
shows.

Lemma 1.1. Let L and L′ be lattices determined by bases b1, . . . , bn and
b′1, . . . , b

′
n, respectively. Then L and L′ define the same set if and only if

there exists a matrix A with integer coefficients satisfying |detA| = 1 and
A[b1, . . . , bn]

t = [b′1, . . . , b
′
n]
t.

This is not particularly difficult to prove, see [10, Thm. 7.14]. In other words,
the map Gln(R) → {Lattices in Rn} is surjective but not injective. If n = 1,
then there are only two different bases for a lattice, since the only real 1 × 1
matrices of determinant 1 are [±1]. However, in higher dimensions there are
infinitely many: if a, b are coprime integers, then by the Euclidean algorithm we
can find integers c, d such that ac− bd = 1, so the matrix(

a b
c d

)
takes one basis to a different one. By an induction argument, it is possible to
construct similar examples in higher dimensions.

For any lattice, we define the volume (or sometimes covolume) of the lattice
to be the number vol(L) = |detB| where B = [b1, . . . , bn]

t. By the lemma above,
the choice of basis is irrelevant.

The fundamental domain of a lattice L is the quotient Rn/L. Given a basis
b1 . . . , bn, we can identify the fundamental domain of L with the set

F(L) =

{
n∑
i=1

aibi : ai ∈ [0, 1)

}
.

We can also consider it as an n-fold torus via the isomorphism L ∼= Zn, by

Rn/L ∼= Rn/Zn ∼= (R/Z)n =: Tn.
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This point of view will be more prevalent in the later sections.

1.2 Short vectors in lattices

Among the main reasons for the ubiquity of lattices are the following few problems.
Fix a norm ‖−‖ on Rn, and let L ⊂ Rn be a lattice of rank n.

• The shortest vector problem (SVP): Find a shortest vector v ∈ L,
that is, a non-zero vector which satisfies ‖v‖ = minw∈L ‖w‖.

• The approximate shortest vector problem (apprSVP): Given a
function φ(n), the “approximation factor”, find a non-zero vector w ∈ L
satisfying

‖w‖ ≤ φ(n)‖v‖,

where v is the shortest vector in L.

• The closest vector problem (CVP): Given a fixed vector x ∈ Rn, find
the vector w ∈ L that minimises ‖w − x‖.

A special case of apprSVP is γ-hermiteSVP, for a positive number γ, which asks
to solve apprSVP with φ(n) = γ · vol(L)1/n.

These are all considered to be computationally hard to crack, with both
classical and quantum algorithms. While one might think that apprSVP should
be significantly easier than the other two, even the best algorithms are often
impractical for sufficiently large n. While CVP is considered slightly harder than
SVP, one can often reduce CVP to SVP in a slightly higher dimension, cf. [10,
Rmk. 7.23]. It is often easy to solve these problems given an almost orthogonal
basis for the lattice using Babai’s algorithm, cf [10, Section 7.6]. However, with
a sufficiently high dimension and a highly non-orthogonal basis, the solving the
problems exactly is unfeasible even with a lot computing power.

The choice of a norm is also important: the Euclidean norm is perhaps
the most common, but some algorithms take the supremum norm ‖v‖∞ =
sup1≤i≤n |vi| as a starting point. The hardness of the problems above is con-
jectured to be influenced by the choice of norm, and some work has been put
reducing from one to another, cf. [9, Chap. 13, p.449ff].

To study such vector problems in lattices, it is useful to introduce some
notation: the lenght of the shortest vector in a lattice L is usually denoted by
λ1(L), and for k > 1 we define the k-th successive minima of L as

λk(L) := min
Lk⊂L

max
v∈Lk

‖v‖,

where Lk runs over all subsets of L consisting of k linearly independent vectors.
If we take k = 1, we see that this reduces to the original definition of λ1. For
example, consider the lattice generated by the vectors (1, 0) and (0, 2). For
this we have λ1(L) = ‖(1, 0)‖ = 1 but λ2(L) = max{‖(1, 0)‖, ‖(0, 2)‖} = 2. In
general, it is easy to check that

λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L),
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and these numbers are all equal if and only if L is a dilation and/or rotation
of Zn. Minkowski proved (a generalisation of) the following theorem about the
successive minima of a lattice:

Theorem 1.2 (Minkowski’s second theorem). Let L be a lattice in Rn. Then

vol(L)

n!
≤
∏

λi ≤ vol(L).

1.3 Cyclic and ideal lattices

Given a polynomial f(x) ∈ Z[x] of degree n, we can consider the polynomial
quotient ring

R =
Z[x]
(f(x))

.

This becomes a lattice via the coordinate embedding: fix a basis x0, . . . , xn−1 for
Rn, and consider the linear map φ defined by φ : xi 7→ xi. Since we can pick any
coefficients from Z to define a polynomial in R, the image of φ is the Z-span of a
basis of Rn, hence a lattice. If I is an ideal of R, then the image L = φ(I) ⊂ Rn
is called an ideal lattice. As the name suggests, this is also a lattice, and has
rank n.

The main and perhaps historically most significant examples are the cyclic
lattices, which arise from taking f(x) = xn − 1, for some positive integer n.
This is the basis for the NTRU cryptosystem [10, Section 7.10]. However, f
is not irreducible, so we are prone to divide by x− 1 to obtain the irreducible
polynomial f(x) = xn−1 + xn−2 + . . .+ 1, and use this instead. Geometrically,
this can be viewed as a hyperplane in Z[x]/(xn − 1). The ring Z[x]/(f(x)) is
then a so-called cyclotomic ring, and has several useful properties enabling fast
computation.

1.4 Two lattice-based cryptosystems

We now sketch a simple lattice-based public key cipher, called the GGH cryp-
tosystem. The exposition follows [10, Section 7.8]. Suppose Bob wants to send
a message to a trusted partner Alice securely. Alice fixes her secret key, a
reasonably orthogonal collection of vectors v1, . . . , vn ∈ Zn which define a lattice
L ⊂ Rn. For convenience, set V = [v1, . . . , vn]

t. Next Alice chooses an n × n
matrix W with integer coefficients and detW = ±1, so that the new basis
{wi = viU : i = 1, . . . , n} is “bad”, that is, far from being orthogonal. This new
basis w1, . . . , wn is Alice’s public key.

If Bob wants to transmit a message m ∈ Zn securely, he fixes additionally a
small “error term” e. Next he computes the cipher text c = mW + e. This is
generally not a lattice point, but by choosing e sufficiently small, it will be close
to a unique lattice point. Alice can then use her “good” basis for L to solve the
closest vector problem, and obtain mW . By multiplying by W−1, Alice then
obtains Bob’s secret message m.

In practice, most lattice cryptosystems are a lot more involved than this, and
considering its simplicity it should come as no surprise that it is insecure, see [6].
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Another lattice-based cryptosystem, briefly mentioned earlier, is the NTRU
family of algorithms. The NTRU asymmetric public key system described in
[10, Section 7.10] goes as follows:

Define
R :=

Z[x]
xN − 1

,

where N > 3 is a large prime. Fix two other distinct primes p and q, along with
an integer d ≈ N/3, and set

Rp :=
Z/pZ[x]
xN − 1

and Rq :=
Z/qZ[x]
xN − 1

.

We define T (a, b) to be the collection of ternary polynomials, that is, polynomials
with a coefficients equal to 1, b coeffients equal −1 and the rest 0. The public
data for the NTRU Encrypt algorithm is the following: N, p, q and d ∈ Z, chosen
such that q > (6d+ 1)p.

Alice chooses secret polynomials f ∈ T (d+ 1, d) and g ∈ T (d, d) such that
f (mod p) and f (mod q) are invertible in Rp and Rq, respectively, and we call
the inverses Fp and Fq. Alice’s public key is h(x) := Fq(x)g(x) (mod q).

If Bob wants to send a plaintext m ∈ Rp, he picks a random “noise element”
r ∈ T (d, d), and computes the ciphertext e = prh+m (mod q), which is passed
on to Alice.

Alice then computes f · e = pgr + fm (mod q), and lifts this to an element
a(x) ∈ R: the lift used is the one centered at 0, meaning that a has integral
coefficients in the interval (−q/2, q/2). The condition on p, q and d ensures
that the message is preserved; Alice then reduces modulo p to obtain a(x)
(mod p) = f(x)m(x) (mod p), and by multiplying by Fp she recovers Bob’s
plaintext m(x).

On the surface, this does not look much like a lattice algorithm; however,
one can show, cf. [10, Prop. 7.61] that breaking the algorithm is at least as
difficult as solving apprSVP in a lattice determined by q and the coefficients of
the polynomial h, explicitly by

MNTRU
h :=

(
I h
0 qI

)
where I is the n×n-identity matrix where n = deg h, and h is the matrix defined
as follows: if h has coefficients hi for i = 0, . . . , n− 1, then the entry hij = hi−j
with the subtraction computed modulo n. The key result is then that f and g
are short vectors of MNTRU

h .

1.5 Instantiations

An instantiation is a choice of parameters for a specific instance of a cryptosystem.
For example, a choice of N, p, q and d in NTRU Encrypt in the previous section
constitues an instantiation. There are many concerns to be taken when choosing
an instantiation; we generally want the parameters to be chosen such that
computation is fast, in which case smaller numbers are preferred, but on the
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other hand this can prove a risk to security. The same goes for choices of lattices;
we want lattices with a lot of structure (such as the cyclotomic ring generated by
xN − 1), but not so much that the structure can be used to solve the underlying
lattice problems more easily than other lattices. This is part of the reason why
the NIST post-quantum candidate NTRU Prime, also based on the NTRU setup,
uses the ring xN − x− 1 instead of xN − 1; the cyclotomic rings simply have a
too large attack surface.

2 Number-theoretic background

2.1 Number fields

Let k be a field containing the rational numbers Q. Then k is naturally a
Q-vector space where the scalars act via the multiplication in k. Its dimension
is usually called the index, denoted by [k : Q]. In algebraic number theory, the
main object of study is the number field, which is a field of finite index. Suppose
α is a root of a (monic, irreducible) polynomial f ∈ Z[x] of degree n. Then the
ring

Q(α) := {b0 + b1α+ . . .+ bn−1α
n−1 : bi ∈ Q}

is in fact a field, which one shows by establishing an isomorphism Q(α) ∼=
Q[x]/(f(x)), which is a field by the extended Euclidean algorithm. Clearly it con-
tains a copy of Q, and it has finite index because it is spanned by 1, α, . . . , αn−1.
It turns out that every number field is of this form, for some suitable α. This
result is called Artin’s primitive element theorem.

In Q it is easy to show that the only rational numbers that arise from
polynomials with integer coefficients are the integers themselves. However, recall
that the golden ratio is defined as the root of the polynomial x2 − x − 1, and
equals 1

2 + 1
2

√
5. This shows that the integral closure of Z in Q(

√
5), that is, the

collection of elements of Q(
√
5) arising as roots of polynomials with coefficients

in Z, can be strictly larger than Z[α]. If k is a number field, we call the integral
closure of Z in k the ring of algebraic integers of k, usually denoted by Ok. If
Ok = Z[α], then we say that f is monogenic.

Suppose k is a number field with k ∼= Q[x]/(f(x)) for some irreducible monic
polynomial f ∈ Z[x]. Without choosing a distinguished element α defining Q(α),
we have deg f = [k : Q] distinct roots of f to choose from. Each root α gives an
embedding σ of k into C, defined by

σ : k ∼=
Q[x]

(f(x))
→ C,

P (x) + f(x) 7→ P (α) + f(α) = P (α).

We define the norm of an element a ∈ k as Nk/Q(a) :=
∏
σ σ(a), and the

trace as trk/Q :=
∑
σ σ(a). If there is no room for confusion, we tend to drop

the subscripts and write simply N(a) and tr(a). Their names are related to the
fact that they are the determinant and trace, respectively, of multiplication by α
regarded as a linear map on the Q-vector space k. Both the norm and the trace
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are integers whenever α is an algebraic integer; this is easily seen by Vieta’s
formulae.

2.2 Unique factorisation of prime ideals

The ring Ok carries many similarities to Z, but also some crucial differences.
Most importantly, it fails to have unique factorisation into prime numbers. For
example, in Q(

√
−5), we can factor 6 as both 2 · 3 and (1 +

√
−5) · (1−

√
−5).

This famously lead to an erroneous proof of Fermat’s last theorem [5, Lamé,
p310 ff.]. In lieu of this, it was observed by Kummer that if we had so-called
“ideal numbers” pi such that

2 = p1p2, 1 +
√
−5 = p1p3,

3 = p3p4, 1−
√
−5 = p2p4,

then unique factorisation would be preserved. Dedekind translated this into
the language of abstract algebra, giving ideals, which are subgroups under
multiplication by elements of the original ring. The main result is the following:

Theorem 2.1. Let Ok be the ring of integers in a number field k. Then any
ideal a ⊂ Ok factors as a finite product of prime ideals

a = pn1
1 · . . . pnr

r ,

where ni ∈ N for i = 1, . . . r.

Here the product of two ideals a · b is by definition the ideal consisting of
finite sums of elements a · b for a ∈ a and b ∈ b. We also define a fractional
ideal I as an additive subgroup of k for which there exists some x ∈ Ok such
that x · I ⊂ Ok. For example, in Q the subgroup 1

2Z is a fractional ideal, and
indeed here every fractional ideal is of the form a

bZ for some coprime a, b ∈ Z.
It is important to note that a fractional ideal is not an ideal: it is not even
a subset of Ok.1 Fields, on the other hand, have only the trivial ideal. In very
formal terms, fractional ideals are precisely the projective rank 1 Ok-modules,
cf. [8, Exercise I.3.10]. Then Theorem 2.1 generalises to negative exponents in a
natural way, see

Under the multiplication defined above, the set of fractional ideals Ik forms
an abelian group, with Ok as the identity element. For example, the inverse of
1
2Z in Q is 2Z. We call a principal fractional ideal any fractional ideal which
can be written as x · Ok for some x ∈ k. The principal fractional ideals form a
subgroup Prink of Ik. In Q, and more generally in any number field whose ring
of integers is a principal ideal domain, one shows that every fractional ideal is
principal. As is usual in modern mathematics, we are then inspired to form an
object which measures the failure of being a principal ideal domain. Namely,
define

Clk :=
Ik

Prink
.

1Unlike much of the literature, in the following we make a conscious effort to separate
between the two.
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This is called the ideal class group of the number field k, and an important
result in algebraic number theory is that Clk is always a finite group, cf. [8,
Theorem I 6.3]. We call its size #Clk the class number of k. Evidently, k has
class number 1 if and only if Ok is a principal ideal domain.

2.3 The Minkowski embedding

Recall that we have n = dimQ k embeddings of k into C, as described in the end
of section Section 2.1. Minkowski’s brilliant idea was that instead of choosing
one, we can combine all of them to obtain an embedding which carries more
arithmetic information. For example, returning to our quadratic extension
Q(

√
5), the roots of the minimal polynomial x2 − 5 are ±

√
5, and so we have

two distinct embeddings σ :
√
5 7→

√
5 and τ :

√
5 7→ −

√
5. These are in a sense

indistinguishable, since Q(
√
5) and Q(−

√
5) define the same field.

Let {σi : i = 1, . . . , n} be the collection of embeddings k ↪→ C. We can
assemble these into a map k ↪→ kC :=

∏
iC by a 7→ (σ1(a), . . . , σn(a)). By

convention, we tend to drop the subscripts and write the tuple as (σ(a))σ. If σ
is an embedding, then it is easy to see that σ̄ which sends a to σ(a), is also such
an embedding, although σ and σ̄ need not be different. Therefore we have a
natural conjugation action on kC, not simply by conjugating each element, but by
conjugating each element and switching the σ-coordinate with the σ̄-coordinate.
By definition, this action leaves fixed the elements of kC that come from k.
Therefore we can identify the elements of kC related by the conjugation action
to yield a new vector space kR formally defined as

kR := {(xσ)σ ∈ kC : x̄σ = xσ̄}.

Since the conjugation action does nothing to the image of k, there is a natural
embedding of k into kR. This is called the Minkowski embedding, or sometimes
the canonical embedding.

If we again consider k = Q(
√
5), then we see that kC consists of pairs (xσ, xτ )

where xσ, xτ ∈ C. Since the images of both σ and τ lie in R, the conjugation
action does nothing to these. Therefore

kR = {(xσ, xτ ) ∈ kC : x̄σ = xσ, x̄τ = x̄τ} ∼= R2,

as a complex number equals its conjugate if and only if it lies along the real line.
The embedding of Q(

√
5) into kR then looks like

(a+ b
√
5) 7→ (a+ b

√
5, a− b

√
5),

in other words the copy of Q lies along the diagonal xσ = xτ , while
√
5 ·Q lies

on the anti-diagonal, xσ = −xτ . The situation is described in Fig. 1.
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xσ

xτ

Q

√
5 ·Q

Figure 1: The image of Q(
√
5) under the Minkowski embedding.

We can transfer the multiplicative structure on k to kR, simply by requiring
that (xσ)σ · (yσ)σ = (xσyσ)σ. In technical language, this makes kR into an
R-algebra, and we have an isomorphism kR → Rn given by

xτ 7→ xτ

xσ 7→ Re(xσ)

xσ̄ 7→ Im(xσ),

where τ runs over the real embeddings k ↪→ R ⊂ C, and σ the complex embed-
dings modulo conjugation.

This allows us to define a natural Hermitian inner product inherited from
kC, namely by

〈xσ, yσ〉 =
∑
σ

xσ ȳσ.

This is frequently also called the trace product on kR, since for elements x, y ∈ k,

〈(σ(x))σ, (σ(y))σ〉 = tr(xȳ),

where tr is the usual trace from algebraic number theory, and ȳ the complex
conjugate of y, inherited from C in the canonical inclusion k ⊂ C. Tron: I’m still
somewhat confused about the trace; isn’t the trace defined this way? (Neukirch’s
book, page 29-30), i.e., tr(x) =

∑
σ(x), so tr(xȳ) =

∑
σ(x)σ(y) by definition?

Håvard: Yes, that is correct, but there is more in kR than just the image of k.
So in formal terms the trace factors as

k kR

R
tr(xȳ)

Minkw

〈x,y〉

Håvard: However, it is not obvious that the trace extends to a map on all of kR.

The image of a given fractional ideal a ⊂ k under the Minkowski embedding
is a lattice. If a ⊂ Ok is integral, that is, wholly contained in Ok, then its volume
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(that is, the Lebesgue measure of the quotient kR/a) is given by

vol(a) =
√
|∆k|[Ok : a], (1)

where ∆k = det
(
tr
(
bib̄j

))
for any basis {bi} of Ok is the discriminant of k,

and [Ok : a] is the (additive) group-theoretic index of a in Ok. From this we
can determine the volume of a fractional ideal a−1 by computing the index (as
abelian groups) of the sublattice a. The (absolute) norm of a fractional ideal a
is defined for integral ideals as [Ok : a], and extended multiplicatively. Explicitly,
if a fractional ideal a decomposes as

∏
p p

np , then N(a) =
∏

pN(p)np . In light
of Lagrange’s theorem we therefore have for arbitrary fractional ideals that

vol(a) =
√

|∆k|N(a) (2)

which in the special case of integral ideals reduces to Eq. (1).

The main result of Minkowski theory is the following bound:

Theorem 2.2 (The Minkowski bound). Let a ⊂ Ok be an integral ideal, let r
and 2s be the number of real and complex embeddings of k, respectively, and let
n = [k : Q]. Then a contains a non-zero element a such that

|Nk/Q(a)| ≤
(
4

π

)s
n!

nn

√
|∆k|.

This is used to prove the finiteness of Clk, and by taking n ≥ 2 it is not
difficult to show that |∆k| = 1 if and only if k = Q.

Consider for instance the integral ideal a = (1 +
√
5) in Q(

√
5). Explicitly,

this is the collection of points in Ok of the form

a+ b
√
5

2
(1 +

√
5) =

a+ 5b+ (a+ b)
√
5

2
,

and these are mapped to the points(
a+ 5b+ (a+ b)

√
5

2
,
a+ 5b− (a+ b)

√
5

2

)
∈ kR.

From the example computation of the Minkowski embedding above, we deduce
that the image a is given by
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xσ

xτ

Q

√
5 ·Q

Figure 2: The ideal lattice (1 +
√
5) in Q(

√
5) under the Minkowski embedding.

2.4 The logarithmic embedding

The idea of modfying the Minkowski embedding to study the units of a number
field is commonly attributed to Dirichlet. Instead of embedding k into some real
vector space, we will instead take k× = k \ {0} as our starting point. Since every
element then has non-zero norm, we can define a mapping by α 7→ (log |σ(α)|)σ,
which transforms the multiplication in k to addition inside

∏
σ Rσ. Even though

this is a real vector space, we have a canonical involution as in the additive case,
given by (xσ)σ 7→ (xσ̄)σ.

What do we get by modding out by this action? Well, enumerate the embed-
dings σ into σ1, . . . , σr, the real embeddings, and let σr+1, σ̄r+1, . . . , σr+s, σ̄r+s
be the remaining complex embeddings. By definition of our labelling, we have
n = r + 2s where r is the number of real embeddings, and 2s is the number
of complex embeddings. The involution leaves fixed the components corre-
sponding to real embeddings, and identifies the coordinate associated to a
complex embedding σ with the coordinate of its conjugate σ̄. Letting [

∏
σ R]

+

denote the quotient space following the convention in [8], we therefore find that
dim [

∏
σ R]

+
= r+ s. Note that log |σ̄(x)| = log |σ(x)| = log |σ(x)|, so the image

of k is preserved under the action, and as a consequence we have an embedding
of k into [

∏
σ R]

+. This is called the logarithmic embedding of k, and we denote
the map by ` : k× → [

∏
σ R]

+.

It is easy to see that if x ∈ k× is a unit of Ok, then it has norm ±1. On the
other hand, by defining the trace of an element (xσ)σ in [

∏
σ R]

+ as the sum of
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the components,
∑
σ xσ, then for a given element x ∈ k× we find that

tr `(x) =
∑
σ

log |σ(x)| = log
∏
σ

|σ(x)| = log |N(x)|.

In particular, if x ∈ Ok is a unit, then its image in the logarithmic embedding
lies in the hyperplane H consisting of elements of trace zero, as log 1 = 0. Since
the units of Ok form a multiplicative subgroup of k×, the image of this subgroup
is an additive subgroup of H, seeing as the logarithm turns multiplication into
addition. However, it is not just any subgroup: it is a lattice, as the following
theorem tells us.

Theorem 2.3 (Dirichlet’s unit theorem). Let k be a number field with ring of
integers Ok. Then the group of units in Ok is finitely generated, and forms a
lattice of rank r + s− 1 in the logarithmic embedding. In general, the group of
units has the form Zr+s−1 × µk, where µk is the subgroup consisting of roots of
unity in k.

3 Arakelov theory of number fields

In this section, we aim to explain the setup for the paper [4]. Since the theory
in question was heavily based on an analogy between number fields and func-
tion fields of algebraic curves, we will first recall the notion of divisors in the
algebro-geometric setting. This is included primarily for motivation, and readers
unfamiliar with algebraic curves can safely go directly to Section 3.2.

3.1 The function field case

Let C be a curve over C, formally a non-singular projective algebraic variety
with function field of transcendence degree 1 over C. We can then form the
divisor group of C, Div(C) formally the free abelian group generated by the
points on C. A divisor is an element D ∈ Div(C), and can be written as

D =
∑
P

nP · P, nP ∈ Z,

with all but finitely many nP = 0. While this is an uncountably infinite group,
every element looks like a finite formal sum of points on C, counted with finite
multiplicity. An effective divisor is one for which nP ≥ 0 for all P , and if D
is such a divisor we write D ≥ 0. The degree map is the function Div(C) → Z
defined by

deg

(∑
P

nP · P

)
=
∑
P

nP .

As complex curves are also Riemann surfaces, we can consider a rational
function f : C → C, to which we associate a principal divisor

(f) 7→
∑
nP

nP (f) · P,
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where nP (f) = 0 unless f has a pole or a zero at P . If f has a pole at P , then
nP (f) = − ordP (f), and if P is a zero, then nP (f) is its order, both in the
usual complex-analytic sense. (cf. [7]). Using the Cauchy integral formula one
shows that f necessarily has the same number of poles as zeros. In other words,
all principal divisors have degree 0. We say that two divisors D and D′ are
equivalent if D = D + (f) for some rational function f . Clearly, then, equivalent
divisors necessarily have the same degree.

Given a meromorphic form
fdz

on C, we can similarly form a canonical divisor κ = (f) by counting the poles
and zeros of f . One can show that any two canonical divisors are equivalent.
For a fixed divisor D, we define the vector space L (D) to be the set of rational
functions with (f) +D ≥ 0. This can be shown to be finite-dimensional, and
denote its dimension by `(D). We are now able to state one of the main theorems
in the theory of divisors:

Theorem 3.1 (Riemann-Roch for curves). Let D be a divisor on a non-singular
projective algebraic curve C of genus g, and κ a canonical divisor on C. Then

`(D)− `(κ−D) = degD + 1− g.

To tie this to number fields, recall that if C is defined as the vanishing locus
of F (t) ∈ C[t], then every prime ideal of the coordinate ring

R =
C[t]

(F (t))

corresponds to a point on C.2 Then a function on C can be regarded as a
function on SpecR, the collection of prime ideals of R. Now, if we pass to a
number field k, the “coordinate ring” will be the ring of integers in k. An element
of k can then be regarded as a “function on SpecOk” in the same manner as a
rational expression in the function field of a curve is a function on the prime
ideals on the coordinate ring of the same curve.

This is not sufficient, however; we would like to make Ok “compact” in some
sense. To do this, we add in the “primes at infinity”, just like C is compactified
by adding the point at infinity. These are the embeddings of k into C, and arise
naturally in the theory of valuations. For an in-depth explanation of this, see [8,
Chapters II & III].

3.2 Divisors on number fields

Let Ik be the ideal group of a number field k with ring of integers Ok, and let
{σ} be the collection of embeddings k ↪→ C. We then form the Arakelov divisor
group, Divk, as a slight modification of the free abelian group on the prime ideals
p of Ok and embeddings ν, defined up to conjugation:

Divk =

(⊕
p

Zp

)
⊕

(⊕
ν

Rν

)
.

2There are also the generic points, which we tacitly ignore.
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It is not quite free abelian because the infinite places have coefficients in R, not
Z. For brevity we frequently omit “Arakelov” and simply write “divisors”.

The reason for identifying conjugates is that conjugate embeddings σ and σ̄
induce the same valuation on k, see [8, Chap. II]. In other words, an Arakelov
divisor is a formal Z-linear combination of the primes of Ok, “the finite part”,
along with an R-linear combination of the embeddings modulo conjugation,
“the infinite part”. For easier bookkeeping, we will denote embeddings up to
conjugation by ν, while σ is used when σ and σ̄ need to be distinguished.

For example, for the quadratic extension Q(
√
−1) = Q(i), we have a priori

two complex embeddings (sending i to a choice of ±i), but in the divisor sum
we identify these, so that a divisor D takes the form

D =
∑
p

np · p+ xνν.

Then 7·(1+i)+πν is a divisor since (1+i) is a prime in Q(i), but
∑
p≡3 (mod 4) p·

(p), where the sum is taken of primes of Z which do not split in Q(i), is not,
since there are infinitely many non-zero coefficients.

Since the finite part
∑

p npp is determined uniquely by the ideal
∏

p p
np and

vice versa, it is natural to define a map Divk → Ik by “forgetting the infinite
part”,

D =
∑
p

np · p+
∑
ν

xνν 7→
∏
p

pnp .

Since the kernel of this map is precisely
∏
ν R, we have an exact sequence3

0 →
∏
ν

R → Divk → Ik → 0. (3)

With the notation from Section 2.4, we recognise
∏
ν R as being exactly the

space [
∏
σ R]+.

Next, as in the function field case, we define the degree map deg : Divk → R
by the rules

deg p = logN(p) and deg ν =

{
1 if ν is real,
2 if ν is complex.

Note that N(p) is always finite: by Lagrange’s theorem, it equals #(Ok/p).
This is a finite number since Ok/p is a quotient of a free Z-module by a free
submodule of the same rank, which follows from an easy induction on the rank.
The fact that p is a free Z-module is deduced from the fact that any submodule
of a free Z-module is also free, proved using a similar induction argument.

It is easily checked that deg is a surjective group homomorphism onto the
additive group R. We next consider the kernel of deg, which we denote by Div0k,
which by definition is the subgroup of divisors with degree 0. This fits into a
natural exact sequence derived from Eq. (3), namely

0 → H → Div0k → Ik → 0.

3Recall that a sequence is exact if at any object in the sequence, the image of the map in
equals the kernel of the map out.
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Here H is the trace 0 hyperplane of [
∏
σ R]

+ defined in Section 2.4.

For an arbitrary non-zero element f ∈ k, we have a unique prime ideal
factorisation fOk =

∏
p p

ordp(f) and form the corresponding principal divisor

(f) =
∑
p

ordp(f) · p+
∑
ν

− log(|ν(f)|) · ν.

Formally, the correspondence f 7→ (f) defines a group homomorphism div :
k× → Divk. As a corollary of [8, Prop. III 1.3], we then have following:

Theorem 3.2. For any f ∈ k×, we have deg(f) = 0. In other words,

deg ◦div = 0.

Since div is a group homomorphism, its image is a subgroup of Divk. By
analogy with the ideal class group, we quotient Divk by the subgroup of principal
divisors, and denote the resulting group by Pick, the Picard group of k.4

By the theorem above, the degree map factors through the quotient, and so
we can consider the “degree zero part” of Pick, that is, the subgroup of divisor
classes [D] for which we have deg[D] = 0. This is what is called the Arakelov
class group in [4], denoted by Pic0k.5

Throughout our discussion, we have encountered several exact sequences
which we can assemble into a diagram with exact rows and columns,

0 0 0

0 O×
k /µk k×/µk Prink 0

0 [
∏
σ R]

+
Divk Ik 0

Pick Clk

0 0

` div

Now, remembering the dictum from high school maths to always complete
the square, we observe that the missing corner of our diagram can be filled
either with [

∏
σ R]

+
/`(O×

k ) or the kernel of some map Pick → Clk. It turns out
that this map is in fact well-defined, since the notions of principal fractional
ideals and principal divisors are naturally compatible. More interestingly, with
some homological algebra magic (also known as the snake lemma), the square

4This is technically the first Chow group, as explained in [8, Chap. III], which is however
isomorphic to the Picard group, according to Prop. III.1.13.

5In [8], Pick is the Arakelov class group, not Pic0k.
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completes to

0 0 0

0 O×
k /µk k×/µk Prink 0

0 [
∏
σ R]

+
Divk Ik 0

0 T Pick Clk 0

0 0 0

` div

However, as stated earlier (without much justification), we are more interested
in Pic0k, it does in fact fit into an analogous diagram with exact rows and columns:

0 0 0

0 O×
k /µk k×/µk Prink 0

0 H Div0k Ik 0

0 T 0 Pic0k Clk 0

0 0 0

` div

where H is the trace 0 hyperplane as above. It is a non-trivial fact that Pic0k
is a compact topological group. To see this, observe that T 0 = H/`(O×

k ) is
isomorphic to a torus by Dirichlet’s unit theorem, and Clk is a finite group by
Minkowski theory, which can be made into a topological group by equipping it
with the discrete topology. As a topological space, we then have that Pic0k is
the product of T 0 and Clk, and is therefore compact. This identification does
not respect the group law, so Pic0k is not isomorphic to an #Clk-fold torus as
topological groups, but the argument above still proves that it is a compact
topological group. It turns out that the compactness of Pic0k conversely implies
the Dirichlet unit theorem and the finiteness of the ideal class group, cf. [8, III
1.11].

3.3 Ideal lattices of number fields

Recall from Section 2.3 that the image of any fractional ideal forms a lattice
in the Minkowski embedding. In this section we want to extend this definition
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to associate lattices to Arakelov divisors as well.6 This prompts the following
definition:

An ideal lattice is a fractional Ok-ideal a equipped with a non-degenerate
bilinear form 〈−,−〉 which is “Hermitian” in the sense that

〈λa, b〉 = 〈a, λ̄b〉

for all a, b ∈ a and λ ∈ Ok, where λ̄ is the complex conjugate of λ, inherited
from the complex embedding k ⊂ C.

While we already defined an ideal lattice as something else in Section 1.3,
the definition in the current section predates the previous one. Since making up
a new name for these will only be a source of confusion, we henceforth adopt
the convention that an unspecified ideal lattice is one arising from a fractional
ideal, and an ideal lattice in the quotient ring sense is specified as such.

Recall that any Hermitian form on a induces a norm by ‖a‖2a = 〈a, a〉. One
shows, cf. [1, Prop. 1], that there exists some invertible element u ∈ k⊗Q R with
u = ū such that 〈a, b〉 = tr

(
uab̄
)
, where we identify a with a ⊗Z R ⊂ k ⊗Q R.

Thus specifying the bilinear form is equivalent to specfying a unit u, and an
ideal lattice can be determined by a pair (a, u). This is also called a Hermitian
line bundle.

To connect this with our previous setup, observe that kR is naturally an
R-algebra under pointwise multiplication. There is an isomorphism of R-algebras,
k ⊗Q R ∼= kR via the map η : a⊗ x 7→ (σ(a))σ · x cf. [8, Rmk. on p. 30]. We can
therefore define a map φ : k ⊗Q R → kR by a⊗ x 7→ η(u · a⊗ x), where u is the
unit in the trace above, and φ maps the fractional ideal a to ua ⊂ kR. Then
the Hermitian form on a is compatible with the inner product on kR, as for any
f ∈ a we have that

‖f‖2a = tr
(
uff̄

)
= tr

(
φ(ff̄)

)
= ‖φ(f)‖kR

so this way of embedding the ideal is quite natural. In this way, we arrive at the
definition of an ideal lattice given in [4]: namely a lattice in kR which takes the
form xL(a), where x ∈ kR is invertible, a ⊂ k is a fractional ideal, and L denotes
the Minkowski embedding as usual. Note that u has changed name to x.

There is a natural group structure on the set of fractional ideal lattices, which
we denote by IdLatk, given by xL(a) · yL(b) = xyL(ab). The identity element is
L(Ok), and inverses are defined in the natural way. We can compute the volume
of a ideal lattice by using Eq. (2) from Section 2.3:

volxL(a) =
√

|∆k| ·N(a) ·
∏
σ

|xσ|.

Now, let us relate this to Arakelov theory: let

D =
∑
p

npp+
∑
ν

nνν,

6This definition of an ideal lattice, as far as I can tell, precedes the context of the Arakelov
class group, and is taken from [1].
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be an Arakelov divisor. Note well that the number of infinite places is r + s
(the number of real + the number of complex pairs) while the space containing
ideal lattices is kR with dimension n = r + 2s. Thus we need to make use of the
canonical map [

∏
σ R]

+ → kR, essentially sending the coordinates corresponding
to real embeddings to themselves, while for ν 6= ν̄ the coordinate xν is mapped
to both the xν-coordinate and the xν̄-coordinate. Following [4], we will denote
this assignment by (xν)ν 7→ (xνσ )σ. A quick example to fix ideas: in Q(i),
we have the complex embeddings determined by σ : i 7→ i and σ̄ : i 7→ −i,
and the map sends xν 7→ (xνσ , xνσ̄ ) = (xν , xν) ∈ kR. In very concrete terms,
`(1 + i) = log |1 + i| = log 2 is mapped to (log 2, log 2) ∈ kR.

With this in mind, we can form a ideal lattice associated to D by setting

L(D) := (enνσ )σL

(∏
p

pnp

)
.

The exponential ensures that (expnνσ )σ is always invertible. We then easily
compute that

volL(D) =
√
|∆k| ·N

(∏
p

pnp

)
·
∏
σ

enνσ

=
√
|∆k| · exp

(∑
p

np · logN(p) +
∑
σ

nνσ

)

=
√
|∆k| · exp

(∑
p

np · deg p+
∑
ν

nν · deg ν

)
=
√
|∆k| · edegD,

in light of the definition of the degree in Section 3.2. In particular, we see that
divisors of same degree produce lattice of the same volume, indicating that we
are on the right track. In light of this, we define IdLat0k as the subgroup of ideal
lattices coming from degree 0 divisors.

It is natural to ask what the right notion of equivalence of ideal lattices is.
Since each lattice is equipped with a metric, we certainly wish distances to be
preserved between equivalent lattices. This leads to the notion of an isometry,
namely a distance-preserving morphism. In this case, we want it to be a linear
map, and for our purposes it is useful to respect the embeddings σ. Thus we
arrive at the conclusion that an isometry of Ok-ideal lattices is a map acting
as multiplication by an element (zσ)σ and which preserves the norm, forcing
|zσ| = 1 for each σ.

To summarise, we say that two ideal lattices xL(a) and yL(b) are Ok-
isometric if there exists an element (zσ)σ ∈ kR with |zσ| = 1 such that xL(a) =
(zσ)σyL(b).

We can now consider the subgroup IsoOk
of ideal lattices which are isometric

to L(Ok) – it is straightforward yet useful to verify that this indeed forms a
subgroup – and obtain the following perhaps surprising result:

Theorem 3.3. The Arakelov class group parameterises ideal lattices up to
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Ok-isometry. In other words, we have a short exact sequence

0 → IsoOk
→ Pic0k → IdLat0k → 0.

3.4 A metric on the Arakelov class group

Recall from Section 3.2 that we could regard the Arakelov class group Pic0k
topologically as the #Clk-fold product of T 0, where T 0 was defined as H/`(O×

k ),
where H is the trace 0 hyperplane of [

∏
σ R]

+, and ` the logarithmic embedding.
Since T 0 is a dimension r+s−1 vector space modulo the log-lattice of dimension
r + s− 1, it is a compact real torus.

Given any lattice L ⊂ Rn with a norm ‖−‖Rn on Rn, we can define a metric
on the fundamental domain F := Rn/L by

dF (x+ L, y + L) := min
v∈L

‖x− y + v‖Rn

For metric spaces in general, we can define a quotient pseduometric in this way,
and it is easy to verify that dF (x+ L, y + L) = 0 if and only if x+ L = y + L.
The equivalence relation defining F is given by x ∼ y whenever x− y ∈ L.

Alternatively, we can define dF as the induced Riemannian metric by identi-
fying the tangent space at every point of F with Rn.

Applying this to our current situation, we obtain a metric on the fundamental
domain T 0 = H/`(O×

k ) which we denote by ‖−‖T 0 , following [4], explicitly given
by

‖x‖T 0 = min
ε∈O×

k

‖x+ (log |σ(ε)|)σ‖H .

Note that this is not a norm, contrary to appearances.

We now return to the last diagram in Section 3.2, more specifically to the
exact bottom row,

0 → T 0 φ−→ Pic0k
ψ−→ Clk → 0.

Recall that topologically, but not group-theoretically, Pic0k can be considered as
a h(k) := #Clk-fold product of the torus T 0. In these terms, two divisor classes
[D] and [D′] lie in the same connected component if ψ([D]− [D′]) = [Ok] in Clk,
[D]− [D′] lies in the kernel of ψ. Since the sequence is exact, kerψ = Imφ so
[D]− [D′] ∈ Imφ, and since φ is injective, there exists a unique element u ∈ T 0

such that φ(u) = [D]− [D′]. Therefore, we can define a metric on the Arakelov
class group by ‖[D]− [D′]‖Pic0k

:= ‖u‖T 0 .

How do we determine this u ∈ T 0 explicitly? Choose a lift D −D′ + (f) of
[D]− [D′], where f is some element of k× \ µk and (f) the divisor associated to
f , as described in Section 3.2. By exactness of the part of the middle row

0 → H → Divk,

there exists a unique element in H being mapped to D −D′ + (f). Explicitly,
since [D −D′] 7→ [Ok] we can assume that D −D′ has only the infinite places,
D−D′ =

∑
ν nν ·ν+(f). Then the preimage in H of D−D′+(f) is the same as

19



the preimage of, by disregarding the finite places,
∑
ν nν · ν +

∑
ν − log |ν(f)| · ν,

and this equals the vector (nν − log |ν(f)|)ν ∈ H. Up to addition by a lattice
point, this is exactly the value of u we are looking for.

3.5 Random walks on the Arakelov class group

The main result of [4] is a reduction of a variant of apprSVP called HermiteSVP,
from a worst-case ideal lattice to an “average”-case, in a probabilistic sense. In
other words, they show that if we can solve HermiteSVP in an average ideal
lattice, then up to a slight increase in the approximation factor we can solve it
in any ideal lattice.

The method in [4] is based on random walks on Pic0k, which are defined by
making discrete jumps corresponding to multiplication by a sampled selection
prime ideals, combined with a “blurring technique”, which is continuous. The first
step as achieved by defining so-called Hecke operators, applied to a probability
distribution on Pic0k to yield a new probability distribution by a kind of averaging.
This enables to use of powerful techniques from analytic number theory. Still, the
results obtained are conditional on the generalised Riemann hypothesis, which
is highly non-trivial.

Further questions

At this point in time, there are several questions I would look into given more
time:

• Is there a way to relate solutions of apprSVP in “close” (in the Arakelov
class group metric) ideal lattices? In other words, if v is the shortest
vector in xL(a) with associated Arakelov divisor D, can we find a function
fD : R+ → R+ such that ‖D −D′‖Pic0k

< ε implies that there is a vector
w in the lattice associated with D′ with ||v| − |w|| ≤ fD(ε)?

• More generally, if we define functions λi : IdLat0k → (0,∞) sending an
ideal lattice to its i-th successive minimum, is this function continuous?
Lipschitz?

• Is it possible to prove weaker versions of the results in [4] without condi-
tioning on the generalised Riemann hypothesis?

• Does the theory developed extend if we replace Ok by an order (i.e. subring)
in Ok, as in [3]? If so, we would be able to reconcile the different definitions
of cyclic lattices. If not, what fails, and why?

• Can we use the action of the Galois group on Clk to modify the random
walk argument? Are there any qualitative differences if we choose k with
large contra small Galois group?
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